Oscillation Properties for Systems of Hyperbolic Differential Equations of Neutral Type

Wei Nian Li

Department of Mathematics, Qufu Normal University, Shandong 273165, People's Republic of China; Department of Mathematics, Binzhou Normal College, Shandong 256604, People's Republic of China

Submitted by William F. Ames

Received April 22, 1999

Sufficient conditions are established for the oscillations of systems of hyperbolic differential equations of the form

\[
\frac{\partial^2}{\partial t^2} \left( p(t)u_i(x,t) + \sum_{\tau=1}^{d} \lambda_i(t)u_i(x,t-\tau) \right) \\
= a_i(t)\Delta u_i(x,t) + \sum_{j=1}^{m} \sum_{k=1}^{s} a_{ijk}(t)\Delta u_j(x, \rho_k(t)) \\
- q_i(x,t)u_i(x,t) - \sum_{j=1}^{m} \sum_{h=1}^{l} q_{ijk}(x,t)u_j(x, \sigma_h(t)),
\]

\( (x,t) \in \Omega \times [0, \infty) = G, \quad i = 1, 2, \ldots, m, \)

where \( \Omega \) is a bounded domain in \( \mathbb{R}^n \) with a piecewise smooth boundary \( \partial \Omega \), and \( \Delta \) is the Laplacian in Euclidean \( n \)-space \( \mathbb{R}^n \).

1. INTRODUCTION

Oscillation theory of partial functional differential equations has been studied extensively for the past few years. For example, see [1–6] and the references therein. However, only [7–9] have been published on the oscillation theory of systems of partial functional differential equations.

1 This work is supported by the Natural Science Foundation of Shandong Province, China (Q99A06).
In this paper, we study the oscillation of systems of hyperbolic differential equations of neutral type of the form

\[
\frac{\partial^2}{\partial t^2} p(t) u_i(x, t) + \sum_{r=1}^{d} \lambda_r(t) u_i(x, t - \tau_r) = a_i(t) \Delta u_i(x, t) + \sum_{j=1}^{m} \sum_{k=1}^{s} a_{ijk}(t) \Delta u_j(x, \rho_k(t))
\]

\[- q_i(x, t) u_i(x, t) - \sum_{j=1}^{m} \sum_{h=1}^{l} q_{ijh}(x, t) u_j(x, \sigma_h(t)),
\]

\[(x, t) \in \Omega \times [0, \infty) = G, \quad i = 1, 2, \ldots, m, \quad (1)\]

where \( \Omega \) is a bounded domain in \( \mathbb{R}^n \) with a piecewise smooth boundary \( \partial \Omega \), and \( \Delta u_i(x, t) = \sum_{j=1}^{n} \frac{\partial^2 u_i(x, t)}{\partial x_j^2}, \quad i = 1, 2, \ldots, m. \)

Suppose that the following conditions hold:

(H1) \( p \in C^2([0, \infty); [0, \infty)), \lambda_r \in C^2([0, \infty); [0, \infty)), \tau_r \) are positive constants, \( r \in I_d = \{1, 2, \ldots, d\}; \)

(H2) \( q_i \in C(\overline{G}; [0, \infty)), \quad q_i(t) = \min_{x \in \pi} q_i(x, t), \quad q(t) = \min_{1 \leq i \leq m} q_i(t), \quad i \in I_m = \{1, 2, \ldots, m\}; \)

(H3) \( q_{ijh} \in C(\overline{G}; R), \quad q_{ijh}(x, t) > 0, \quad q_{ijh}(t) = \min_{x \in \pi} q_{ijh}(x, t), \) and

\[\bar{q}_{ijh}(t) = \max_{x \in \pi} |q_{ijh}(x, t)|,\]

\[Q_{ijh}(t) = \min_{1 \leq i \leq m} \left\{ q_{ijh}(t) - \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t) \right\} \geq 0,\]

\[i, j \in I_m, \quad h \in I_1 = \{1, 2, \ldots, l\};\]

(H4) \( a_i \in C([0, \infty); [0, \infty)), \quad a_{ijk} \in C([0, \infty); R), \quad a_{ijh}(t) > 0, \) and

\[A_{ik}(t) = \min_{1 \leq i \leq m} \left\{ a_{ijh}(t) - \sum_{j=1, j \neq i}^{m} \bar{a}_{ijh}(t) \right\} \geq 0,\]

\[i, j \in I_m, \quad k \in I_s = \{1, 2, \ldots, s\};\]

(H5) \( \sigma_i, \rho_k \in C([0, \infty); R), \quad \sigma_i(t) \leq t, \quad \rho_k(t) \leq t, \quad \sigma_i, \rho_k \) are nondecreasing functions and \( \lim_{t \to \infty} \sigma_i(t) = \lim_{t \to \infty} \rho_k(t) = \infty, \quad j \in I_m, k \in I_s; \)
We consider two kinds of boundary conditions,
\[
\frac{\partial u_i(x,t)}{\partial N} + g_i(x,t)u_i(x,t) = 0, \quad (x,t) \in \partial \Omega \times [0,\infty), \quad i \in I_m,
\]
where \(N\) is the unit exterior normal vector to \(\partial \Omega\), \(g_i(x,t)\) is a nonnegative continuous function on \(\partial \Omega \times [0,\infty)\), \(i \in I_m\), and
\[
u_i(x,t) = 0, \quad (x,t) \in \partial \Omega \times [0,\infty), \quad i \in I_m.
\]

**Definition 1.1.** The vector function \(u(x,t) = (u_1(x,t), u_2(x,t), \ldots, u_m(x,t))^T\) is said to be a solution of the problem (1), (2) or (1), (3) if it satisfies (1) in \(G = \Omega \times [0,\infty)\) and boundary condition (2) or (3).

