Oscillation Properties for Systems of Hyperbolic Differential Equations of Neutral Type ${ }^{1}$

Wei Nian Li
Department of Mathematics, Qufu Normal University, Shandong 273165, People's Republic of China; Department of Mathematics, Binzhou Normal College, Shandong 256604, People's Republic of China

Submitted by William F. Ames

Received April 22, 1999

Sufficient conditions are established for the oscillations of systems of hyperbolic differential equations of the form

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}}\left(p(t) u_{i}(x, t)+\sum_{r=1}^{d} \lambda_{r}(t) u_{i}\left(x, t-\tau_{r}\right)\right) \\
& =a_{i}(t) \Delta u_{i}(x, t)+\sum_{j=1}^{m} \sum_{k=1}^{s} a_{i j k}(t) \Delta u_{j}\left(x, \rho_{k}(t)\right) \\
& \quad-q_{i}(x, t) u_{i}(x, t)-\sum_{j=1}^{m} \sum_{h=1}^{l} q_{i j h}(x, t) u_{j}\left(x, \sigma_{h}(t)\right) \\
& \quad(x, t) \in \Omega \times[0, \infty) \equiv G, \quad i=1,2, \ldots, m
\end{aligned}
$$

where Ω is a bounded domain in R^{n} with a piecewise smooth boundary $\partial \Omega$, and Δ is the Laplacian in Euclidean n-space R^{n}. © 2000 Academic Press

1. INTRODUCTION

Oscillation theory of partial functional differential equations has been studied extensively for the past few years. For example, see [1-6] and the references therein. However, only [7-9] have been published on the oscillation theory of systems of partial functional differential equations.

[^0]In this paper, we study the oscillation of systems of hyperbolic differential equations of neutral type of the form

$$
\begin{align*}
& \frac{\partial^{2}}{\partial t^{2}}\left(p(t) u_{i}(x, t)+\sum_{r=1}^{d} \lambda_{r}(t) u_{i}\left(x, t-\tau_{r}\right)\right) \\
& =a_{i}(t) \Delta u_{i}(x, t)+\sum_{j=1}^{m} \sum_{k=1}^{s} a_{i j k}(t) \Delta u_{j}\left(x, \rho_{k}(t)\right) \\
& -q_{i}(x, t) u_{i}(x, t)-\sum_{j=1}^{m} \sum_{h=1}^{l} q_{i j h}(x, t) u_{j}\left(x, \sigma_{h}(t)\right), \\
& \quad(x, t) \in \Omega \times[0, \infty) \equiv G, \quad i=1,2, \ldots, m, \tag{1}
\end{align*}
$$

where Ω is a bounded domain in R^{n} with a piecewise smooth boundary $\partial \Omega$, and $\Delta u_{i}(x, t)=\sum_{r=1}^{n} \partial^{2} u_{i}(x, t) / \partial x_{r}^{2}, i=1,2, \ldots, m$.

Suppose that the following conditions hold:
(H1) $p \in C^{2}([0, \infty) ;[0, \infty)), \lambda_{r} \in C^{2}([0, \infty) ;[0, \infty)), \tau_{r}$ are positive constants, $r \in I_{d}=\{1,2, \ldots, d\}$;
(H2) $\quad q_{i} \in C(\bar{G} ;[0, \infty)), \quad q_{i}(t)=\min _{x \in \bar{\Omega}} q_{i}(x, t), \quad q(t)=$ $\min _{1 \leq i \leq m} q_{i}(t), i \in I_{m}=\{1,2, \ldots, m\} ;$
(H3) $\quad q_{i j h} \in C(\bar{G} ; R), q_{i i h}(x, t)>0, q_{i i h}(t)=\min _{x \in \bar{\Omega}} q_{i i h}(x, t)$, and

$$
\begin{aligned}
\bar{q}_{i j h}(t)= & \max _{x \in \bar{\Omega}}\left|q_{i j h}(x, t)\right|, \\
Q_{h}(t)= & \min _{1 \leq i \leq m}\left\{q_{i i h}(t)-\sum_{j=1, j \neq i}^{m} \bar{q}_{j i h}(t)\right\} \geq 0, \\
& \quad i, j \in I_{m}, \quad h \in I_{1}=\{1,2, \ldots, l\} ;
\end{aligned}
$$

(H4) $\quad a_{i} \in C([0, \infty) ;[0, \infty)), a_{i j k} \in C([0, \infty) ; R), a_{i i k}(t)>0$, and

$$
\begin{aligned}
A_{k}(t)= & \min _{1 \leq i \leq m}\left\{a_{i i k}(t)-\sum_{j=1, j \neq i}^{m}\left|a_{j i k}(t)\right|\right\} \\
i, j \in I_{m}, \quad & \geq 0
\end{aligned}, \quad \begin{aligned}
& I_{s}=\{1,2, \ldots, s\} ;
\end{aligned}
$$

(H5) $\quad \sigma_{j}, \rho_{k} \in C([0, \infty) ; R), \sigma_{j}(t) \leq t, \rho_{k}(t) \leq t, \sigma_{j}, \rho_{k}$ are nondecreasing functions and $\lim _{t \rightarrow \infty} \sigma_{j}(t)=\lim _{t \rightarrow \infty} \rho_{k}(t)=\infty, j \in I_{m}, k \in I_{s}$.

