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Abstract

We analyze size and space complexity of Res(k), a family of propositional proof systems
introduced by Kraj678cek in (Fund. Math. 170 (1–3) (2001) 123) which extend Resolution by
allowing disjunctions of conjunctions of up to k¿ 1 literals. We show that the treelike Res(k)
proof systems form a strict hierarchy with respect to proof size and also with respect to space.
Moreover Resolution, while simulating treelike Res(k), is almost exponentially separated from
treelike Res(k). To study space complexity for general Res(k) we introduce the concept of
dynamical satis<ability which allows us to prove in a uni<ed way all known space lower bounds
for Resolution and to extend them to Res(k).
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A central theme in computational complexity is whether there is an e0cient propo-
sitional proof system, i.e. a proof system that for any tautology provides a proof
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polynomial in the size of the tautology. As observed in [14] this corresponds to
the question whether NP= coNP. Hence the investigation of the complexity of proof
systems can be seen as a way to tackle NP �=coNP: prove that for every proposi-
tional proof system there are tautologies that require superpolynomial proofs. Also
in [14] it was proposed what is now known as Cook’s program: try to <nd fami-
lies of tautologies hard to prove for progressively more powerful propositional proof
systems until having suOcient knowledge to prove NP �= coNP, which implies
P �=NP.

Among the most studied proof systems are those related to resolution. While there
are several lower bounds for the complexity of proofs in propositional resolution
[19,33,7,11], resolution-based proof systems are still a subject of research [22,4,3].
On the one hand, one is interested in <nding more and more powerful combinatorial
lower bounds techniques that hopefully can be applied to stronger systems [27,28]. On
the other hand, resolution-based proof systems are of practical interest in the <eld of
automated theorem proving.
Given that no polynomial time algorithm can exist to <nd proofs for a non-eOcient

proof system like resolution, Bonet et al. [13] proposed the following approach: for a
proof system P, <nd algorithms running in time polynomial in the size of the shortest
P-proof of the formula we are seeking proofs for. If such an algorithm exists we say
that P is automatizable. Despite that many proof systems, including resolution, are not
automatizable conditioned on plausible complexity assumptions [2,23,13], there are ex-
amples of resolution-based proof systems known to be sub-exponentially automatizable
[7,11,3].
This work focuses on the family of refutation systems Res(k), k¿1, introduced by

Kraj678cek in [22] as a generalization of resolution. Instead of clauses, Res(k) allows
to infer k-clauses, i.e. disjunctions of k-bounded conjunctions. In [4] Atserias et al.
gave exponential lower bounds for Res(2) refutations of random formulas and the
weak 2n to n pigeonhole principle. Moreover, generalizing the algorithm of Beame et
al. in [6], Atserias and Bonet in [3] provided a quasi-polynomial automatization for
treelike Res(k), the restricted system in which the proof is a tree. Segerlind et al. in
[30] proved exponential lower bounds for Res(k) refutations of random formulas and
the weak pigeonhole principle, improving the results in [4]. Finally Razborov in [29],
generalizes and improves the results of [30].
In the following we say that a proof system P dominates a proof system Q if

(1) P polynomially simulates Q, i.e. for any Q-proof there is P-proof of the same
formula that is polynomially related in size. And (2) P is almost exponentially sep-
arated from Q, i.e. there exists a class of formulas having polynomial size P-proofs,
but requiring Q-proofs of almost exponential size. Let us note here that through-
out the paper we will consider a lower bound of 2�(n=log n) as almost exponential.
It is known that resolution dominates treelike resolution [12,10]. We improve this
result by proving that resolution dominates treelike Res(k), for k constant. In fact
we prove the stronger result that treelike Res(k + 1) dominates treelike Res(k).
Segerlind et al. in [30], proved the same result also for daglike Res(k), so solving
a natural open problem arising from our paper. Moreover, the treelike Res(k) hierar-
chy is below resolution, since treelike Res(k) is simulated by resolution, see [21]. In
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fact we give a simulation of treelike Res(k) by resolution that only doubles the size
of the proof.
To prove the separations we extend to Res(k) a technique based on games in-

