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Abstract

Neutron and X-ray diffraction are key techniques that are used to investigate the atomic and nanometric mesoscale structure of

glasses and amorphous materials. These experimental methods probe the nuclear (neutron) or atomic (X-ray) pair correlation func-

tions between atoms. For a multicomponent glass containing N atom types, the information content of the data is low, considering

that the data are a weighted sum of N(N+1)/2 partial pair correlation terms. This complexity can often make direct interpretation of

results difficult or impossible. Modern computational methods can now rapidly refine atomistic models of disordered materials that

satisfy the constraints imposed by diffraction data. These models can then be used to investigate how the partial pair correlation

functions contribute to the total scattering data, given a chosen set of underlying physico-chemical constraints, and allow us to

extract many structural functions of interest such as bond angle distributions and coordination number histograms. To illustrate

these capabilities the technique of Empirical Potential Structure Refinement (EPSR), has been applied to a range of results from a

selection of oxide-glass systems and the results provide a set of reference parameters that can be used in future studies on similar

glass systems where EPSR is the goal.
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1. Introduction

The lack of long range order and periodicity in the configurations of atoms and molecules that make up amorphous

materials poses a number of quite significant challenges for the glass scientist. This is because the primary tool

used for the characterisation of materials structure, the crystallographic method, cannot be applied to deliver the

standard information about symmetry, unit cell and space group, that generally forms the basis of the physico-chemical

understanding of a material’s properties. To make progress with glasses and other amorphous systems, attention

must instead be turned to concepts of short-range atomic structure such as local chemical order, local symmetry and
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statistical distribution functions that characterise the envelope of structural correlations in the disordered network,

Zallen (1983).

Although crystallographic approaches are unsuitable for addressing questions of glass structure, neutron and X-

ray diffraction are still arguably the most direct probes of many of the structural issues of interest, albeit that the

information is contained in the diffuse scattering patterns that are measured, rather than in sharp Bragg features.

In effect these scattering experiments probe the pair correlations between atoms in the material reflecting the radial

distribution function of atomic centres, instead of the single particle correlation function that characterises a periodic

crystalline lattice, Lovesey (1984).

In spite of the power of the diffraction techniques for looking at non-crystalline systems, there does remain one

particular difficulty. This is the fact that for any given radial distribution function, there are an infinite number of

higher body arrangements of atoms, characterised through the three-body, four-body etc. distribution functions, with

which it would be compatible, Cusack (1987). For example this means that if we build an atomistic model of an

amorphous material that is consistent with the radial distribution function measured in a diffraction measurement, this

structure will not be unique and more information will be required if the veracity of the model is to be established.

This does not mean that the diffraction experiment is useless, since it is still an essential criterion that any successful

model of a glassy system must reproduce the experimentally observed pair distribution function, and any model that

does not do this is clearly incorrect.

Thankfully the extra information required to build a robust model of a glass is often simple to derive from physico-

chemical knowledge. This includes knowledge about the relative sizes of atoms, the density of the material, the

bonding capabilities of atoms and the structure of molecular or pseudo-molecular units. Taken collectively, this

information provides some stringent constraints on the distributions of atomic positions and the local higher-body

correlations that can be considered to occur in a non-crystalline network, and we will show how the combination

of diffraction and constrained computer modelling can now deliver considerable insight into the structure of glassy

materials.

2. Theory

In a neutron or X-ray diffraction experiment that is performed on a liquid or glassy system, the structural function

that is measured is the interference differential scattering cross section or total structure factor, F(Q), where Q is the

magnitude of the momentum transfer vector of the scattering process,

Q =
4π

λ
sin θ (1)

λ is the wavelength of the incident radiation, and 2θ is the scattering angle. For neutron diffraction F(Q) is defined as,

