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1. INTRODUCTION 

Let I(a, b) denote the set of all continuous, strictly increasing functions on 
the closed interval [a, b]. For every 4 E -I(a, b), every positive integer n, every 
sequence q1 , qa, . . . . qn of positive numbers satisfying q1 + q2 + 1.. + qn = 1, 
and every sequence xi , x2, . . . . x, of elements of [a, b], we consider the 
weighted mean 

qb(x, , x2, *.a, xn; 91, q2, *a., 9?J = c-’ 1 $w?@k~~ T (1) 
k=l 

where 4-l denotes the inverse function of 4. For a suitable choice of [a, b], 
!lJ& reduces to the arithmetic mean, the geometric mean, and the harmonic 
mean when d(x) is equal to x, log x, and -l/x, respectively, and qk = l/n 
(k = 1, 2, . . . . n). 

If 1+4(x) = log x and x(x) = x, then the familiar inequality between the 
weighted geometric mean and the weighted arithmetic mean asserts that 

qJx1 3 me*, %a ; 41, ea.9 e) < n+l , **., xn ; 91 , ***, 4%) (2) 

holds whenever n, ql , . . . . qn , and xi , . . . . x, satisfy the foregoing conditions. 
More generally, if # and x are any two elements of I(a, b) such that (2) 
always holds, then we write 

‘qJ G q? , (3) 

and we say that the means are comparable if either (3) or the reverse inequality 
is true. (One can also consider (1) when4 is continuous and strictly decreasing; 
but since %J-, = %J$ , we restrict our attention to elements of I(a, b). For a 
complete discussion of this and related matters, consult Chapter III of [l].) 

A well-known necessary and sufficient condition for (3) to hold is that the 
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composite function x o 9-l be convex on the interval [#(a), $(b)], and, when 
this is true, one says that x is convex with respect to I/ (see [l], p. 75). The 
convexity of x with respect to I/ is also necessary and sufficient for the validity 
of (3) when the finite means are replaced by the corresponding integral 
means (see [I], p. 169). Moreover, the question of the convexity of one func- 
tion with respect to another need not arise from the consideration of com- 
parable means-a classical example in this connection is Hadamard’s three- 
circles theorem (see [2], pp. 154-156). 

Several natural questions suggest themselves. For example, if I/ and x are 
elements of I(a, b), can one give simple (necessary and) sufficient conditions 
for x to be convex with respect to #? Of course, if 4 = x ~1 4-l possesses a 
second derivative, then convexity obtains if and only if d”(x) 3 0 on the 
open interval (#(a), $(b)); but this derivative is usually rather complicated. 
Elsewhere, 0. Shisha and the author [3] have proved that, if x’/$’ exists and 
is nondecreasing on (a, b), then x is convex with respect to $J. In Section 2 
of this paper, we give a simple derivation of this criterion and show that it has 
a natural geometric interpretation, and we also establish some other (necessary 
and) sufficient conditions. 

A second question that we consider is the following: If # is an arbitrary 
function in I(a, b), do functions which are convex with respect to # always 
exist ? Although Hardy, Littlewood, and Polya do not mention this question 
in their book, it is inconceivable that they were not aware of the answer. 
In Section 3 of this paper, we characterize in several ways the class of all 
functions which are convex with respect to a given element of 1(u, b). 

2. PARAMETRIC EQUATIONS 

For completeness, we first prove a result which is stated in [ 1, p. 751. 

LEMMA 1. If $J, x E I(u, b), then x is convex with respect to #I if and only 
if the function whose graph is described by the parumetric equations x = #(t), 
y = x(t) (a < t < b) is convex. 

PROOF. If+ = x o $-l, $(a) < x < $(b), and t = #-l(x), then (x, C+(X)) = 
(9(t), x 3 #-l(x)) = (t)(t), X(t)), and conversely. In other words, x = t)(t), 
y = x(t) (u < t < 6) is a parametric representation of the graph of the 
function 4, and this establishes the lemma. 

Recalling the rule from calculus for computing the derivative of a function 
in terms of a parametric description, and making use of the fact (see [4], 
p. 205) that a differentiable function is convex on an open interval if and only 
if its derivative is nondecreasing (also, see [I], p. 76, footnote a), we obtain 
the following theorems. 
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THEOREM 1. Suppose that #, x E I(a, b) and that x’/yG’ is dejned throughout 
the interval (a, b). Th en x is convex with respect to 9 ;f and only if x’/I,+Y is non- 
decreasing on (a, b). 

THEOREM 2. Suppose that #, ,y E I(a, 6) and that #“/#’ and x”/x’ are 
de$ned throughout (a, b). Then x is convex with respect to 4 if and only if 

*“0(X”(t) 

?ut1 ’ x’(t) 

whenever a < t < b. 

Instead of enunciating theorems of a more sophisticated nature (cf. [S], 
p. 23) let us prove one particularly simple result. 

THEOREM 3. If #, x E I(a, b), then x is convex with respect to # if and only if 

1 #(td x(t1) 
1 #(tz) x(tz) 2 0 (4) 
1 YYt3) X(Q 

whenever a < t, < t, < t, < b. 