**Definition 1.2.** A nontrivial component \(u_i(x,t)\) of the vector function \(u(x,t) = (u_1(x,t), u_2(x,t), \ldots, u_m(x,t))^T\) is said to oscillate in \(G\) if for each \(t \geq t_0\) there is a point \((x_0,t_0) \in \Omega \times [\mu,\infty)\) such that \(u_i(x_0,t_0) = 0\).

**Definition 1.3.** The vector solution \(u(x,t) = (u_1(x,t), u_2(x,t), \ldots, u_m(x,t))^T\) of the problem (1), (2) or (1), (3) is said to be oscillatory in \(G\) if at least one of its nontrivial components is oscillatory in \(G\). Otherwise, the vector solution \(u(x,t)\) is said to be nonoscillatory.

We note that conditions for the oscillation of system (1) for \(p(t) = 1, \lambda_i(t) = 0, s = 1, l = 1\) have been obtained in [7].

### 2. Oscillation of the Problem (1), (2)

**Theorem 2.1.** Suppose that \(p(t) \geq 1\) is a monotone decreasing function, and
\[
\sum_{r=1}^{d} \lambda_i(t) < 1.
\]
If there exists some \(h_0 \in I_i\) such that \(\sigma_{h_0}'(t) \geq 0\), and
\[
\int_{t_0}^{\infty} Q_{h_0}(t) \left[1 - \sum_{r=1}^{d} \lambda_i(\sigma_{h_0}(t)) \right] dt = \infty, \quad t_0 > 0,
\]
then every solution \(u(x,t)\) of the problem (1), (2) is oscillatory in \(G\).

**Proof.** Suppose to the contrary that there is a nonoscillatory solution \(u(x,t) = (u_1(x,t), u_2(x,t), \ldots, u_m(x,t))^T\) of the problem (1), (2). We assume that \(|u_i(x,t)| > 0\) for \(t \geq t_0 \geq 0, \quad i \in I_m\). Let \(\delta_i = \text{sgn} u_i(x,t), \quad i \in I_m\).
\[ Z(x, t) = \delta_{ij}u_i(x, t); \text{ then } Z_i(x, t) > 0, \ (x, t) \in \Omega \times [t_0, \infty), \ i \in I_m. \] 
From (H1), (H5) there exists a number \( t_1 \geq t_0 \) such that \( Z_i(x, t) > 0, Z_i(x, t - \tau_i) > 0, Z_i(x, \rho_k(t)) > 0 \text{ and } Z_i(x, \sigma_h(t)) > 0 \) in \( \Omega \times [t_1, \infty), i \in I_m, r \in I_d, k \in I_j, h \in I_j. \]
Integrating (1) with respect to \( x \) over the domain \( \Omega \), we have
\[
\frac{d^2}{dt^2} \left( p(t) \int_\Omega u_i(x, t) \, dx + \sum_{r=1}^d \lambda_r(t) \int_\Omega u_i(x, t - \tau_r) \, dx \right)
= a_i(t) \int_\Omega \Delta u_i(x, t) \, dx + \sum_{j=1}^m \sum_{k=1}^s a_{ijk}(t) \int_\Omega \Delta u_j(x, \rho_k(t)) \, dx
- \int_\Omega q_i(x, t) u_j(x, t) \, dx - \sum_{j=1}^m \sum_{h=1}^l \int_\Omega q_{ih}(x, t) u_i(x, \sigma_h(t)) \, dx,
\]
t \geq t_1, \quad i \in I_m. \quad (6)

Therefore,
\[
\frac{d^2}{dt^2} \left( p(t) \int_\Omega Z_i(x, t) \, dx + \sum_{r=1}^d \lambda_r(t) \int_\Omega Z_i(x, t - \tau_r) \, dx \right)
= a_i(t) \int_\Omega \Delta Z_i(x, t) \, dx + \sum_{j=1}^m \sum_{k=1}^s a_{ijk}(t) \frac{\delta_j}{\delta_i} \int_\Omega \Delta Z_j(x, \rho_k(t)) \, dx
- \int_\Omega q_i(x, t) Z_j(x, t) \, dx - \sum_{j=1}^m \sum_{h=1}^l \frac{\delta_j}{\delta_i} \int_\Omega q_{ih}(x, t) Z_j(x, \sigma_h(t)) \, dx,
\]
t \geq t_1, \quad i \in I_m. \quad (7)