F(Q) =
∑
α≤β

(2 − δαβ)cαcβ〈bα〉〈bβ〉[S αβ(Q) − 1] (2)

cα, cβ, 〈bα〉 and 〈bβ〉 are the atomic fractions and bound coherent neutron scattering lengths (averaged over nuclear

spin and isotope states), Sears (1992) of atoms of type α and β respectively, and S αβ(Q) are the partial structure factors

that encode the correlations between pairs of atoms in reciprocal space that make up the total structure factor. δαβ is

the Kronecker δ function to avoid double counting correlations between atoms of the same type. For comparison, in

an X-ray diffraction experiment F(Q) is formulated as,

F(Q) =
∑
α≤β

(2 − δαβ)cαcβ fα(Q) fβ(Q)[S αβ(Q) − 1] (3)

where the bound coherent scattering lengths of the neutron diffraction experiment are replaced with fα(Q) and fβ(Q),

the Q-dependent atomic form factors for atoms of type α and β, Waasmaier and Kirfel (1995). This difference high-

lights an important complementarity between neutron and X-ray diffraction measurements, the neutron experiment

probes the pair correlations between atomic nuclei, whilst the X-ray diffraction measurement probes the correlations

between the atoms through their bound electron distributions.
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Fig. 1. The EPSR model fits (red solid line) and fit residuals (blue dotted line) to the experimental F(Q) measured for S iO2, Bowron (2008a),

(S nO)0.282(S iO2)0.718, Bent et al. (1998), GeO2, Hannon et al. (1990), (Cs2O)0.25(GeO2)0.75, Hannon et al. (2007), (CaO)0.70(Al2O3)0.30, Hannon

and Parker (2000) and (PbO)0.67(Ga2O3)0.33, Hannon et al. (1998) glasses. The experimental data are shown as black circles and for clarity are

vertically offset by 0.0, 0.6, 1.2, 1.8, 2.4 and 3.0 units, respectively. The corresponding fit residuals are vertically offset by -0.3, 0.3, 0.9, 2.1 and

2.7 units.

Fig. 2. The total radial distribution functions, G(r), of the experimental data (black dotted lines) and EPSR model fits (red solid lines) of

S iO2, Bowron (2008a), (S nO)0.282(S iO2)0.718, Bent et al. (1998), GeO2, Hannon et al. (1990), (Cs2O)0.25(GeO2)0.75, Hannon et al. (2007),

(CaO)0.70(Al2O3)0.30, Hannon and Parker (2000) and (PbO)0.67(Ga2O3)0.33, Hannon et al. (1998) glasses. The experimental data and model

functions are offset by 0.0, 1.5, 3.0, 4.5, 6.0 and 7.5 units respectively.
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The total structure factor is related to the total radial distribution function G(r) by a Fourier transform,

G(r) =
1

(2π)3ρ0

∫ ∞
0

4πQ2F(Q)
sin Qr

Qr
dQ (4)

weighted by the average number density of the material, ρ0, in atoms Å−3. In similar fashion to Equations 2 and 3, the

total radial distribution is formed from a weighted sum of the partial pair distribution functions gαβ(r) as,

G(r) =
∑
α≤β

(2 − δαβ)cαcβ〈bα〉〈bβ〉[gαβ(r) − 1] (5)

In a neutron diffraction experiment this definition of the total radial distribution function leads to some fundamental

limiting values for the behaviour of G(r) at very short and very long distances, that can be useful in checking the

reliability of experimental scattering data and model predictions. These limiting values are given by, Keen (2001):

G(r < r0) = −∑α (cα〈bα〉)2 G(r → ∞) = 0 (6)

where r0 is the shortest interatomic pair distance in the system.