We consider two kinds of boundary conditions,

$$
\begin{equation*}
\frac{\partial u_{i}(x, t)}{\partial N}+g_{i}(x, t) u_{i}(x, t)=0, \quad(x, t) \in \partial \Omega \times[0, \infty), \quad i \in I_{m}, \tag{2}
\end{equation*}
$$

where N is the unit exterior normal vector to $\partial \Omega, g_{i}(x, t)$ is a nonnegative continuous function on $\partial \Omega \times[0, \infty), i \in I_{m}$, and

$$
\begin{equation*}
u_{i}(x, t)=0, \quad(x, t) \in \partial \Omega \times[0, \infty), \quad i \in I_{m} . \tag{3}
\end{equation*}
$$

Definition 1.1. The vector function $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t)\right.$, $\left.\ldots, u_{m}(x, t)\right\}^{T}$ is said to be a solution of the problem (1), (2) (or (1), (3)) if it satisfies (1) in $G=\Omega \times[0, \infty)$ and boundary condition (2) (or (3)).

Definition 1.2. A nontrivial component $u_{i}(x, t)$ of the vector function $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ is said to oscillate in $\Omega \times\left[\mu_{0}, \infty\right)$ if for each $\mu>\mu_{0}$ there is a point $\left(x_{0}, t_{0}\right) \in \Omega \times[\mu, \infty)$ such that $u_{i}\left(x_{0}, t_{0}\right)=0$.

Definition 1.3. The vector solution $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t)\right.$, $\left.\ldots, u_{m}(x, t)\right\}^{T}$ of the problem (1), (2) (or (1), (3)) is said to be oscillatory in the domain $G=\Omega \times[0, \infty)$ if at least one of its nontrivial components is oscillatory in G. Otherwise, the vector solution $u(x, t)$ is said to be nonoscillatory.

We note that conditions for the oscillation of system (1) for $p(t)=1$, $\lambda_{r}(t)=0, s=1, l=1$ have been obtained in [7].

2. OSCILLATION OF THE PROBLEM (1), (2)

Theorem 2.1. Suppose that $p(t) \geq 1$ is a monotone decreasing function, and

$$
\begin{equation*}
\sum_{r=1}^{d} \lambda_{r}(t)<1 . \tag{4}
\end{equation*}
$$

If there exists some $h_{0} \in I_{t}$ such that $\sigma_{h_{0}}^{\prime}(t) \geq 0$, and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q_{h_{0}}(t)\left[1-\sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(t)\right)\right] d t=\infty, \quad t_{0}>0, \tag{5}
\end{equation*}
$$

then every solution $u(x, t)$ of the problem (1), (2) is oscillatory in G.
Proof. Suppose to the contrary that there is a nonoscillatory solution $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ of the problem (1), (2). We assume that $\left|u_{i}(x, t)\right|>0$ for $t \geq t_{0} \geq 0, i \in I_{m}$. Let $\delta_{i}=\operatorname{sgn} u_{i}(x, t)$,
$Z_{i}(x, t)=\delta_{i} u_{i}(x, t)$; then $Z_{i}(x, t)>0,(x, t) \in \Omega \times\left[t_{0}, \infty\right), i \in I_{m}$. From (H1), (H5) there exists a number $t_{1} \geq t_{0}$ such that $Z_{i}(x, t)>0, Z_{i}(x, t-$ $\left.\tau_{r}\right)>0, Z_{i}\left(x, \rho_{k}(t)\right)>0$ and $Z_{i}\left(x, \sigma_{h}(t)\right)>0$ in $\Omega \times\left[t_{1}, \infty\right), i \in I_{m}, r \in I_{d}$, $k \in I_{s}, h \in I_{l}$.

Integrating (1) with respect to x over the domain Ω, we have

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} u_{i}(x, t) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} u_{i}\left(x, t-\tau_{r}\right) d x\right) \\
& \quad=a_{i}(t) \int_{\Omega} \Delta u_{i}(x, t) d x+\sum_{j=1}^{m} \sum_{k=1}^{s} a_{i j k}(t) \int_{\Omega} \Delta u_{j}\left(x, \rho_{k}(t)\right) d x \\
& \quad-\int_{\Omega} q_{i}(x, t) u_{i}(x, t) d x-\sum_{j=1}^{m} \sum_{h=1}^{l} \int_{\Omega} q_{i j h}(x, t) u_{j}\left(x, \sigma_{h}(t)\right) d x \\
& t \geq t_{1}, \quad i \in I_{m} \tag{6}
\end{align*}
$$

Therefore,

$$
\begin{array}{r}
\frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} Z_{i}(x, t) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} Z_{i}\left(x, t-\tau_{r}\right) d x\right) \\
=a_{i}(t) \int_{\Omega} \Delta Z_{i}(x, t) d x+\sum_{j=1}^{m} \sum_{k=1}^{s} a_{i j k}(t) \frac{\delta_{j}}{\delta_{i}} \int_{\Omega} \Delta Z_{j}\left(x, \rho_{k}(t)\right) d x \\
-\int_{\Omega} q_{i}(x, t) Z_{i}(x, t) d x-\sum_{j=1}^{m} \sum_{h=1}^{l} \frac{\delta_{j}}{\delta_{i}} \int_{\Omega} q_{i j h}(x, t) Z_{j}\left(x, \sigma_{h}(t)\right) d x, \\
t \geq t_{1}, \quad i \in I_{m} . \tag{7}
\end{array}
$$

From Green's formula and boundary condition (2), it follows that

$$
\begin{equation*}
\int_{\Omega} \Delta Z_{i}(x, t) d x=\int_{\partial \Omega} \frac{\partial Z_{i}(x, t)}{\partial N} d S=-\int_{\partial \Omega} g_{i}(x, t) Z_{i}(x, t) d S \leq 0 \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{\Omega} \Delta Z_{j}\left(x, \rho_{k}(t)\right) d x & =\int_{\partial \Omega} \frac{\partial Z_{j}\left(x, \rho_{k}(t)\right)}{\partial N} d S \\
= & -\int_{\partial \Omega} g_{j}\left(x, \rho_{k}(t)\right) Z_{j}\left(x, \rho_{k}(t)\right) d S \\
& t \geq t_{1}, \quad j \in I_{m}, \quad k \in I_{s}, \tag{9}
\end{align*}
$$

where $d S$ is the surface element on $\partial \Omega$.