From Green’s formula and boundary condition (2), it follows that
\[
\int_\Omega \Delta Z_i(x, t) \, dx = \int_{\partial \Omega} \frac{\partial Z_i(x, t)}{\partial N} \, dS = -\int_{\partial \Omega} g_i(x, t) Z_i(x, t) \, dS \leq 0 \quad (8)
\]
and
\[
\int_\Omega \Delta Z_j(x, \rho_k(t)) \, dx = \int_{\partial \Omega} \frac{\partial Z_j(x, \rho_k(t))}{\partial N} \, dS
- \int_{\partial \Omega} g_j(x, \rho_k(t)) Z_j(x, \rho_k(t)) \, dS,
t \geq t_1, \quad j \in I_m, \quad k \in I_j. \quad (9)
\]
where \( dS \) is the surface element on \( \partial \Omega \).
Noting conditions (H2) and (H3) and combining (7)-(9), we get

\[
\begin{align*}
\frac{d^2}{dt^2} \left( p(t) \int_{\Omega} Z_i(x, t) \, dx + \sum_{r=1}^{d} \lambda_r(t) \int_{\Omega} Z_i(x, t - \tau_r) \, dx \right) \\
&\quad + \sum_{j=1}^{m} \sum_{k=1}^{s} a_{ijk}(t) \frac{\delta j}{\delta x} \int_{\partial \Omega} g_j(x, \rho_k(t)) Z_j(x, \rho_k(t)) \, dS \\
&\quad + q_i(t) \int_{\Omega} Z_i(x, t) \, dx + \sum_{h=1}^{l} q_{ih}(t) \int_{\Omega} Z_i(x, \sigma_h(t)) \, dx \\
&\quad - \sum_{h=1}^{l} \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t) \int_{\Omega} Z_j(x, \sigma_h(t)) \, dx \leq 0, \quad t \geq t_1, \quad i \in I_m.
\end{align*}
\]

Therefore,

\[
\begin{align*}
\frac{d^2}{dt^2} \left( p(t) \int_{\Omega} Z_i(x, t) \, dx + \sum_{r=1}^{d} \lambda_r(t) \int_{\Omega} Z_i(x, t - \tau_r) \, dx \right) \\
&\quad + \sum_{k=1}^{s} a_{ik}(t) \int_{\partial \Omega} g_i(x, \rho_k(t)) Z_i(x, \rho_k(t)) \, dS \\
&\quad - \sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s} |a_{ijk}(t)| \int_{\partial \Omega} g_j(x, \rho_k(t)) Z_j(x, \rho_k(t)) \, dS \\
&\quad + q_i(t) \int_{\Omega} Z_i(x, t) \, dx + \sum_{h=1}^{l} q_{ih}(t) \int_{\Omega} Z_i(x, \sigma_h(t)) \, dx \\
&\quad - \sum_{h=1}^{l} \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t) \int_{\Omega} Z_j(x, \sigma_h(t)) \, dx \leq 0, \quad t \geq t_1, \quad i \in I_m.
\end{align*}
\]

(10)

Setting

\[
V_i(t) = \int_{\Omega} Z_i(x, t) \, dx, \quad Y_i(t) = \int_{\partial \Omega} g_i(x, t) Z_i(x, t) \, dS,
\]

\[
t \geq t_1, \quad i \in I_m,
\]
from (10) we have
\[
\left[ p(t)V_i(t) + \sum_{r=1}^{d} \lambda_r(t)V_i(t - \tau_r) \right]^{n}
\]
\[+ \sum_{k=1}^{s} \left\{ \sum_{i=1}^{m} a_{iik}(t)V_i(\rho_k(t)) - \sum_{j=1, j \neq i}^{m} |a_{ijk}(t)|V_j(\rho_k(t)) \right\} + q_i(t)V_i(t) \]
\[+ \sum_{h=1}^{l} \left\{ \sum_{i=1}^{m} q_{ihk}(t)V_i(\sigma_h(t)) - \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t)V_j(\sigma_h(t)) \right\} \leq 0, \quad t \geq t_1, \quad i \in I_m. \quad (11)\]

Letting
\[V(t) = \sum_{i=1}^{m} V_i(t), \quad Y(t) = \sum_{i=1}^{m} Y_i(t), \quad t \geq t_1,\]

from (11) we have
\[
\left[ p(t)V(t) + \sum_{r=1}^{d} \lambda_r(t)V(t - \tau_r) \right]^{n}
\]
\[+ \sum_{k=1}^{s} \left\{ \sum_{i=1}^{m} a_{iik}(t)V_i(\rho_k(t)) - \sum_{j=1, j \neq i}^{m} |a_{ijk}(t)|V_j(\rho_k(t)) \right\} \]
\[+ q(t)V(t) \]
\[+ \sum_{h=1}^{l} \left\{ \sum_{i=1}^{m} q_{ihk}(t)V_i(\sigma_h(t)) - \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t)V_j(\sigma_h(t)) \right\} \leq 0, \quad t \geq t_1. \quad (12)\]