Each partial pair distribution function in Equation 5 is explicitly defined in terms of the number of particles of type

β found in a radial shell between distances of r and r + dr from a particle of type α (nαβ(r)) by,

gαβ(r) =
nαβ(r)

4πρβr2dr
(7)

where ρβ = cβρ0. This relationship consequently allows us to define the coordination number for the number of atoms

of type β found about atoms of type α in a radial shell delimited by inner and outer shell distances, r1 and r2, as:

(
N(α)
β

)r2

r1

= 4πρβ

∫ r2

r1

r2gαβ(r)dr (8)

This quantity, along with the most probable atomic pair distances given by the positions of the peaks in G(r) or gαβ(r),

is frequently seen as one of the key pieces of information required of any comprehensive characterisation of a glass

structure. In atomistic structural analyses the coordination number is often plotted as a running sum, N(r), evaluated

outwards from an origin atom over shells of increasing radius r. It is also worth pointing out the symmetry in the

partial pair distribution functions i.e. gαβ(r) = gβα(r), but note that this symmetry does not apply to the coordination

numbers which will differ in proportion to cαρ0 and cβρ0.

Considering the permutations of atom pairs that contribute to Equation 5 for a sample containing N atom types,

there will be N(N+1)/2 partial pair distribution functions to take into account when interpretting the total radial distri-

bution function. This highlights an additional difficulty that contributes to the aforementioned issue of the uniqueness

of any structural model based on a pair distribution function, that must also be faced by the experimental scientist

trying to understand the structure of a multicomponent amorphous material. A single neutron or X-ray diffraction

experiment will only allow the determination of the total radial distribution function as there is insufficient informa-

tion in the measured signal to permit the separation of the function into the partial pair distributions that are often of

primary interest to the materials scientist. In the following section we will discuss a computational strategy to help

with this problem.

3. Modelling

From an experimental perspective, methods have been developed over the past few decades to help address the

challenge of unfolding the contributions of the partial pair distribution terms to the total radial distribution function.

In particular these include neutron diffraction with isotopic substitution, Enderby et al. (1966), anomalous X-ray

scattering, Fuoss et al. (1981), and multi-technique approaches, Bowron (2008b); Fischer et al. (2006). In each case

the aim is to capitalize on complementary viewpoints on the total radial distribution functions, obtained by varying

the scattering power of selected elements or by using different structure probing experimental techniques, to permit

enhanced understanding of the relative contributions of the partial pair terms to the total. Although these methods
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sometimes allow us to directly access specific partial pair distribution functions of interest, in most real-world cases

the compositional complexities of the materials of interest are too great for a complete separation of the contributing

functions by experiments alone. In these cases, it is generally necessary to adopt brute force computational strategies

in which a priori information about chemical behaviour and physical properties can be used to guide the generation of

atomistic models that are consistent with available diffraction data. Once a model exists, all the partial pair distribution

functions are accessible, and tests can be performed on how sensitive the results are to assumed information that was

used to guide the model generation.

One such method that is finding increasing utility in this area is Empirical Potential Structure Refinement (EPSR),

that was developed by Soper (1996, 2005, 2011b). The approach uses a classical, NVT, Monte Carlo simulation (Allen

and Tildesley (1987)) combined with perturbation potentials derived from experimental data, to setup a distribution of

atoms and molecules that is consistent with the structure factors measured in a neutron or X-ray diffraction experiment.

The simulation as a whole is driven by potential energy functions operating between pairs of atoms separated by a

distance r, that can be split into two terms, a reference potential U(Re f )

αβ (r) and an empirically derived perturbation

potential U(EP)
αβ (r),

Uαβ(r) = U(Re f )

αβ (r) + U(EP)
αβ (r) (9)

In general the reference potential takes the standard form of a Lennard-Jones 12-6 potential, plus Coulomb charges

where appropriate, i.e.

U(Re f )

αβ (r) = 4εαβ

[(σαβ
r

)12

−
(σαβ

r

)6]
+

qαqβ
4πε0r

(10)

For unlike atomic species the values of εαβ and σαβ are generated using the Lorentz-Berthelot mixing rules on the

values for the individual atomic components, Allen and Tildesley (1987),

εαβ = (εαεβ)
1
2 σαβ =

1
2
(σα + σβ) (11)

In contrast to the reference potential the empirical perturbation potentials have more complex forms as they are

derived from differences between the structure factors calculated from the model of the atomic configurations of the

material under study, and those measured in a neutron or X-ray diffraction experiment, see Soper (2005) for more

details. Ideally, if the reference potential is well chosen, the Monte Carlo simulation will produce a reasonable

estimate of the structure of the system of interest without the application of the empirical potential, and only small

adjustments to the interatomic interaction potentials will then be needed to bring the structural configurations into

optimal agreement with the experimental data.