Noting conditions (H2) and (H3) and combining (7)-(9), we get

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} Z_{i}(x, t) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} Z_{i}\left(x, t-\tau_{r}\right) d x\right) \\
& \quad+\sum_{j=1}^{m} \sum_{k=1}^{s} a_{i j k}(t) \frac{\delta_{j}}{\delta_{i}} \int_{\partial \Omega} g_{j}\left(x, \rho_{k}(t)\right) Z_{j}\left(x, \rho_{k}(t)\right) d S \\
& \quad+q_{i}(t) \int_{\Omega} Z_{i}(x, t) d x+\sum_{h=1}^{l} q_{i i h}(t) \int_{\Omega} Z_{i}\left(x, \sigma_{h}(t)\right) d x \\
& \quad-\sum_{h=1}^{l} \sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) \int_{\Omega} Z_{j}\left(x, \sigma_{h}(t)\right) d x \leq 0, \quad t \geq t_{1}, \quad i \in I_{m} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} Z_{i}(x, t) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} Z_{i}\left(x, t-\tau_{r}\right) d x\right) \\
& \quad+\sum_{k=1}^{s} a_{i i k}(t) \int_{\partial \Omega} g_{i}\left(x, \rho_{k}(t)\right) Z_{i}\left(x, \rho_{k}(t)\right) d S \\
& \quad-\sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s}\left|a_{i j k}(t)\right| \int_{\partial \Omega} g_{j}\left(x, \rho_{k}(t)\right) Z_{j}\left(x, \rho_{k}(t)\right) d S \\
& \quad+q_{i}(t) \int_{\Omega} Z_{i}(x, t) d x+\sum_{h=1}^{l} q_{i i h}(t) \int_{\Omega} Z_{i}\left(x, \sigma_{h}(t)\right) d x \\
& \quad-\sum_{h=1}^{l} \sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) \int_{\Omega} Z_{j}\left(x, \sigma_{h}(t)\right) d x \leq 0, \quad t \geq t_{1}, \quad i \in I_{m} . \tag{10}
\end{align*}
$$

Setting

$$
\begin{aligned}
& V_{i}(t)=\int_{\Omega} Z_{i}(x, t) d x, \quad Y_{i}(t)=\int_{\partial \Omega} g_{i}(x, t) Z_{i}(x, t) d S \\
& t \geq t_{1}, \quad i \in I_{m},
\end{aligned}
$$

from (10) we have

$$
\begin{align*}
& {\left[p(t) V_{i}(t)+\sum_{r=1}^{d} \lambda_{r}(t) V_{i}\left(t-\tau_{r}\right)\right]^{\prime \prime}} \\
& \quad+\sum_{k=1}^{s}\left[a_{i i k}(t) Y_{i}\left(\rho_{k}(t)\right)-\sum_{j=1, j \neq i}^{m}\left|a_{i j k}(t)\right| Y_{j}\left(\rho_{k}(t)\right)\right]+q_{i}(t) V_{i}(t) \\
& \quad+\sum_{h=1}^{l}\left[q_{i i h}(t) V_{i}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right] \leq 0 \\
& t \geq t_{1}, \quad i \in I_{m} \tag{11}
\end{align*}
$$

Letting

$$
V(t)=\sum_{i=1}^{m} V_{i}(t), \quad Y(t)=\sum_{i=1}^{m} Y_{i}(t), \quad t \geq t_{1}
$$

from (11) we have

$$
\begin{align*}
& {\left[p(t) V(t)+\sum_{r=1}^{d} \lambda_{r}(t) V\left(t-\tau_{r}\right)\right]^{\prime \prime}} \\
& \quad+\sum_{k=1}^{s}\left\{\sum_{i=1}^{m}\left[a_{i i k}(t) Y_{i}\left(\rho_{k}(t)\right)-\sum_{j=1, j \neq i}^{m}\left|a_{i j k}(t)\right| Y_{j}\left(\rho_{k}(t)\right)\right]\right\} \\
& \quad+q(t) V(t) \\
& \quad+\sum_{h=1}^{l}\left\{\sum_{i=1}^{m}\left[q_{i i h}(t) V_{i}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right]\right\} \leq 0 \\
& t \geq t_{1} . \tag{12}
\end{align*}
$$

Noting that

$$
\begin{aligned}
\sum_{i=1}^{m}[& \left.q_{i i h}(t) V_{i}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right] \\
= & {\left[q_{11 h}(t) V_{1}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq 1}^{m} \bar{q}_{1 j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right] } \\
& +\left[q_{22 h}(t) V_{2}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq 2}^{m} \bar{q}_{2 j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right] \\
& +\cdots \\
& +\left[q_{m m h}(t) V_{m}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq m}^{m} \bar{q}_{m j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[q_{11 h}(t)-\sum_{j=1, j \neq 1}^{m} \bar{q}_{j 1 h}(t)\right] V_{1}\left(\sigma_{h}(t)\right) } \\
& +\left[q_{22 h}(t)-\sum_{j=1, j \neq 2}^{m} \bar{q}_{j 2 h}(t)\right] V_{2}\left(\sigma_{h}(t)\right) \\
& +\cdots \\
& +\left[q_{m m h}(t)-\sum_{j=1, j \neq m}^{m} \bar{q}_{j m h}(t)\right] V_{m}\left(\sigma_{h}(t)\right) \\
\geq & \min _{1 \leq i \leq m}\left\{q_{i i h}(t)-\sum_{j=1, j \neq i}^{m} \bar{q}_{j i h}(t)\right\} \sum_{i=1}^{m} V_{i}\left(\sigma_{h}(t)\right) \\
= & Q_{h}(t) V\left(\sigma_{h}(t)\right), \quad t \geq t_{1}, \quad h \in I_{l},
\end{aligned}
$$