Noting that
\[
\sum_{i=1}^{m} \left[ q_{ihk}(t)V_i(\sigma_h(t)) - \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t)V_j(\sigma_h(t)) \right]
\]
\[= \left[ q_{1ih}(t)V_1(\sigma_h(t)) - \sum_{j=1, j \neq 1}^{m} \bar{q}_{1jh}(t)V_j(\sigma_h(t)) \right] \]
\[+ \left[ q_{2ih}(t)V_2(\sigma_h(t)) - \sum_{j=1, j \neq 2}^{m} \bar{q}_{2jh}(t)V_j(\sigma_h(t)) \right] \]
\[+ \cdots \]
\[+ \left[ q_{mih}(t)V_m(\sigma_h(t)) - \sum_{j=1, j \neq m}^{m} \bar{q}_{mjh}(t)V_j(\sigma_h(t)) \right] \]
\[
\begin{align*}
&= \left[ q_{11h}(t) - \sum_{j=1, j \neq 1}^{m} \tilde{q}_{j1h}(t) \right] V_1(\sigma_h(t)) \\
&+ \left[ q_{22h}(t) - \sum_{j=1, j \neq 2}^{m} \tilde{q}_{j2h}(t) \right] V_2(\sigma_h(t)) \\
&+ \ldots \\
&+ \left[ q_{mmh}(t) - \sum_{j=1, j \neq m}^{m} \tilde{q}_{jjh}(t) \right] V_m(\sigma_h(t)) \\
&\geq \min_{1 \leq i \leq m} \left\{ q_{iih}(t) - \sum_{j=1, j \neq i}^{m} \tilde{q}_{ijh}(t) \right\} \sum_{i=1}^{m} V_i(\sigma_h(t)) \\
&= Q_h(t) V(\sigma_h(t)), \quad t \geq t_1, \quad h \in I_t,
\end{align*}
\]

and similarly that
\[
\sum_{i=1}^{m} \left[ a_{ii}(t) Y_i(\rho_k(t)) - \sum_{j=1, j \neq i}^{m} |a_{ij}(t)| Y_j(\rho_k(t)) \right] \\
\geq \min_{1 \leq i \leq m} \left\{ a_{ii}(t) - \sum_{j=1, j \neq i}^{m} |a_{ij}(t)| \right\} \sum_{i=1}^{m} Y_i(\rho_k(t)) \\
= A_k(t) Y(\rho_k(t)), \quad t \geq t_1, \quad k \in I_k.
\]

Then from (12), we get
\[
\left[ p(t) V(t) + \sum_{r=1}^{d} \lambda_r(t) V(t - \tau_r) \right] + \sum_{k=1}^{m} A_k(t) Y(\rho_k(t)) \\
+ q(t) V(t) + \sum_{h=1}^{l} Q_h(t) V(\sigma_h(t)) \leq 0, \quad t \geq t_1.
\]

It is easy to see that
\[
Y(\rho_k(t)) = \sum_{i=1}^{m} Y_i(\rho_k(t)) \geq 0, \quad t \geq t_1, \quad k \in I_k.
\]

Therefore,
\[
\left[ p(t) V(t) + \sum_{r=1}^{d} \lambda_r(t) V(t - \tau_r) \right] + q(t) V(t) \\
+ \sum_{h=1}^{l} Q_h(t) V(\sigma_h(t)) \leq 0, \quad t \geq t_1.
\] (13)
Now let \( W(t) = p(t)V(t) + \sum_{r=1}^{d} \lambda_r(t)V(t - \tau_r) \), \( t \geq t_1 \); then \( W(t) > 0 \), \( t \geq t_1 \), and the inequality (13) shows that \( W''(t) \leq 0 \) for \( t \geq t_1 \). Hence \( W'(t) \) is monotone decreasing in the interval \([t_1, \infty)\). We can claim that \( W'(t) \geq 0 \) for \( t \geq t_1 \). In fact, if \( W'(t) < 0 \) for \( t \geq t_1 \), then there exists a \( T > t_1 \) such that \( W'(T) = -L < 0 \). This implies that

\[
W'(t) \leq W'(T) = -L \quad \text{for } t \geq T.
\]

Hence

\[
W(t) \leq W(T) - L(t - T), \quad t \geq T.
\]

Therefore,

\[
\lim_{t \to \infty} W(t) = -\infty,
\]

which contradicts the fact that \( W(t) = p(t)V(t) + \sum_{r=1}^{d} \lambda_r(t)V(t - \tau_r) > 0 \).