troduced by Pudl6ak and Impagliazzo in [26] and used by Ben-Sasson et al. in [10]
to give lower bounds for treelike resolution. Then we de<ne a generalization of the
pebbling contradictions from [10], and we extend the technique of [10] based on peb-
bling of graphs, to work for Res(k). In particular, we show a combinatorial lemma
(Lemma 11) about pebbling of graphs which might be interesting in its own right and
could also be applied to other areas.
Concerning automatizability, our result and the algorithm from [3] show the quasi-

polynomial automatizability for a hierarchy of almost exponentially separated proof
systems. Moreover, since the generalized pebbling contradictions have resolution refu-
tations using constant length clauses, it says that there are examples for which the
algorithm of [11] can be exponentially faster in <nding resolution proofs than the
algorithm of [3] in <nding treelike Res(k) proofs.
Proof size is not the only complexity measure for proof systems. Inspired by a work

of Kleine BQuning [20], Esteban and Tor6an in [16] introduced the concept of space
complexity for resolution refutations. Alekhnovich et al. in [1] gave an equivalent for-
mulation of resolution space and generalized it to other proof systems. Space lower
bounds for resolution are known for several important classes of contradictions [16,1,9].
Recently, Atserias and Dalmau in [5] gave a game-theoretic combinatorial characteri-
zation of resolution width and proved that resolution space is always lower bounded
by width, that allows them to obtain all previously known space lower bounds for
resolution.
In this work, we introduce the concept of dynamical satis<ability which allows us

to prove in an uni<ed and generalized way space lower bounds not only for resolution
but also for Res(k). Using dynamical satis<ability we immediately get all known space
lower bounds for resolution and extend them to Res(k). Dynamical satis<ability and
the game-theoretic characterization of width given in [5] are related and under certain
aspects quite similar. It is not diOcult to see that dynamical satis<ability is equivalent
to a particular case of the extended existential pebble game de<ned in [5]. Although
clearly less general than the existential pebble game of [5], dynamical satis<ability is
simpler to describe because it is de<ned only in terms of sets of partial assignments
instead that by a two-player game on structures. Informally speaking, it seems to capture
the part of the characterization of [5] essential to get space lower bounds, and in fact it
was obtained extrapolating the common structure from the proofs of the known space
lower bounds given in [16,1,9]. Moreover, recently dynamical satis<ability was also
used in [18] to get size lower bounds for a restricted form of the treelike Gentzen
calculus.
Some relationships between size and space for resolution refutations are already

known [16,1,8]. Here we prove a size-space relationship for treelike Res(k) which
allows us to translate the previous size lower bounds to almost optimal space lower
bounds. Moreover, we obtain that treelike Res(k) also forms a strict hierarchy with
respect to space.
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2. Preliminary de�nitions

A literal l is a variable or its negation. We denote by ¬ l the opposite literal. A
k-term is a conjunction of up to k¿1 literals. A k-clause is an unbounded disjunction
of k-terms. A set of k-clauses or con<guration means the conjunction of the k-clauses
contained in it. We use calligraphic letter to denote con<gurations and |F| denote
the number of k-clauses in F . Given a formula F , we denote by F + Ax(F), the
formula obtained from F by adding the tautological clauses x∨ ¬ x, for any variable
x appearing in F .

Assignments (possibly total) to the variables of a formula or of a set of k-clauses
are usually denoted by �. The size |�| of an assignment �, is the number of diRerent
variables to which � gives a truth value. We call an assignment � a sub-assignment
of �, denoted by � � �, if any variable that is assigned by � is assigned by � to the
same value.
Res(k) is a refutation system for CNF formulas, introduced in [22]. It is de<ned by

the following rules: (i) weakening, (ii) ∧-introduction, and (iii) k-cut.