and similarly that

$$
\begin{gathered}
\sum_{i=1}^{m}\left[a_{i i k}(t) Y_{i}\left(\rho_{k}(t)\right)-\sum_{j=1, j \neq i}^{m}\left|a_{i j k}(t)\right| Y_{j}\left(\rho_{k}(t)\right)\right] \\
\quad \geq \min _{1 \leq i \leq m}\left\{a_{i i k}(t)-\sum_{j=1, j \neq i}^{m}\left|a_{j i k}(t)\right|\right\} \sum_{i=1}^{m} Y_{i}\left(\rho_{k}(t)\right) \\
=A_{k}(t) Y\left(\rho_{k}(t)\right), \quad t \geq t_{1}, \quad k \in I_{s} .
\end{gathered}
$$

Then from (12), we get

$$
\begin{aligned}
& {\left[p(t) V(t)+\sum_{r=1}^{d} \lambda_{r}(t) V\left(t-\tau_{r}\right)\right]^{\prime \prime}+\sum_{k=1}^{m} A_{k}(t) Y\left(\rho_{k}(t)\right)} \\
& \quad+q(t) V(t)+\sum_{h=1}^{l} Q_{h}(t) V\left(\sigma_{h}(t)\right) \leq 0, \quad t \geq t_{1}
\end{aligned}
$$

It is easy to see that

$$
Y\left(\rho_{k}(t)\right)=\sum_{i=1}^{m} Y_{i}\left(\rho_{k}(t)\right) \geq 0, \quad t \geq t_{1}, \quad k \in I_{s} .
$$

Therefore,

$$
\begin{gather*}
{\left[p(t) V(t)+\sum_{r=1}^{d} \lambda_{r}(t) V\left(t-\tau_{r}\right)\right]^{\prime \prime}+q(t) V(t)} \\
+\sum_{h=1}^{l} Q_{h}(t) V\left(\sigma_{h}(t)\right) \leq 0, \quad t \geq t_{1} . \tag{13}
\end{gather*}
$$

Now let $W(t)=p(t) V(t)+\sum_{r=1}^{d} \lambda_{r}(t) V\left(t-\tau_{r}\right), t \geq t_{1}$; then $W(t)>0$, $t \geq t_{1}$, and the inequality (13) shows that $W^{\prime \prime}(t) \leq 0$ for $t \geq t_{1}$. Hence $W^{\prime}(t)$ is monotone decreasing in the interval $\left[t_{1}, \infty\right)$. We can claim that $W^{\prime}(t) \geq 0$ for $t \geq t_{1}$. In fact, if $W^{\prime}(t)<0$ for $t \geq t_{1}$, then there exists a $T>t_{1}$ such that $W^{\prime}(T)=-L<0$. This implies that

$$
W^{\prime}(t) \leq W^{\prime}(T)=-L \quad \text { for } t \geq T .
$$

Hence

$$
W(t) \leq W(T)-L(t-T), \quad t \geq T
$$

Therefore,

$$
\lim _{t \rightarrow \infty} W(t)=-\infty
$$

which contradicts the fact that $W(t)=p(t) V(t)+\sum_{r=1}^{d} \lambda_{r}(t) V\left(t-\tau_{r}\right)>0$.
From (13) we obtain that there exists some $h_{0} \in I_{l}$ such that

$$
\begin{equation*}
W^{\prime \prime}(t)+Q_{h_{0}}(t) V\left(\sigma_{h_{0}}(t)\right) \leq 0, \quad t \geq t_{1} \tag{14}
\end{equation*}
$$

Thus we obtain

$$
\begin{array}{r}
W^{\prime \prime}(t)+\frac{Q_{h_{0}}(t)}{p\left(\sigma_{h_{0}}(t)\right)}\left[W\left(\sigma_{h_{0}}(t)\right)-\sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(t)\right) V\left(\sigma_{h_{0}}(t)-\tau_{r}\right)\right] \leq 0 \\
t \geq t_{1} \tag{15}
\end{array}
$$

Since $W(t) \geq p(t) V(t) \geq V(t), W^{\prime}(t) \geq 0$, from (15) we have

$$
\begin{equation*}
W^{\prime \prime}(t)+Q_{h_{0}}(t)\left[1-\sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(t)\right)\right] \frac{W\left(\sigma_{h_{0}}(t)\right)}{p\left(\sigma_{h_{0}}(t)\right)} \leq 0, \quad t \geq t_{1} \tag{16}
\end{equation*}
$$

Integrating the inequality (16), we have

$$
W^{\prime}(t)-W^{\prime}\left(t_{1}\right)+\int_{t_{1}}^{t} Q_{h_{0}}(s)\left[1-\sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(s)\right)\right] \frac{W\left(\sigma_{h_{0}}(s)\right)}{p\left(\sigma_{h_{0}}(s)\right)} d s \leq 0
$$

$$
\begin{equation*}
t \geq t_{1} \tag{17}
\end{equation*}
$$

Then we obtain

$$
\begin{align*}
& \int_{t_{1}}^{t} Q_{h_{0}}(s)\left[1-\sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(s)\right)\right] d s \\
& \quad \leq \frac{p\left(\sigma_{h_{0}}\left(t_{1}\right)\right)}{W\left(\sigma_{h_{0}}\left(t_{1}\right)\right)}\left[-W^{\prime}(t)+W^{\prime}\left(t_{1}\right)\right] \leq \frac{p\left(\sigma_{h_{0}}\left(t_{1}\right)\right) W^{\prime}\left(t_{1}\right)}{W\left(\sigma_{h_{0}}\left(t_{1}\right)\right)}, \quad t \geq t_{1} \tag{18}
\end{align*}
$$

which contradicts the condition (5). This completes the proof of Theorem 2.1.