Equation 10 shows us how key physico-chemical information can be incorporated into the model from the outset,

to make up for some of the deficiencies in the information content of the scattering data. For atomic glasses, key

parameters are the sizes of the atomic components that are encoded in the values of σ, and chemical bonding and

valence preferences which can be included through the use of Coulomb charges, q. The density of the system being

modelled is fixed through the use of the NVT ensemble and lastly, if the system of interest were formed from molecular

units, the short range atomic connectivity of the molecules is also maintained throughout the modelling process,

although each molecule is periodically disordered to account for the unavoidable quantum zero-point disorder that is

reflected in the measured distributions of intra-molecular bond lengths.

If the data is available, the model can be refined against multiple data sets from isotopic substitution neutron

scattering series or combinations of neutron and X-ray scattering measurements. These multi-data refinements are

often useful to impose additional constraints on the models that are produced.

The structure refinement method is then implemented to the following recipe:

1. Prepare neutron and/or X-ray scattering structure factor data for refinement. Data should be corrected for ex-

perimental factors such as absorption, multiple scattering, container and instrument background contributions,

inelasticity or Compton scattering etc. The structure factor should also be normalized to a known scheme, Soper

(2011c).

2. Using an appropriate set of reference potential parameters, build an atomistic representation of the material taking

care to maintain the chemical stoichiometry of the model, the atomic density and charge balance of the system.
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Table 1. Lennard-Jones and charge parameters used for the references potentials to model S iO2, Bowron (2008a), (S nO)0.282(S iO2)0.718, Bent

et al. (1998), GeO2, Hannon et al. (1990), (Cs2O)0.25(GeO2)0.75, Hannon et al. (2007), (CaO)0.70(Al2O3)0.30, Hannon and Parker (2000) and

(PbO)0.67(Ga2O3)0.33, Hannon et al. (1998) glasses. Note that the coulomb charges used to constrain the local chemical order in the glass network

were scaled down by a factor of 2 to increase the speed of the Monte Carlo engine for driving the atomic configurations into agreement with the

experimental structure factors and reduce the need for generating large empirical perturbation potentials.

Atom ε [kJ/mol] σ [Å] q [e] Mass [amu]

O 0.1625 3.600 -1.0000 16.0

Al 0.1750 1.330 1.5000 27.0

Si 0.1750 1.030 2.0000 28.1

Ca 0.1750 2.630 1.0000 40.1

Ga 0.1750 1.600 1.5000 69.7

Ge 0.2000 1.410 2.0000 72.6

Sn 0.0075 1.000 0.5000 118.7

Cs 0.2000 4.350 0.5000 132.9

Pb 0.2000 2.400 1.0000 207.2

3. Calculate the appropriate scattering weights (ci, 〈bi〉 and/or ci, fi(Q) products) that link the model to the experi-

mental data.

4. Equilibrate the model using the Monte Carlo simulation engine operating on the reference potential parameters

alone.

5. Once the structure has equilibrated to atomic configurations consistent with the reference potential, turn on the

feedback mechanism that estimates an empirical perturbation potential from the difference between calculated

and experimental structure factors, then continue to run the Monte Carlo engine until agreement is reached

between the model and experimental data.

6. Start accumulating ensemble average information on parameters of interest in the model such as partial pair

distribution functions, bond angle distribution functions, coordination number histograms etc.