(i)
A

A ∨ ∧
l∈L l

; (ii)
A ∨ ∧

l∈L l B ∨ ∧
l∈K l

A ∨ B ∨ ∧
l∈L∪K l

;

(iii)
A ∨ ∧

l∈L l B ∨ ∨
l∈L ¬l

A ∨ B ;

where A and B are k-clauses, and L, K are sets of literals such that |L∪K |6k. Notice
that Res(1) is resolution with a weakening rule.
A Res(k) refutation of a CNF formula F is a list of k-clauses C1; : : : ; Cn such

that Cn is the empty clause, denoted by �, and for all i∈ [n], Ci is either a clause
in F or is obtained from previous k-clauses using the Res(k) rules. A refutation
can also be viewed as a directed acyclic graph, dag for short. An initial clause will
have no incoming edges and the node � will have no outgoing edges. If the graph
is a tree we will have a treelike refutation. Treelike Res(k) is restricted to treelike
refutations.
The size of a Res(k) refutation is the number of k-clauses in the refutation. Given

a refutation P we use |P| to denote the size of P. Sometimes we use Sizek(F) (resp.
Size∗k (F)) to denote the minimal size of a refutation of F in Res(k) (resp. in treelike
Res(k)).
We consider a well-known pebbling game on dags. In a dag a node is called source

if it has no predecessor, and target if it has no successor. The aim of the pebbling
game is to put a pebble on a target node of the dag using the following rules:
1. a pebble can be put on any source node;
2. a pebble can be taken away from any node;
3. a pebble can be put on any node, provided all its predecessors are pebbled.
The pebbling number of a dag G, denoted by pn(G), is the minimal number of pebbles
needed to pebble a target node in G, following the rules of the game. Using the
pebbling game, in [16] the space of a resolution refutation is de<ned as the minimal
number of pebbles needed to pebble its underlying graph. Obviously this de<nition can
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be extended to Res(k) refutations. The space of a Res(k) refutation is the minimum
number of pebbles needed to pebble its underlying graph.
Using the equivalent formulation for space from [1], we can view a Res(k) refutation

of a formula F as a set of con<gurations C0; : : : ; Cs such that C0 = ∅, Cs is the empty
k-clause and each Ct for t = 1; : : : ; s is obtained from Ct−1 by one of the following
rules:
1. Axiom download: Ct := Ct−1 ∪ {C} for some clause C ∈ F .
2. Memory erasing: Ct := Ct−1 − {C} for some C ∈ Ct−1.
3. Inference adding: Ct := Ct−1 ∪ {C}, for some C obtained by one of the rules of
Res(k) applied to clauses in Ct−1.

Given a refutation P as a set of con<gurations, the space of P is the maximal size of
a con<guration in P. The space of refuting an unsatis<able formula F in Res(k) (resp.
in treelike Res(k)), denoted by Spacek(F) (resp. Space∗

k (F)), is the minimal space of
a Res(k) refutation (resp. treelike refutation) of F .

3. The pebbling contradictions

Ben-Sasson et al. considered in [10] pebbling contradictions associated to the peb-
bling game on dags G. They proved that treelike resolution refutations of these formulas
require exponential size in pn(G), which gives a 2�(n=log n) lower bound using a family
of graphs from [25] with pebbling number �(n=log n).
We prove that these formulas have O(n) size refutations in treelike Res(2)

(Theorem 2). Therefore they give an almost exponential separation between treelike
resolution and treelike Res(2). In this section, we de<ne a generalization of the pebbling
contradictions to extend the separation to successive levels of treelike Res(k).

3.1. The basic pebbling contradictions

For any node w of a given dag G=(V; E), let x(w) mean that node w can be
pebbled. The pebbling came is described using a Horn formula that for any node w
contains the clause ¬ x(v1)∨ · · · ∨ ¬ x(vk)∨ x(w) where v1; : : : ; vk (k¿0) are all the
predecessors of w. If w is a source, the clause is just x(w) and we call it a source
clause, otherwise it is called a pebbling clause. In order to obtain a contradiction we
add for each target node t ∈V the target clause ¬ x(t). We denote this contradiction
by PebG. For our purpose it actually suOces to consider dags G where every non-
source node has in-degree 2, as it is the case for the family of graphs from [25] which
we will use in Corollary 14. For such a graph G any pebbling clause in G is of the
form ¬ x(u)∨ ¬ x(v)∨ x(w) where u and v are the parents of w. Since PebG is a Horn
formula it has a very simple treelike resolution refutation.