Theorem 2.2. Let $p(t) \geq 1$ be a monotone decreasing function, and let the condition (4) hold. If

$$
\begin{equation*}
\int^{\infty} q(t)\left[1-\sum_{r=1}^{d} \lambda_{r}(t)\right] d t=\infty \tag{19}
\end{equation*}
$$

then every solution $u(x, t)$ of the problem (1), (2) oscillates in G.
Proof. As in the proof of Theorem 2.1, we obtain (13). Therefore,

$$
\begin{equation*}
W^{\prime \prime}(t)+q(t) V(t) \leq 0, \quad t \geq t_{1} . \tag{20}
\end{equation*}
$$

The remainder of the proof is similar to that of Theorem 2.1 and we omit it.

Corollary 2.1. If the inequality (13) has no eventually positive solution, then every solution $u(x, t)$ of the problem (1), (2) is oscillatory in G.

Theorem 2.3. Suppose that there exists a positive constant M such that $0<M \leq p(t)<1$, and

$$
\begin{equation*}
\sum_{r=1}^{d} \lambda_{r}(t)<M . \tag{21}
\end{equation*}
$$

If there exists some $h_{0} \in I_{l}$ such that $\sigma_{h_{0}}^{\prime}(t) \geq 0$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q_{h_{0}}(t)\left[1-M^{-1} \sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(t)\right)\right] d t=\infty, \quad t_{0}>0, \tag{22}
\end{equation*}
$$

then every solution $u(x, t)$ of the problem (1), (2) is oscillatory in G.
Proof. As in the proof of Theorem 2.1, we obtain (15). Using that $p(t)<1$, from (15) we have

$$
\begin{array}{r}
W^{\prime \prime}(t)+Q_{h_{0}}(t)\left[W\left(\sigma_{h_{0}}(t)\right)-\sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(t)\right) V\left(\sigma_{h_{0}}(t)-\tau_{r}\right)\right] \leq 0, \\
t \geq t_{1} . \tag{23}
\end{array}
$$

Since $W(t) \geq p(t) V(t) \geq M V(t), W^{\prime}(t) \geq 0$, from (23) we obtain

$$
\begin{equation*}
W^{\prime \prime}(t)+Q_{h_{0}}(t)\left[1-M^{-1} \sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(t)\right)\right] W\left(\sigma_{h_{0}}(t)\right) \leq 0, \quad t \geq t_{1} . \tag{24}
\end{equation*}
$$

Integrating inequality (24), we get

$$
\begin{array}{r}
W^{\prime}(t)-W^{\prime}\left(t_{1}\right)+\int_{t_{1}}^{t} Q_{h_{0}}(s)\left[1-M^{-1} \sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(s)\right)\right] W\left(\sigma_{h_{0}}(s)\right) d s \leq 0 \\
t \geq t_{1} \tag{25}
\end{array}
$$

Therefore,

$$
\begin{aligned}
& \int_{t_{1}}^{t} Q_{h_{0}}(s)\left[1-M^{-1} \sum_{r=1}^{d} \lambda_{r}\left(\sigma_{h_{0}}(s)\right)\right] d s \\
& \quad \leq \frac{1}{W\left(\sigma_{h_{0}}\left(t_{1}\right)\right)}\left[-W^{\prime}(t)+W^{\prime}\left(t_{1}\right)\right] \leq \frac{W^{\prime}\left(t_{1}\right)}{W\left(\sigma_{h_{0}}\left(t_{1}\right)\right)}, \quad t \geq t_{1},
\end{aligned}
$$

which contradicts the condition (22). This completes the proof.
Theorem 2.4. Suppose that there exists a positive constant M such that $0<M \leq p(t)<1$, and the condition (21) holds. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} q(t)\left[1-M^{-1} \sum_{r=1}^{d} \lambda_{r}(t)\right] d t=\infty, \quad t_{0}>0, \tag{26}
\end{equation*}
$$

then every solution $u(x, t)$ of the problem (1), (2) is oscillatory in G.
Proof. As in the proof of Theorem 2.2, we obtain (20). The remainder of the proof is similar to that of Theorem 2.3 and we omit it.

3. OSCILLATION OF THE PROBLEM (1), (3)

The following fact will be used.
The smallest eigenvalue α_{0} of the Dirichlet problem

$$
\begin{aligned}
& \Delta \omega(x)+\alpha \omega(x)=0 \\
& \omega(x)=0 \\
& \text { in } \Omega, \\
& \omega(x),
\end{aligned}
$$

where α is a constant, is positive and the corresponding eigenfunction $\varphi(x)$ is positive in Ω.