It is important to remember that the only goal of the EPSR procedure is the production of an ensemble of atomic

configurations that is consistent with the nuclear (neutron) or atomic (X-ray) pair correlation functions measured

in diffraction experiments. This is just a model. The configurations are simply lists of atomic coordinates that are

distributed according to the constraints imposed by the experimental data, and the assumed parameters governing the

density of the material, the relative sizes of the atoms, and the local chemical stoichiometry that can be controlled

through the use of Coulomb charges to encode valence and ionic/covalent bonding preferences. The precise form of

the potential energy terms that underly the operational mechanics of the modelling engine are relatively unimportant,

since their only purpose is to provide an efficient means by which sensible atomic configurations can be generated

and sampled. There is one caveat to this statement, in that the reference potentials must not exclude required atomic

correlations from the model, such as through the definition of over-large atomic radii which would prevent atoms

adopting appropriate first neighbour distances. Although in theory the empirical potential could evolve to counter this

constraint, in practice this would not happen reliably as the method works best when operating under mild perturbative

conditions. Once an ensemble of structures matches the constraints imposed by the experimental data, it is then the

responsibility of the investigating scientist to decide if the structural conclusions that can be drawn from the model, are

reasonable or otherwise. This usually requires reference to independent results that were not explicitly incorporated

in the constraints used to define the model generation. If the model highlights an unexpected conclusion, then further

models can be generated where constraints are added to either explicitly exclude or impose a structural feature under

question, and in this way we can test hypotheses for compatibility with the diffraction data using the EPSR modelling

engine.

4. Examples of application

To demonstrate the utility of the method for extracting structural information from diffraction data, we have con-

structed a series of models of some standard glass forming systems for which high quality neutron scattering data
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Table 2. The composition, box size and density parameters used to model S iO2, Bowron (2008a), (S nO)0.282(S iO2)0.718, Bent et al. (1998), GeO2,

Hannon et al. (1990), (Cs2O)0.25(GeO2)0.75, Hannon et al. (2007), (CaO)0.70(Al2O3)0.30, Hannon and Parker (2000) and (PbO)0.67(Ga2O3)0.33,

Hannon et al. (1998) glasses.

Glass Atomic components & Side length of Density

number in box simulation box

[Å] [atoms Å−3]

S iO2 Si 500 28.3 0.0664

O 1000

(S nO)0.282(S iO2)0.718 Sn 282 35.1 0.0635

Si 718

Al 12

O 1736

GeO2 Ge 500 28.8 0.0629

O 1000

(Cs2O)0.25(GeO2)0.75 Cs 250 30.6 0.0523

Ge 375

O 875

(CaO)0.70(Al2O3)0.30 Ca 420 28.8 0.0732

Al 360

O 960

(PbO)0.67(Ga2O3)0.33 Pb 335 28.7 0.0632

Ga 330

O 830

is available. Specifically models of glassy S iO2, Bowron (2008a), (S nO)0.282(S iO2)0.718, Bent et al. (1998), GeO2,

Hannon et al. (1990), (Cs2O)0.25(GeO2)0.75, Hannon et al. (2007), (CaO)0.70(Al2O3)0.30, Hannon and Parker (2000)

and (PbO)0.67(Ga2O3)0.33, Hannon et al. (1998) have been generated, and where the series presents the opportunity to

provide model reference potential parameters for nine elements that are commonly found in glass forming systems.

These parameters are summarized in Table 1 whilst the composition, model size and density parameters for each

specific glass model are summarized in Table 2.

Figures 1 and 2 show the EPSR fits to the measured total structure factors and corresponding total radial distribu-

tion functions of each glass, demonstrating the typical levels of agreement that can be obtained between model and

experiment. Each of the total radial distribution functions shown in Figure 2 contains contributions from three or six

partial pair terms depending on whether it is from a two component or three component glass. This limits our ability

to unambiguously assign structural correlations to only the nearest neighbour features such as the S i − O bonds at

1.60Å, the Ge −O bonds at 1.72Å, and the Al −O and Ga −O bonds at 1.73Å and 1.83Å respectively. As one moves

to larger distances the chances of overlapping correlations contributing to the same region of G(r) increases markedly

such that beyond 3Å the task of simple peak assignment becomes impossible. For reference, the limits of the direct

analysis of G(r) for the three component glasses discussed here, have been shown in references, Bent et al. (1998);

Hannon et al. (2007); Hannon and Parker (2000); Hannon et al. (1998).