Lemma 1. Let F be an unsatis<able Horn formula. Then there is a treelike resolution
refutation of F that in any step involves an initial clause from F and, moreover, uses
any initial clause at most once.
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Proof. We will show how to construct the treelike refutation for F . It is well known
[20] that the following method can be used to decide the unsatis<ability of a Horn
formula F :

Let M0 = ∅. The set Md+1 is obtained from Md by adding some atom x =∈Md

from F such that there is a clause Ad in F where Ad = ¬ x1 ∨ · · · ∨ ¬ xl ∨ x with
x1; : : : ; xl ∈Md and l¿0. If no more atoms can be added to Md according to the
above rule, then F is unsatis<able iff there is a clause ¬ x1 ∨ · · · ∨ ¬ xl in F such
that x1; : : : ; xl ∈Md.

Notice that in the above construction the clauses Ad and Ad′ are distinct for d′ ¿ d
since each variable is added at most once to Md′ .
Actually, when F is unsatis<able, the above method can be understood as a resolu-

tion refutation of F where in each resolution step a clause that consists of one variable
is involved. The treelike form of this refutation may however be of exponential size.
Now using the sets Mi from the above construction (in decreasing order of i) the
following algorithm produces a treelike resolution refutation of F that in each step
involves an initial clause.

Start with the clause C1 =¬ x1 ∨ · · · ∨ ¬ xl such that x1; : : : ; xl ∈Md1 , where d1 is
the <nal index. Now we will subsequently derive clauses Ci and indices di for
i = 1; 2; : : : such that Ci is a disjunction of some negated variables from Mdi .
Obtain di and Ci from di−1 and Ci−1 as follows: let di¡di−1 be the minimal
index such that all variables in Ci−1 are fully contained in Mdi+1. This means that
in order to construct Mdi+1 from Mdi a variable x from Ci−1 had been added such
that there is a clause in F of the form Adi = ¬ x1 ∨ · · · ∨ ¬ xl ∨ x. Ci is obtained
from Ci−1 by resolving with Adi on x. Notice that all variables in Ci are contained
in Mdi . Continue like this until Ci is the empty clause.

Since M1 = ∅ and di+1¡di the empty clause will be derived in at most d1 steps.
Moreover, since all clauses Adi are diRerent, each input clause is used at most once.

3.2. Generalized pebbling contradictions

The contradiction PebG; l; k (k; l¿1) is obtained from PebG by introducing k · l vari-
ables x(v)i; j, i∈ [l], j∈ [k] for each propositional variable x(v) in PebG. Each variable
x(v) is replaced by

∧
i∈[l]

∨
j∈[k]

x(v)i;j :

The resulting formula is then transformed into CNF using de Morgan’s laws,
and distributivity. Hence, each source clause x(s) in PebG will correspond to the
PebG; l; k -source clauses

x(s)i;1 ∨ · · · ∨ x(s)i;k
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for i∈ [l]. Each target clause ¬ x(t) in PebG will correspond to the PebG; l; k -target
clauses

¬x(t)1;j1 ∨ · · · ∨ ¬x(t)l;jl

for j1; : : : ; jl ∈ [k]. And each pebbling clause ¬ x(u)∨ ¬ x(v)∨ x(w) in PebG will cor-
respond to the PebG; l; k -pebbling clauses

¬x(u)1;j1 ∨ · · · ∨ ¬x(u)l;jl ∨ ¬x(v)1;m1 ∨ · · · ∨ ¬x(v)l;ml ∨ x(w)i;1 ∨ · · · ∨ x(w)i;k

for j1; : : : ; jl; m1; : : : ; ml ∈ [k], i∈ [l]. Clearly, PebG; l; k is a contradiction since PebG is.
Moreover, PebG; l; k has a small resolution refutation in treelike Res(k).

Theorem 2. There is a treelike Res(k) refutation of PebG; l; k that involves less than
twice the number of clauses in PebG; l; k .