Theorem 3.1. If all conditions of Theorem 2.1 hold, then every solution of the problem (1), (3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ of the problem (1), (3). We assume that $\left|u_{i}(x, t)\right|>0$ for $t \geq t_{0} \geq 0, i \in I_{m}$. Let $\delta_{i}=\operatorname{sgn} u_{i}(x, t)$, $Z_{i}(x, t)=\delta_{i} u_{i}(x, t)$; then $Z_{i}(x, t)>0,(x, t) \in \Omega \times\left[t_{0}, \infty\right), i \in I_{m}$. From (H1), (H5) there exists a number $t_{1} \geq t_{0}$ such that $Z_{i}(x, t)>0, Z_{i}(x, t-$ $\left.\tau_{r}\right)>0, Z_{i}\left(x, \rho_{k}(t)\right)>0$, and $Z_{i}\left(x, \sigma_{h}(t)\right)>0$ in $\Omega \times\left[t_{1}, \infty\right), i \in I_{m}, r \in I_{d}$, $k \in I_{s}, h \in I_{l}$.

Multiplying both sides of (1) by $\varphi(x)>0$ and integrating with respect to x over the domain Ω, we have

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} u_{i}(x, t) \varphi(x) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} u_{i}\left(x, t-\tau_{r}\right) \varphi(x) d x\right) \\
& \quad=a_{i}(t) \int_{\Omega} \Delta u_{i}(x, t) \varphi(x) d x \\
& \quad+\sum_{j=1}^{m} \sum_{k=1}^{s} a_{i j k}(t) \int_{\Omega} \Delta u_{j}\left(x, \rho_{k}(t)\right) \varphi(x) d x \\
& \quad-\int_{\Omega} q_{i}(x, t) u_{i}(x, t) \varphi(x) d x \\
& \quad-\sum_{j=1}^{m} \sum_{h=1}^{l} \int_{\Omega} q_{i j h}(x, t) u_{j}\left(x, \sigma_{h}(t)\right) \varphi(x) d x, \\
& \quad t \geq t_{1}, \quad i \in I_{m} \tag{27}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} Z_{i}(x, t) \varphi(x) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} Z_{i}\left(x, t-\tau_{r}\right) \varphi(x) d x\right) \\
& \quad=a_{i}(t) \int_{\Omega} \Delta Z_{i}(x, t) \varphi(x) d x+\sum_{k=1}^{s} a_{i i k}(t) \int_{\Omega} \Delta Z_{i}\left(x, \rho_{k}(t)\right) \varphi(x) d x \\
& \quad+\sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s} a_{i j k}(t) \frac{\delta_{j}}{\delta_{i}} \int_{\Omega} \Delta Z_{j}\left(x, \rho_{k}(t)\right) \varphi(x) d x \\
& \quad-\int_{\Omega} q_{i}(x, t) Z_{i}(x, t) \varphi(x) d x \\
& \quad-\sum_{j=1}^{m} \sum_{h=1}^{l} \frac{\delta_{j}}{\delta_{i}} \int_{\Omega} q_{i j h}(x, t) Z_{j}\left(x, \sigma_{h}(t)\right) \varphi(x) d x, \quad t \geq t_{1}, \quad i \in I_{m}
\end{align*}
$$

Green's formula and boundary (3) yield

$$
\begin{align*}
\int_{\Omega} \Delta Z_{i}(x, t) \varphi(x) d x & =\int_{\Omega} Z_{i}(x, t) \Delta \varphi(x) d x \\
& =-\alpha_{0} \int_{\Omega} Z_{i}(x, t) \varphi(x) d x \leq 0 \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\Omega} \Delta Z_{j}\left(x, \rho_{k}(t)\right) \varphi(x) d x \\
& \quad=\int_{\Omega} Z_{j}\left(x, \rho_{k}(t)\right) \Delta \varphi(x) d x \\
& \quad=-\alpha_{0} \int_{\Omega} Z_{j}\left(x, \rho_{k}(t)\right) \varphi(x) d x, \quad t \geq t_{1}, \quad j \in I_{m}, \quad k \in I_{s} \tag{30}
\end{align*}
$$

Combining (28)-(30), we have

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}}\left(p(t) \int_{\Omega} Z_{i}(x, t) \varphi(x) d x+\sum_{r=1}^{d} \lambda_{r}(t) \int_{\Omega} Z_{i}\left(x, t-\tau_{r}\right) \varphi(x) d x\right) \\
& \quad \leq-\alpha_{0} \sum_{k=1}^{s} a_{i i k}(t) \int_{\Omega} \Delta Z_{i}\left(x, \rho_{k}(t)\right) \varphi(x) d x \\
& \quad+\alpha_{0} \sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s}\left|a_{i j k}(t)\right| \int_{\Omega} \Delta Z_{j}\left(x, \rho_{k}(t)\right) \varphi(x) d x \\
& \quad-q_{i}(t) \int_{\Omega} Z_{i}(x, t) \varphi(x) d x-\sum_{h=1}^{l} q_{i i h}(t) \int_{\Omega} Z_{i}\left(x, \sigma_{h}(t)\right) \varphi(x) d x \\
& \quad+\sum_{j=1, j \neq i}^{m} \sum_{h=1}^{l} \bar{q}_{i j h}(t) \int_{\Omega} Z_{j}\left(x, \sigma_{h}(t)\right) \varphi(x) d x, \\
& \quad t \geq t_{1}, \quad i \in I_{m} \tag{31}
\end{align*}
$$

Setting $V_{i}(t)=\int_{\Omega} Z_{i}(x, t) \varphi(x) d x, t \geq t_{1}, i \in I_{m}$, from (31) we have

$$
\begin{align*}
& {\left[p(t) V_{i}(t)+\sum_{r=1}^{d} \lambda_{r}(t) V_{i}\left(t-\tau_{r}\right)\right]^{\prime \prime}} \\
& \quad+\alpha_{0} \sum_{k=1}^{s} a_{i i k}(t) V_{i}\left(\rho_{k}(t)\right)-\alpha_{0} \sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s}\left|a_{i j k}(t)\right| V_{j}\left(\rho_{k}(t)\right) \\
& \quad+q_{i}(t) V_{i}(t) \\
& \quad+\sum_{h=1}^{l}\left[q_{i i h}(t) V_{i}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right] \leq 0 \\
& t \geq t_{1}, \quad i \in I_{m} \tag{32}
\end{align*}
$$