PROOF. Theorem 3 follows at once from Lemma 1, or, alternatively, from 
a similar condition for convex functions (see [l], Theorem 122). Inequality (4), 
of course, can be interpreted in terms of the orientation (or signed area) of 
certain inscribed triangles. 

3. EXISTENCE THEOREMS 

We now turn to the second question mentioned in the introduction. 

LEMMA 2. Let a,h E I(a, b). Then a function ,y on [a, b] is convex with respect 
to $ if and only ;f x = .X o $ where Z? is a convex function in I(zJ(a), $(b)). 

PROOF. Suppose that x is convex with respect to 9, and denote the 
function x o 4-l by X. By the definition of generalized convexity, 2 is 
convex on [#(a), #(b)]. If x E [a, 61, let y = I/(X). Then x o @r(y) = X(y) 
and x(x) = X($(x)}, as desired. 

Conversely, if x = X o Z/J where Z is a convex function in I($(a), yG(b)), 
then x E I(a, 6). Corresponding to each y E [#(a), #(b)], there exists a unique 
x E [a, b] such that #(x) = y. Consequently, x(x) = X o 3(z) reduces to 
x($-l(y)} = .X(y), and x o #-’ is convex. 
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THEOREM 4. Let z+G E I(a, 6). Then a function x on [a, b] is convex with 
respect to # ;f and only if 

x(4 - x(4 = ,:::; p(t) dt (a < x < 4 (5) 

where p is a nondecreasing, positive, summable function on (#(a), #(b)). 

PROOF. Let A = #(a) and B = z&b). In view of Lemma 2, it will suffice 
to prove that X is a convex function in 1(A, B) if and only if 

where p is a nondecreasing, positive, summable function on (A, B). 
Suppose that A? is defined by (6). Then A?’ is convex (cf. [l], p. 130) 

since, if A < yr < ya < B, then 

and 

x(y1;y2)< -x(Yl) + WY2) 2 . 

The continuity and monotonicity of Z are direct consequences of elementary 
properties of the Lebesgue integral. 

Conversely, suppose that X is a convex function in I(A, B). Then there 
exists a nondecreasing, summable function p on (A, B) such that (6) holds 
(see [5], p. 24, and [I], p. 130). Moreover, if I < 0 for some t, E (A, B), 
then 

z(t,) - X(A) = St” p(t) dt e (to - 4&o) < 0, 
A 

which contradicts the assumption that X is strictly increasing. Thus 
p(t) > 0 if A < t < B. 

If either p or 4 is sufficiently smooth (e.g., absolutely continuous), then 
the integral in (5) can be written in a simplified form (cf. [6], Theorems 321, 
277, and 322.1). 

4. SOME APPLICATIONS 

It is easy to formulate additional results in connection with generalized 
convexity. We conclude this paper by proving a few representative theorems. 
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First, we observe that if I,G EZ((~, b), then the set C, of all functions in 
Z(a, b) which are convex with respect to 4 is a subcone of Z(a, b), that is, if 

XlEG#,X2ECV, 01~ > 0, and 01~ > 0, then ollxl + aaz E C, . This follows 
directly from Theorem 4 or Theorem 3, or from Lemma 2 and the fact that 
the sum of two convex functions is again convex. 

The following result is somewhat deeper. 

THEOREM 5. Suppose that #, x E Z(a, b) and that x is convex with respect 
to $. Then x is absolutely continuous on [a, b] if and only if 4 is absolutely 
continuous there. 

PROOF. By Lemma 2, x = A” c $ where X is a convex function in 
Z(#(a), #(b)). Since Y is continuous on [$(a), #(b)], it is absolutely continuous 
there (see [6], p. 189, and [l], p. 130), and, consequently, the absolute 
continuity of # on [a, b] implies that of x (see [7], p. 103). The same conclusion 
follows from Theorem 4 and [6, Theorems 272 and 2751. 

In order to prove that $ is absolutely continuous on [a, b] if x is absolutely 
continuous there, we first use Theorem 3, together with an analogous result, 
to infer that $ is concave with respect to x (obvious definition) by merely 
interchanging the last two columns in the determinant appearing in (4). 
Then we modify the foregoing argument in order to complete the proof of 
the theorem. 

If 4 is an unbounded, strictly increasing, positive, continuous function 
on (0, co) and if x1 > 0, xa > 0, . . . . x,, :- 0, then we consider the sum 

G+(x, ) x.J , . . .) x,) = r$-1 
(see [l], p. 84). 0 mi tt ing some obvious definitions, we have the following 
theorem. 

THEOREM 6. Suppose that 4 and x are unbounded, strictly increasing, 
continuous functions on [0, co) and that z/(O) = x(0) = 0. Then 6, 2 G, if 

rm, < mm, * 

PROOF. Setting t, = 0 in (4), we conclude from Theorem 3 that x/4 is 
is nondecreasing on (0. co). The desired conclusion then follows from [l, 
Theorem 1051. 

In this connection, we note that Theorems 1 and 3 of this paper furnish a 
simple proof, as well as a geometric interpretation, of Theorem 148 of [l] 
whenf(0) = g(0) = 0. 
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