From (13) we obtain that there exists some \( h_0 \in I_j \) such that

\[
W''(t) + Q_{h_0}(t)V(\sigma_{h_0}(t)) \leq 0, \quad t \geq t_1. \tag{14}
\]

Thus we obtain

\[
W''(t) + \frac{Q_{h_0}(t)}{p(\sigma_{h_0}(t))} \left[ W(\sigma_{h_0}(t)) - \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(t))V(\sigma_{h_0}(t) - \tau_r) \right] \leq 0, \quad t \geq t_1. \tag{15}
\]

Since \( W(t) \geq p(t)V(t) \geq V(t) \), \( W'(t) \geq 0 \), from (15) we have

\[
W''(t) + Q_{h_0}(t) \left[ 1 - \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(t)) \right] \frac{W(\sigma_{h_0}(t))}{p(\sigma_{h_0}(t))} \leq 0, \quad t \geq t_1. \tag{16}
\]

Integrating the inequality (16), we have

\[
W'(t) - W'(t_1) + \int_{t_1}^{t} Q_{h_0}(s) \left[ 1 - \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(s)) \right] \frac{W(\sigma_{h_0}(s))}{p(\sigma_{h_0}(s))} ds \leq 0, \quad t \geq t_1. \tag{17}
\]

Then we obtain

\[
\int_{t_1}^{t} Q_{h_0}(s) \left[ 1 - \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(s)) \right] ds \leq \frac{p(\sigma_{h_0}(t_1))}{W(\sigma_{h_0}(t_1))} \left[ -W'(t) + W'(t_1) \right] \leq \frac{p(\sigma_{h_0}(t_1))W'(t_1)}{W(\sigma_{h_0}(t_1))}, \quad t \geq t_1, \tag{18}
\]
which contradicts the condition (5). This completes the proof of Theorem 2.1.

**Theorem 2.2.** Let \( p(t) \geq 1 \) be a monotone decreasing function, and let the condition \( (4) \) hold. If

\[
\int_0^\infty q(t) \left[ 1 - \sum_{r=1}^{d} \lambda_r(t) \right] dt = \infty,
\]

then every solution \( u(x,t) \) of the problem \( (1), (2) \) oscillates in \( G \).

**Proof.** As in the proof of Theorem 2.1, we obtain (13). Therefore,

\[
W''(t) + q(t)V(t) \leq 0, \quad t \geq t_1.
\]

The remainder of the proof is similar to that of Theorem 2.1 and we omit it.

**Corollary 2.1.** If the inequality \( (13) \) has no eventually positive solution, then every solution \( u(x,t) \) of the problem \( (1), (2) \) is oscillatory in \( G \).

**Theorem 2.3.** Suppose that there exists a positive constant \( M \) such that

\[
0 < M \leq p(t) < 1, \quad \text{and} \quad \sum_{r=1}^{d} \lambda_r(t) < M.
\]

If there exists some \( h_0 \in I \) such that \( \sigma_{h_0}'(t) \geq 0 \) and

\[
\int_{t_0}^\infty Q_{h_0}(t) \left[ 1 - M^{-1} \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(t)) \right] dt = \infty, \quad t_0 > 0,
\]

then every solution \( u(x,t) \) of the problem \( (1), (2) \) is oscillatory in \( G \).

**Proof.** As in the proof of Theorem 2.1, we obtain (15). Using that \( p(t) < 1 \), from (15) we have

\[
W''(t) + Q_{h_0}(t) \left[ W(\sigma_{h_0}(t)) - \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(t))V(\sigma_{h_0}(t) - \tau_r) \right] \leq 0,
\]

\[
t \geq t_1.
\]

Since \( W(t) \geq p(t)V(t) \geq MV(t), W'(t) \geq 0 \), from (23) we obtain

\[
W''(t) + Q_{h_0}(t) \left[ 1 - M^{-1} \sum_{r=1}^{d} \lambda_r(\sigma_{h_0}(t)) \right] W(\sigma_{h_0}(t)) \leq 0, \quad t \geq t_1.
\]
Integrating inequality (24), we get

\[ W'(t) - W'(t_1) + \int_{t_1}^{t} Q_n(s) \left[ 1 - M^{-1} \sum_{r=1}^{d} \lambda_r(\sigma_n(s)) \right] W(\sigma_n(s)) \, ds \leq 0, \]

\[ t \geq t_1. \]  

Therefore,

\[ \int_{t_1}^{t} Q_n(s) \left[ 1 - M^{-1} \sum_{r=1}^{d} \lambda_r(\sigma_n(s)) \right] \, ds \]

\[ \leq \frac{1}{W(\sigma_n(t_1))} \left[ -W'(t) + W'(t_1) \right] \leq \frac{W'(t_1)}{W(\sigma_n(t_1))}, \quad t \geq t_1, \]

which contradicts the condition (22). This completes the proof.

**Theorem 2.4.** Suppose that there exists a positive constant \( M \) such that \( 0 < M \leq p(t) < 1 \), and the condition (21) holds. If

\[ \int_{t_0}^{\infty} q(t) \left[ 1 - M^{-1} \sum_{r=1}^{d} \lambda_r(t) \right] \, dt = \infty, \quad t_0 > 0, \]  

then every solution \( u(x,t) \) of the problem (1), (2) is oscillatory in \( G \).

**Proof.** As in the proof of Theorem 2.2, we obtain (20). The remainder of the proof is similar to that of Theorem 2.3 and we omit it.

3. Oscillation of the Problem (1), (3)

The following fact will be used.

The smallest eigenvalue \( \alpha_0 \) of the Dirichlet problem

\[ \Delta \omega(x) + \alpha \omega(x) = 0 \quad \text{in} \ \Omega, \]

\[ \omega(x) = 0 \quad \text{on} \ \partial \Omega, \]

where \( \alpha \) is a constant, is positive and the corresponding eigenfunction \( \varphi(x) \) is positive in \( \Omega \).