Letting $V(t)=\sum_{i=1}^{m} V_{i}(t), t \geq t_{1}$, from (32) we have

$$
\begin{align*}
& {\left[p(t) V(t)+\sum_{r=1}^{d} \lambda_{r}(t) V\left(t-\tau_{r}\right)\right]^{\prime \prime}} \\
& \quad+\alpha_{0} \sum_{k=1}^{s}\left\{\sum_{i=1}^{m}\left[a_{i i k}(t) V_{i}\left(\rho_{k}(t)\right)-\sum_{j=1, j \neq i}^{m}\left|a_{i j k}(t)\right| V_{j}\left(\rho_{k}(t)\right)\right]\right\} \\
& +q(t) V(t) \\
& \quad+\sum_{h=1}^{l}\left\{\sum_{i=1}^{m}\left[q_{i i h}(t) V_{i}\left(\sigma_{h}(t)\right)-\sum_{j=1, j \neq i}^{m} \bar{q}_{i j h}(t) V_{j}\left(\sigma_{h}(t)\right)\right]\right\} \leq 0, \\
& t \geq t_{1} . \tag{33}
\end{align*}
$$

As in the proof of Theorem 2.1, from (33) we obtain

$$
\begin{align*}
W^{\prime \prime}(t) & +\alpha_{0} \sum_{k=1}^{s} A_{k}(t) V\left(\rho_{k}(t)\right)+q(t) V(t) \\
& +\sum_{h=1}^{l} Q_{h}(t) V\left(\sigma_{h}(t)\right) \leq 0, \quad t \geq t_{1} . \tag{34}
\end{align*}
$$

The remainder of the proof is similar to that of Theorem 2.1 and we omit it.

Corollary 3.1. If the differential inequality (34) has no eventually positive solution, then every solution $u(x, t)$ of the problem (1), (3) oscillates in G.

It is not difficult to see that the following theorems are true.
Theorem 3.2. Suppose that $p(t) \geq 1$ is a monotone decreasing function, and the condition (4) holds.
If there exists some $k_{0} \in I_{s}$ such that $\rho_{k_{0}}^{\prime}(t) \geq 0$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \alpha_{0} A_{k_{0}}(t)\left[1-\sum_{r=1}^{d} \lambda_{r}\left(\rho_{k_{0}}(t)\right)\right] d t=\infty, \quad t_{0}>0 \tag{35}
\end{equation*}
$$

then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in G.
Theorem 3.3. Suppose that there exists a positive constant M such that $0<M \leq p(t)<1$, and the condition (21) holds.

If there exists some $k_{0} \in I_{s}$ such that $\rho_{k_{0}}^{\prime}(t) \geq 0$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \alpha_{0} A_{k_{0}}(t)\left[1-M^{-1} \sum_{r=1}^{d} \lambda_{r}\left(\rho_{k_{0}}(t)\right)\right] d t=\infty, \quad t_{0}>0 \tag{36}
\end{equation*}
$$

then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in G.
THEOREM 3.4. If the conditions of Theorem 2.2 hold, then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in G.

THEOREM 3.5. If the conditions of Theorem 2.3 hold, then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in G.

THEOREM 3.6. If the conditions of Theorem 2.4 hold, then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in G.

4. EXAMPLES

Example 4.1. Consider the system of hyperbolic differential equations

$$
\begin{align*}
& \frac{\partial^{2}}{\partial t^{2}}\left(\left(1+e^{-t}\right) u_{1}(x, t)+\frac{1}{2} u_{1}(x, t-\pi)\right) \\
& = \\
& \quad \Delta u_{1}(x, t)+\left(3 e^{-t}+2\right) \Delta u_{1}\left(x, t-\frac{3 \pi}{2}\right) \\
& \\
& \quad-\frac{3}{2} u_{1}(x, t)-3 u_{1}(x, t-\pi)-e^{-t} u_{2}(x, t-\pi) \tag{37}\\
& \\
& \quad-2 u_{1}\left(x, t-\frac{\pi}{2}\right)-u_{2}\left(x, t-\frac{\pi}{2}\right) \\
& \begin{aligned}
\frac{\partial^{2}}{\partial t^{2}}((1 & \left.\left.+e^{-t}\right) u_{2}(x, t)+\frac{1}{2} u_{2}(x, t-\pi)\right) \\
= & e^{-t} \Delta u_{2}(x, t)+2\left(e^{-t}+1\right) \Delta u_{2}\left(x, t-\frac{3 \pi}{2}\right) \\
& \quad-\frac{5}{2} u_{2}(x, t)-u_{1}(x, t-\pi)-\left(e^{-t}+1\right) u_{2}(x, t-\pi) \\
& -u_{1}\left(x, t-\frac{\pi}{2}\right)-3 u_{2}\left(x, t-\frac{\pi}{2}\right),
\end{aligned}
\end{align*}
$$

with boundary condition

$$
\begin{equation*}
\frac{\partial}{\partial x} u_{i}(0, t)=\frac{\partial}{\partial x} u_{i}(\pi, t)=0, \quad t \geq 0, \quad i=1,2 . \tag{38}
\end{equation*}
$$