Proof. From PebG; l; k , using ∧-introductions and each clause only once, we derive in a
treelike fashion the formula PebG; l;1, where each literal x(v)i is substituted by the clause
x(v)i;1 ∨ · · · ∨ x(v)i; k , and each literal ¬ x(v)i by the k-term ¬ x(v)i;1 ∧ · · · ∧ ¬ x(v)i; k .
Then we apply the refutation used to prove Lemma 1 on this formula. Observe that this
refutation corresponds to a treelike Res(k) refutation, since a resolution step involving
x(v)i and ¬ x(v)i corresponds now to a cut in Res(k). Combining both derivations we
obtain a treelike Res(k) refutation of PebG; l; k that uses each input clause at most once.
Since we did not use weakenings, every inner node in the refutation tree has two
children. Now in such a binary tree the number of inner nodes is one less than the
number of leaves. Hence the stated bound follows.
Let us <nally show how to derive the substituted PebG; l;1 formula. First observe that

each PebG; l; k source clause x(s)i;1 ∨ · · · ∨ x(s)i; k substitutes the source clause x(s)i in
PebG; l;1 for i∈ [l]. From the target clauses

¬x(t)1;j1 ∨ · · · ∨ ¬x(t)l;jl

of PebG; l; k with j1; : : : ; jl ∈ [k], we derive by solely using the ∧-introduction rule, and
using each of these clauses once, the k-clause

(¬x(t)1;1 ∧ · · · ∧ ¬x(t)1;k) ∨ · · · ∨ (¬x(t)l;1 ∧ · · · ∧ ¬x(t)l;k);

which substitutes the target clause ¬ x(t)1 ∨ · · · ∨ ¬ x(t)l of PebG; l;1. In a similar way
we derive from the pebbling clauses

¬x(u)1;j1 ∨ · · · ∨ ¬x(u)l;jl ∨ ¬x(v)1;m1 ∨ · · · ∨ ¬x(v)l;ml ∨ x(w)i;1 ∨ · · · ∨ x(w)i;k



354 J.L. Esteban et al. / Theoretical Computer Science 321 (2004) 347–370

for j1; : : : ; jl; m1; : : : ; ml ∈ [k] the following k-clause

∧
j∈[k]

¬x(u)1;j ∨ · · · ∨ ∧
j∈[k]

¬x(u)l;j ∨ ∧
m∈[k]

¬x(v)1;m
∨ · · · ∨ ∧

m∈[k]
¬x(v)l;m ∨ ∨

j∈[k]
x(w)i;j

which substitutes the PebG; l;1 pebbling clause

¬x(u)1 ∨ · · · ∨ ¬x(u)l ∨ ¬x(v)1 ∨ · · · ∨ ¬x(v)l ∨ x(w)i :

Note that PebG;1;2 are the pebbling contradictions in [10]. By Theorem 2 and the
lower bound in [10] we get an almost exponential separation between treelike resolution
and treelike Res(2).

Corollary 3. Treelike Res(2) dominates treelike resolution.

4. Lower bounds for generalized pebbling contradictions

In this section, we show that any treelike Res(k) refutation of PebG; l; k+1 with l¿k is
of size at least 2(pn(G)−3)=k . To obtain the lower bound we generalize a game introduced
in [26] to prove lower bounds for treelike resolution. It is a 2-player game where the
two players build a partial assignment, one variable per round. Here, we extend the
rules of this game in order to allow the use of up to k variables at each round.

4.1. A game on contradictions

The game Gk(F) is a 2-player game played on the unsatis<able CNF formula F . It
is played by constructing a partial assignment to the variables in F . The game starts
with the empty assignment. The partial assignment is built by both players and it is
known to both of them. When a variable is set, it cannot be changed later. The aim of
the <rst player, the Prover, is to falsify a clause in F , which ends the game. Clearly
the Prover always will win the game. So the aim of the second player, the Delayer, is
to delay as much as possible the end of the game. The delay will be measured in terms
of the number of points the Delayer can score. In each round the Prover asks for a
k-term C. The Delayer assigns values to some (possibly all) yet unassigned variables
in C. If the constructed assignment either falsi<es or satis<es C, then the round is
over. Otherwise, the Prover assigns values to all of the remaining unassigned variables
in C and the Delayer scores one point.
We show that each treelike Res(k) refutation yields a strategy for the Prover in