**Theorem 3.1.** If all conditions of Theorem 2.1 hold, then every solution of the problem (1), (3) is oscillatory in \( G \).

**Proof.** Suppose to the contrary that there is a nonoscillatory solution \( u(x,t) = (u_1(x,t), u_2(x,t), \ldots, u_m(x,t)) \) of the problem (1), (3). We assume that \( |u_i(x,t)| > 0 \) for \( t \geq t_0 \geq 0, \ i \in I_m \). Let \( \delta_i = \text{sgn} \ u_i(x,t) \).

From (H1), (H5) there exists a number \( t_0 \geq 0 \) such that \( Z_1(x,t) > 0, Z_1(x,t - \tau_r) > 0, Z_1(x, \rho_k(t)) > 0 \), and \( Z_1(x, \sigma_i(t)) > 0 \) in \( \Omega \times [t_0, \infty), i \in I_m, r \in I_d, k \in I_s, h \in I_i. \)
Multiplying both sides of (1) by \( \varphi(x) > 0 \) and integrating with respect to \( x \) over the domain \( \Omega \), we have

\[
\frac{d^2}{dt^2} \left( p(t) \int_{\Omega} u_i(x,t) \varphi(x) \, dx + \sum_{r=1}^{d} \lambda_r(t) \int_{\Omega} u_i(x,t - \tau_r) \varphi(x) \, dx \right)
\]

\[= a_i(t) \int_{\Omega} \Delta u_i(x,t) \varphi(x) \, dx
\]

\[+ \sum_{j=1}^{m} \sum_{k=1}^{s} a_{ijk}(t) \int_{\Omega} \Delta u_j(x, \rho_k(t)) \varphi(x) \, dx
\]

\[- \int_{\Omega} q_i(x,t) u_j(x,t) \varphi(x) \, dx
\]

\[- \sum_{j=1}^{m} \sum_{h=1}^{l} \int_{\Omega} q_{ijh}(x,t) u_j(x, \sigma_h(t)) \varphi(x) \, dx,
\]

\[t \geq t_1, \quad i \in I_m. \quad (27)
\]

Therefore,

\[
\frac{d^2}{dt^2} \left( p(t) \int_{\Omega} Z_i(x,t) \varphi(x) \, dx + \sum_{r=1}^{d} \lambda_r(t) \int_{\Omega} Z_i(x,t - \tau_r) \varphi(x) \, dx \right)
\]

\[= a_i(t) \int_{\Omega} \Delta Z_i(x,t) \varphi(x) \, dx + \sum_{k=1}^{s} a_{ik}(t) \int_{\Omega} \Delta Z_j(x, \rho_k(t)) \varphi(x) \, dx
\]

\[+ \sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s} a_{ijk}(t) \frac{\partial}{\partial i} \int_{\Omega} \Delta Z_j(x, \rho_k(t)) \varphi(x) \, dx
\]

\[- \int_{\Omega} q_i(x,t) Z_i(x,t) \varphi(x) \, dx
\]

\[- \sum_{j=1}^{m} \sum_{h=1}^{l} \frac{\partial}{\partial i} \int_{\Omega} q_{ijh}(x,t) Z_j(x, \sigma_h(t)) \varphi(x) \, dx,
\]

\[t \geq t_1, \quad i \in I_m. \quad (28)
\]

Green's formula and boundary (3) yield

\[
\int_{\Omega} \Delta Z_i(x,t) \varphi(x) \, dx = \int_{\Omega} Z_i(x,t) \Delta \varphi(x) \, dx
\]

\[= -\alpha_0 \int_{\Omega} Z_i(x,t) \varphi(x) \, dx \leq 0 \quad (29)
\]
and
\[
\int_{\Omega} \Delta Z_j(x, \rho_k(t)) \varphi(x) \, dx \\
= \int_{\Omega} Z_j(x, \rho_k(t)) \Delta \varphi(x) \, dx \\
= -\alpha_0 \int_{\Omega} Z_j(x, \rho_k(t)) \varphi(x) \, dx, \quad t \geq t_1, \quad j \in I_m, \quad k \in I_s.
\] (30)

Combining (28)–(30), we have
\[
\frac{d^2}{dt^2} \left( p(t) \int_{\Omega} Z_i(x, t) \varphi(x) \, dx + \sum_{r=1}^{d} \lambda_r(t) \int_{\Omega} Z_i(x, t - \tau_r) \varphi(x) \, dx \right) \\
\leq -\alpha_0 \sum_{k=1}^{s} a_{iik}(t) \int_{\Omega} \Delta Z_i(x, \rho_k(t)) \varphi(x) \, dx \\
+ \alpha_0 \sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s} |a_{ijk}(t)| \int_{\Omega} \Delta Z_i(x, \rho_k(t)) \varphi(x) \, dx \\
- q_i(t) \int_{\Omega} Z_i(x, t) \varphi(x) \, dx - \sum_{h=1}^{l} q_{ih}(t) \int_{\Omega} Z_i(x, \sigma_h(t)) \varphi(x) \, dx \\
+ \sum_{j=1, j \neq i}^{m} \sum_{h=1}^{l} \bar{q}_{ijh}(t) \int_{\Omega} Z_j(x, \sigma_h(t)) \varphi(x) \, dx, \\
\quad t \geq t_1, \quad i \in I_m. \tag{31}
\]