Here $n=1, m=2, d=1, s=1, l=2, p(t)=1+e^{-t}, \lambda_{1}(t)=\frac{1}{2}$, $\tau_{1}=\pi, a_{1}(t)=1, a_{111}(t)=3 e^{-t}+2, a_{121}(t)=0, \rho_{1}(t)=t-\frac{3 \pi}{2}, q_{1}(x, t)$ $=\frac{3}{2}, q_{111}(x, t)=3, q_{121}(t)=e^{-t}, \sigma_{1}(t)=t-\pi, q_{112}(x, t)=2, q_{122}(x, t)$ $=1, \sigma_{2}(t)=t-\frac{\pi}{2}, a_{2}(t)=e^{-t}, a_{211}(t)=0, a_{221}(t)=2\left(1+e^{-t}\right), q_{2}(x, t)$ $=\frac{5}{2}, q_{211}(x, t)=1, q_{221}(x, t)=e^{-t}+1, q_{212}(x, t)=1$, and $q_{222}(x, t)=3$. It is easy to see that $\lambda_{1}(t)=\frac{1}{2}<1, p(t)=1+e^{-t} \geq 1, Q_{1}(t)=1, Q_{2}(t)$ $=1$, and

$$
\begin{gathered}
\sigma_{1}^{\prime}(t)=(t-\pi)^{\prime}=1 \geq 0 \\
\int_{t_{0}}^{\infty} Q_{1}(t)\left(1-\lambda_{1}\left(\sigma_{1}(t)\right)\right) d t=\int_{t_{0}}^{\infty} \frac{1}{2} d t=\infty, \quad t_{0}>0
\end{gathered}
$$

Hence all conditions of Theorem 2.1 are fulfilled. Then every solution of the problem (37), (38) oscillates in $(0, \pi) \times[0, \infty)$. In fact, $u_{1}(x, t)=$ $\cos x \sin t, u_{2}(x, t)=\cos x \cos t$ is such a solution.
Example 4.2. Consider the system of hyperbolic differential equations

$$
\begin{align*}
& \frac{\partial^{2}}{\partial t^{2}}\left(\left(1+e^{-t}\right) u_{1}(x, t)+\frac{1}{2} u_{1}(x, t-\pi)\right) \\
& \quad=2 \Delta u_{1}(x, t)+2\left(e^{-t}+1\right) \Delta u_{1}\left(x, t-\frac{3 \pi}{2}\right) \\
& \quad-\frac{3}{2} u_{1}(x, t)-2 u_{1}(x, t-\pi)-u_{2}(x, t-\pi) \\
& \quad-3 u_{1}\left(x, t-\frac{\pi}{2}\right)-u_{2}\left(x, t-\frac{\pi}{2}\right) \tag{39}\\
& \begin{aligned}
\frac{\partial^{2}}{\partial t^{2}}(& \left.\left(1+e^{-t}\right) u_{2}(x, t)+\frac{1}{2} u_{2}(x, t-\pi)\right) \\
& =\frac{3}{2} \Delta u_{2}(x, t)+\left(2 e^{-t}+3\right) \Delta u_{2}\left(x, t-\frac{3 \pi}{2}\right) \\
& \quad-u_{2}(x, t)-u_{1}(x, t-\pi)-3 u_{2}(x, t-\pi) \\
& \quad-u_{1}\left(x, t-\frac{\pi}{2}\right)-2 u_{2}\left(x, t-\frac{\pi}{2}\right), \\
& \quad(x, t) \in(0, \pi) \times[0, \infty)
\end{aligned}
\end{align*}
$$

with boundary condition

$$
\begin{equation*}
u_{i}(0, t)=u_{i}(\pi, t)=0, \quad t \geq 0, \quad i=1,2 \tag{40}
\end{equation*}
$$

It is easy to see that all conditions of Theorem 3.1 are fulfilled. Then every solution of the problem (39), (40) oscillates in $(0, \pi) \times[0, \infty)$. In fact, $u_{1}(x, t)=\sin x \cos t, u_{2}(x, t)=\sin x \sin t$ is such a solution.

REFERENCES

1. D. P. Mishev and D. D. Bainov, Oscillation of the solutions of parabolic differential equations of neutral type, Appl. Math. Comput. 28 (1988), 97-111.
2. X. L. Fu and W. Zhuang, Oscillation of neutral delay parabolic equations, J. Math. Anal. Appl. 191 (1995), 473-489.
3. B. S. Lalli, Y. H. Yu, and B. T. Cui, Oscillation of hyperbolic equations with functional arguments, Appl. Math. Comput. 53 (1993), 97-110.
4. W. N. Li and B. T. Cui, A necessary and sufficient condition for oscillation of parabolic equations of neutral type, Math. Appl. 12, No. 1 (1999), 50-53.
5. B. T. Cui, Oscillation properties of the solutions of hyperbolic equations with deviating arguments, Demonstratio Math. 29 (1996), 61-68.
6. D. Bainov, B. T. Cui, and E. Minchev, Forced oscillation of solutions of certain hyperbolic equations of neutral type, J. Comput. Appl. Math. 72 (1996), 309-318.
7. Y. K. Li, Oscillation of systems of hyperbolic differential equations with deviating arguments, Acta Math. Sinica 40 (1997), 100-105 (in Chinese).
8. W. N. Li and B. T. Cui, Oscillations of systems of neutral delay parabolic equations, Demonstratio Math. 31 (1998), 813-824.
9. W. N. Li and B. T. Cui, Oscillation for systems of parabolic equations of neutral type, Southeast Asian Bull. Math. 23 (1999), 447-456.

[^0]: ${ }^{1}$ This work is supported by the Natural Science Foundation of Shandong Province, China (Q99A06).