4.1. Network forming partial structure factors

In respect to this issue, the advantage of analytical approaches such as EPSR can immediately be illustrated. Figures

3, 4 and 5 show the partial pair distribution functions for the glass network forming components, S i, Ge, Al, Ga and O
that are consistent with the measured total structure factors of Figure 1, and the physico-chemical constraints imposed

by the reference potential parameters and the density of the systems. In particular one notes, that the method allows

us to easily estimate more distant pair correlations, > 3Å, that are consistent with the local chemical order, and also

evalute the number of atoms and extent of disorder involved in the intermediate range order in the materials.

If we take the pure S iO2 and GeO2 systems as the archetypical examples of glass forming systems, these models

clearly highlight four-fold coordination of the S i and Ge atoms by O in their first coordination shell of the S i−O and
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Fig. 3. The partial pair distribution functions (black solid lines) and running coordination numbers (red broken lines) for the network forming

components of S iO2 and (S nO)0.282(S iO2)0.718 glasses.

Ge − O partial distribution functions, and show that this local ordering persists to the second shell with each O atom

briding to another S i or Ge atom, leading to four fold coordination in the first peak of the S i − S i and Ge −Ge partial

distribution functions. The O−O partial distribution functions do however highlight some subtle differences between

the S iO2 and GeO2 glass networks. In the S iO2 system each O atom is coordinated by ≈ 6 neighbouring O atoms

in its second shell, whilst in GeO2 this value is found to be closer to ≈ 8 neighbouring O atoms, the first shell being

formed from 4 S i or 4 Ge atoms.

The affect of the addition of the network modifier atoms S n and Cs to the S iO2 and GeO2 glass networks can now

also be appreciated through the S i − O, Ge − O, S i − S i, Ge − Ge and O − O partial pair distribution functions. In

both the silicate and germanate glass systems investigated, the addition of the network modifier does not change the

preference for four-fold coordination of the S i or Ge atoms by O in their first coordination shell, but in the second

neighbour region for S i in the (S nO)0.282(S iO2)0.718 glass, the S n atoms are seen to compete with the S i atoms for

a presence in this second shell, manifest through a reduction in
(
N(S i)

S i

)3.6
2.5

from ∼ 4 to ∼ 3. This does not appear to
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Fig. 4. The partial pair distribution functions (black solid lines) and running coordination numbers (red broken lines) for the network forming

components of GeO2 and (Cs2O)0.25(GeO2)0.75 glasses.

be the case for the second shell of Ge in the (Cs2O)0.25(GeO2)0.75 system, as
(
N(Ge)

Ge

)3.8
2.5

remains ≈ 4, although there

appears to be an enhancement in the second shell disorder, manifest by a broadening of the first peak in the Ge −Ge
partial pair distribution function of the ternary glass compared with GeO2. In contrast to the behaviour of the S i − S i
and Ge−Ge partial distribution functions, the O−O terms of the ternary glasses appear to be affected to the opposite

extent, in the (S nO)0.282(S iO2)0.718 glass, there is a reduction in
(
N(O)

O

)3.0
2.2

from ∼ 6.0 to ∼ 5.3, but little change in the

definition of the shell, whilst the (Cs2O)0.25(GeO2)0.75 system shows a marked increase in the definition of the first

O − O correlation feature but with a decrease in
(
N(O)

O

)3.4
2.2

from ∼ 7.9 to ∼ 7.0.