Setting \( V_i(t) = \int_{\Omega} Z_i(x, t) \varphi(x) \, dx, \quad t \geq t_1, \quad i \in I_m, \) from (31) we have
\[
\left[ p(t) V_i(t) + \sum_{r=1}^{d} \lambda_r(t) V_i(t - \tau_r) \right]^2 \\
+ \alpha_0 \sum_{k=1}^{s} a_{iik}(t) V_i(\rho_k(t)) - \alpha_0 \sum_{j=1, j \neq i}^{m} \sum_{k=1}^{s} |a_{ijk}(t)| V_j(\rho_k(t)) \\
+ q_i(t) V_i(t) \\
+ \sum_{h=1}^{l} q_{ih}(t) V_i(\sigma_h(t)) - \sum_{j=1, j \neq i}^{m} \bar{q}_{ijh}(t) V_j(\sigma_h(t)) \leq 0, \\
\quad t \geq t_1, \quad i \in I_m. \tag{32}
\]
Letting \( V(t) = \sum_{i=1}^{m} V^i(t), \ t \geq t_1, \) from (32) we have

\[
\left[ p(t)V(t) + \sum_{r=1}^{d} \lambda_r(t)V(t - \tau_r) \right]''
\]

\[
+ \alpha_0 \sum_{k=1}^{s} \left[ \sum_{i=1}^{m} a_{ik}(t)V^i(\rho_k(t)) - \sum_{j=1, j \neq i}^{m} |a_{ijk}(t)V_j(\rho_k(t))| \right]
\]

\[
+ q(t)V(t)
\]

\[
+ \sum_{h=1}^{l} \left[ \sum_{i=1}^{m} q_{ih}(t)V^i(\sigma_h(t)) - \sum_{j=1, j \neq i}^{m} \bar{q}_{ihj}(t)V_j(\sigma_h(t)) \right] \leq 0,
\]

\( t \geq t_1. \) (33)

As in the proof of Theorem 2.1, from (33) we obtain

\[
W''(t) + \alpha_0 \sum_{k=1}^{s} A_k(t)V(\rho_k(t)) + q(t)V(t)
\]

\[
+ \sum_{h=1}^{l} Q_h(t)V(\sigma_h(t)) \leq 0, \quad t \geq t_1. \quad (34)
\]

The remainder of the proof is similar to that of Theorem 2.1 and we omit it.

**Corollary 3.1.** If the differential inequality (34) has no eventually positive solution, then every solution \( u(x, t) \) of the problem (1), (3) oscillates in \( G. \)

It is not difficult to see that the following theorems are true.

**Theorem 3.2.** Suppose that \( p(t) \geq 1 \) is a monotone decreasing function, and the condition (4) holds.

If there exists some \( k_0 \in I_s \) such that \( \rho'_{k_0}(t) \geq 0 \) and

\[
\int_{t_0}^{\infty} \alpha_0 A_{k_0}(t) \left[ 1 - \sum_{r=1}^{d} \lambda_r(\rho_{k_0}(t)) \right] dt = \infty, \quad t_0 > 0, \quad (35)
\]

then every solution \( u(x, t) \) of the problem (1), (3) is oscillatory in \( G. \)

**Theorem 3.3.** Suppose that there exists a positive constant \( M \) such that \( 0 < M \leq p(t) < 1, \) and the condition (21) holds.
If there exists some $k_0 \in I_*$ such that $p'_k(t) \geq 0$ and

$$
\int_{t_0}^{\infty} \alpha_0 A_{k_0}(t) \left[ 1 - M^{-1} \sum_{r=1}^{d} \lambda_r \left( \rho_k(t) \right) \right] dt = \infty, \quad t_0 > 0, \quad (36)
$$

then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in $G$.

**Theorem 3.4.** If the conditions of Theorem 2.2 hold, then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in $G$.

**Theorem 3.5.** If the conditions of Theorem 2.3 hold, then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in $G$.

**Theorem 3.6.** If the conditions of Theorem 2.4 hold, then every solution $u(x, t)$ of the problem (1), (3) is oscillatory in $G$.

4. EXAMPLES

**Example 4.1.** Consider the system of hyperbolic differential equations

$$
\frac{\partial^2}{\partial t^2} \left( (1 + e^{-t}) u_1(x, t) + \frac{1}{2} u_1(x, t - \pi) \right)
= \Delta u_1(x, t) + (3e^{-t} + 2) \Delta u_1 \left( x, t - \frac{3\pi}{2} \right)
$$

$$
- \frac{3}{2} u_1(x, t) - 3u_1(x, t - \pi) - e^{-t} u_2(x, t - \pi)
$$

$$
- 2u_1 \left( x, t - \frac{\pi}{2} \right) - u_2 \left( x, t - \frac{\pi}{2} \right),
$$

$$
\frac{\partial^2}{\partial t^2} \left( (1 + e^{-t}) u_2(x, t) + \frac{1}{2} u_2(x, t - \pi) \right)
= e^{-t} \Delta u_2(x, t) + 2(e^{-t} + 1) \Delta u_2 \left( x, t - \frac{3\pi}{2} \right)
$$

$$
- \frac{5}{2} u_2(x, t) - u_1(x, t - \pi) - (e^{-t} + 1) u_2(x, t - \pi)
$$

$$
- u_1 \left( x, t - \frac{\pi}{2} \right) - 3u_2 \left( x, t - \frac{\pi}{2} \right),
$$

$$(x, t) \in (0, \pi) \times [0, \infty)$$
with boundary condition
\[
\frac{\partial}{\partial x} u_i(0, t) = \frac{\partial}{\partial x} u_i(\pi, t) = 0, \quad t \geq 0, \quad i = 1, 2. \tag{38}
\]

Here \( n = 1, \ m = 2, \ d = 1, \ s = 1, \ l = 2, \ p(t) = 1 + e^{-t}, \ \lambda_i(t) = \frac{t}{2}, \ \tau_i = \pi, \ a_i(t) = 1, \ a_{i1}(t) = 3e^{-t} + 2, \ a_{12}(t) = 0, \ p_i(t) = t - \frac{3\pi}{2}, \ q_1(x, t) = \frac{3}{2}, \ q_{11}(x, t) = 3, \ q_{12}(t) = e^{-t}, \ \sigma_i(t) = t - \pi, \ q_{112}(x, t) = 2, \ q_{122}(x, t) = 1, \ \sigma_i(t) = t - \frac{\pi}{2}, \ a_i(t) = e^{-t}, \ a_{21}(t) = 0, \ a_{22}(t) = 2(1 + e^{-t}), \ q_2(x, t) = 2, \ q_{21}(x, t) = 1, \ q_{22}(x, t) = e^{-t} + 1, \ q_{212}(x, t) = 1, \ q_{222}(x, t) = 3. \)

It is easy to see that \( \lambda_1(t) = \frac{t}{2} < 1, \ p(t) = 1 + e^{-t} \geq 1, \ Q_i(t) = 1, \ Q_x(t) = 1, \) and
\[
\sigma'_i(t) = (t - \pi)' = 1 \geq 0,
\]
\[
\int_{t_0}^{\infty} Q_i(t)(1 - \lambda_i(\sigma_i(t))) \, dt = \int_{t_0}^{\infty} \frac{1}{2} \, dt = \infty, \quad t_0 > 0.
\]

Hence all conditions of Theorem 2.1 are fulfilled. Then every solution of the problem (37), (38) oscillates in \((0, \pi) \times [0, \infty).\) In fact, \(u_i(x, t) = \cos x \sin t, \ u_x(x, t) = \cos x \cos t\) is such a solution.

**EXAMPLE 4.2.** Consider the system of hyperbolic differential equations
\[
\frac{\partial^2}{\partial t^2} \left( (1 + e^{-t}) u_i(x, t) + \frac{1}{2} u_i(x, t - \pi) \right) = 2 \Delta u_i(x, t) + 2(e^{-t} + 1) \Delta u_i \left( x, t - \frac{3\pi}{2} \right) - \frac{3}{2} u_i(x, t) - 2u_i(x, t - \pi) - u_2(x, t - \pi)
\]
\[
-3u_i \left( x, t - \frac{\pi}{2} \right) - u_2 \left( x, t - \frac{\pi}{2} \right) - u_2(x, t - \pi) - u_i \left( x, t - \frac{\pi}{2} \right) - 2u_2 \left( x, t - \frac{\pi}{2} \right),
\]
\[
\frac{\partial^2}{\partial t^2} \left( (1 + e^{-t}) u_2(x, t) + \frac{1}{2} u_2(x, t - \pi) \right) = \frac{3}{2} \Delta u_2(x, t) + (2e^{-t} + 3) \Delta u_2 \left( x, t - \frac{3\pi}{2} \right) - u_2(x, t) - u_1(x, t - \pi) - 3u_2(x, t - \pi)
\]
\[
-3u_i \left( x, t - \frac{\pi}{2} \right) - u_2 \left( x, t - \frac{\pi}{2} \right) - 2u_2 \left( x, t - \frac{\pi}{2} \right),
\]
\((x, t) \in (0, \pi) \times [0, \infty),\)
with boundary condition

\[ u_i(0, t) = u_i(\pi, t) = 0, \quad t \geq 0, \quad i = 1, 2. \]  (40)

It is easy to see that all conditions of Theorem 3.1 are fulfilled. Then every solution of the problem (39), (40) oscillates in \((0, \pi) \times [0, \infty)\). In fact, 

\[ u_1(x, t) = \sin x \cos t, \quad u_2(x, t) = \sin x \sin t \]

is such a solution.

REFERENCES