The investigated aluminate and gallate glass systems, (CaO)0.70(Al2O3)0.30 and (PbO)0.67(Ga2O3)0.33, serve to fur-

ther illustrate the resilience of the local chemical order of the network forming elements Al and Ga, as despite the

relatively large component of network modifier material, CaO and PbO, used in these systems, the well defined Al−O
and Ga − O first shell correlations remain on average four-coordinate.
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Fig. 5. The partial pair distribution functions (black solid lines) and running coordination numbers (red broken lines) for the network forming

components of (CaO)0.70(Al2O3)0.30 and (PbO)0.67(Ga2O3)0.33 glasses.

4.2. Bond angle and coordination number histogams

A further advantage of performing the analysis of diffraction data using an atomistic simulation approach, is that

it is a trivial matter to interrogate the models to obtain estimates of bond angle distributions and coordination number

distributions. Figure 6 shows the O − S i − O, O −Ge − O, S i − O − S i and Ge − O −Ge bond angle distributions for

the models of S iO2, (S nO)0.282(S iO2)0.718, GeO2 and (Cs2O)0.25(GeO2)0.75. Each of these bond angle distributions

has been corrected for the sin θ dependence that would occur from sampling a random distribution of angles, Kroon

and Kanters (1974). The upper panel of Figure 6 shows us that in the S iO2 and GeO2 glasses, the dominant network

motif is tetrahedral units of S iO4 and GeO4 as indicated by the preferred bond angle of 109◦. Interestingly this motif is

largely unaffected in the (S nO)0.282(S iO2)0.718 system, but in the (Cs2O)0.25(GeO2)0.75 glass, there is a marked increase

in the angular disorder of the GeO4 local units and a significant growth in linear O −Ge − O linkages. Although this

difference is very obvious in the bond angle distribution, it would not be as clear if one were to consider the mean

O−S i−O and O−Ge−O values, these are ∼ 109◦ for the S iO2, (S nO)0.282(S iO2)0.718 and GeO2 systems, but ∼ 111◦
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Fig. 6. O − S i −O and O −Ge −O bond angle distributions (upper panel) and S i −O − S i and Ge −O −Ge bond angle distributions (lower panel)

evaluated from the EPSR models of S iO2, (S nO)0.282(S iO2)0.718, GeO2 and (Cs2O)0.25(GeO2)0.75. P(θ) is the normalised probability distribution

histogram of the specified bond angles. For clarity, in the upper panel each successive probability distribution has been offset vertically by 0.1

units, whilst in the lower panel the vertical offset is 0.05 units.

for the (Cs2O)0.25(GeO2)0.75 glass and hence demonstrating the value of an atomistic model for picking out subtle

details of this kind.

Figure 7 shows the first shell coordination number histograms for the S i and Ge sites in the silicate and germanate

glasses. This analysis allows us to probe into the aforementioned resilience of the local chemical order of the network

formers in the systems we have investigated. In all four systems, there is clearly a strong preference for four-fold
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Fig. 7. First shell coordination number histograms
(
N(S i)

O

)2.3
1.0

and
(
N(Ge)

O

)2.3
1.5

evaluated by a site by site analysis of the EPSR models of S iO2,

(S nO)0.282(S iO2)0.718, GeO2 and (Cs2O)0.25(GeO2)0.75. P(N) is the normalised probability histogram of finding N oxygen atom neighbours about

the silicon or germanium atoms within the distance range indicated by the subscript and superscript numbers in the label (Ångström units). For

clarity, each successive probability distribution has been offset vertically by 1.0 units.

coordination of the S i and Ge atoms by O, but in the (Cs2O)0.25(GeO2)0.75 we can observe that the presence of the

Cs2O network modifier produces a small, but significant increase in the number of five- and six-fold O coordinated

Ge sites. This change is consistent with the observation of the increase in the number of linear O −Ge − O linkages

in the bond angle distribution function analysis of this glass.

4.3. Network modifier structural correlations

Having investigated the structural correlations of the networking forming elements in the glasses, it is interesting to

see how the network modifiers and charge compensating species, S n, Cs, Ca and Pb, are accommodated into the glass

systems that we have investigated, Connelly et al. (2011). Figure 8 shows the partial pair distribution functions of

these elements with O. The well defined peaks in gxO(r) and moderate plateauing in the running coordination number

of the divalent network modifiers S n, Ca and Pb, tells us that they generate well defined first coordination shells with

O atoms. In contrast the much larger monovalent Cs atoms do not do this, instead they appear to occupy much more

disordered first shell coordination environments.

Finally, Figure 9 shows the self correlations between the network modifier atoms as these functions are often of

considerable interest to glass technologists as they can be related to issues such as ion conduction and percolation

pathways, quenching of optical properties and operational aging of glassy materials.

5. Conclusions

The challenge for the structural glass scientist is frequently the extraction of the maximum amount of information

from experimental data that is generally limited and incomplete. Here we have shown that physico-chemically con-

strained atomistic modelling, where a model is refined to reproduce available neutron or X-ray scattering data, can

greatly assist in this task. It is however very important to remember that although the models permit the structure of

glassy materials to be investigated in great detail, the actual constraints imposed by the experimental data may not be
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Fig. 8. The partial pair distribution functions (black solid lines) and running coordination numbers (red broken lines) for the network modifying

elements in (S nO)0.282(S iO2)0.718, (Cs2O)0.25(GeO2)0.75, (CaO)0.70(Al2O3)0.30 and (PbO)0.67(Ga2O3)0.33 glasses.

Fig. 9. The partial pair distribution functions (black solid lines) and running coordination numbers (red broken lines) for the self correlations

between the network modifying elements in (S nO)0.282(S iO2)0.718, (Cs2O)0.25(GeO2)0.75, (CaO)0.70(Al2O3)0.30 and (PbO)0.67(Ga2O3)0.33 glasses.

sufficient to justify any claims. In every case the investigating scientist will need to ask themselves the question as to

whether it would be possible to model the data in a different way, but that is also consistent with the expected primary

constraints of composition, chemical knowledge and density.

A classic example of this type of issue can be found in the boroxol rings controversy of liquid and glassy B2O3,

Ferlat et al. (2009), where spectroscopic methods had for many years highlighted the importance for significant

numbers of B3O3 ring structures in the glass network, but models based on diffraction methods and modelling had
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frequently argued for only very small ring fractions, Swenson and Borjesson (1997). This issue of boroxol ring

fraction is an archetypical challenge for diffraction methods as the ring configuration has no unique pair correlation

function signature, instead only being uniquely characterised by higher body correlation terms.

Although we must recognise the inability of diffraction methods to be able to provide an unambiguous answer

to the questions of this type, this does not prevent us from testing the competing hypotheses with methods such as

EPSR. The classic case of the boroxol ring controversy has for example recently been tackled in exactly this way by

Soper (2011a), to demonstrate the value of constrained modelling. Often these tests can be highly informative since

if our hypotheses are found to be incompatible with the diffraction data then they can be ruled out, whilst if multiple

satisfactory models can be found, then we immediately know that further discriminating evidence must be sought. An

example of where complementary information of this type has been applied to the analysis of a borosilicate glass of

nuclear interest can be found in this volume, Bouty (2014).

With regards to the model systems used as examples in this study, all primary conclusions about glass network

structure, interatomic distances and coordination numbers were found to be consistent between the predictions of

the reported EPSR models, and those obtained by conventional analysis methods, Bent et al. (1998); Grimley et al.

(1990); Hannon et al. (2007, 1990); Hannon and Parker (2000); Hannon et al. (1998). This consistency highlights how

reliable atomistic models can now be produced, quite simply and rapidly, that can greatly contribute to the analysis

and interpretation of neutron and X-ray scattering data obtained from amorphous materials. A particular incentive

for adopting the atomistic modelling approach, is that specific answers to structural questions can often be obtained

very quickly and directly, without having to adopt approaches such as complex peak fitting, Bent et al. (1998) or

bond-valence analyses, Hannon et al. (2007) which have their own additional uncertainties beyond those intrinsic to

the diffraction data itself.
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