which the Delayer scores a number of points at most logarithmic in the size of the
refutation. Actually already a special type of decision tree (called k-decision tree, here)
for F can be used by the Prover to obtain a good strategy.
It is well known, see [10], that a treelike resolution refutation of a CNF formula F

can be transformed into a binary decision tree T of the same size such that for any
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assignment to F , T yields a falsi<ed clause of F . In T each inner node is labeled by
a variable and the decision how to continue the path at an inner node is determined
by the assignment to its variable. So any total assignment will lead to a leaf node
of T associated with a clause that is falsi<ed by that assignment. Here, we consider
binary decision trees where each inner node is labeled by a k-term. The decision how
to continue a path at an inner node is determined by the value of its k-term under the
assignment. We call such a tree a k-decision tree for F . Similar to the well known
result for k =1 one obtains the following result for any k¿1, where by the size of a
k-decision tree we mean the number of its nodes.

Proposition 4. If F has a treelike Res(k) refutation of size S, then F has k-decision
tree with 6S nodes.

Proof. We will describe a recursive procedure, called DT that for any refutation tree
T for F yields a decision tree DT (T ) for F that does not have more nodes than T .
For subtree T ′ of T , we obtain DT (T ′) as follows: If T ′ consists of one leaf node

(labeled by an initial clause) then DT (T ′) = T ′. Otherwise let D denote the clause
labeling the root of T ′ and consider three cases:
1. If D = A∨B is obtained by a k-cut from the clauses A∨∧

l∈L l and B∨∨
l∈L ¬ l

labeling the roots of the two direct subtrees T1 and T2 (respectively) of T ′, then the
root of DT (T ′) is labeled by the k-term C =

∧
l∈L l and DT (T

′) consists of the two
direct subtrees DT (T1), DT (T2), such that any assignment satisfying (falsifying) C
leads to DT (T2) (resp., DT (T1)).

2. If D is obtained by ∧-introduction, involving the k-terms C1, C2 such that C1 ∧ C2

is in D, then label the root of DT (T ′) by C1 and branch to DT (T1) (resp. DT (T2))
if C1 is falsi<ed (satis<ed).

3. If D is obtained by weakening and T ′′ is the direct subtree of T ′ then let DT (T ′) =
DT (T ′′).

The correctness of the transformation is proved by observing that the following invari-
ant is maintained: any complete assignment � that leads to the root of DT (T ′) through
DT (T ), falsi<es the clause D labeling the root of T ′.

Observe that the previous proposition also holds for formulas with tautological
clauses. In fact any k-decision tree for F + Ax(F) can be pruned to a k-decision tree
for F . Since an axiom x∨ ¬ x cannot be falsi<ed, it can be cut from the leaves.

Corollary 5. If F + Ax(F) has a treelike Res(k) refutation of size S, then F has
k-decision tree with 6S nodes.

For k =1 also the reverse inequality holds, i.e. a 1-decision tree for F of size S can
be transformed into a treelike resolution refutation for F of size 6S, see [10]. But for
k¿3 there are formulas F with k-decision trees of size O(n) such that any treelike
Res(k) refutation for F has size 2�(n). Notice that any contradiction F in k-CNF has
a trivial linear k-decision tree which for each clause C has an inner node labeled with
the negation of C. On the other hand, there are contradictions in 3-CNF with O(n)
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clauses that require a resolution refutation of size 2�(n), see [33]. Since, as we will see
in Theorem 16, treelike Res(k) is simulated by resolution, 2�(n) is also a lower bound
for treelike Res(k). We obtain the following.

Corollary 6. There is a family of contradictions Fn with 3-decision trees of size O(n)
that require refutations of size 2�(n) in treelike Res(k).

The following proposition provides a useful relation between the size of a k-decision
tree for a contradiction F and the number of points the Delayer can score
in Gk(F).

Proposition 7. If F has a k-decision tree of size S, then the Prover has a strategy
for Gk(F) such that the Delayer scores at most �log S� points.

Proof. Let T be a k-decision tree of size S. The Prover’s strategy will maintain the
following invariant: if the Delayer has scored p points, then the currently constructed
partial assignment � will lead to a node in T such that the subtree T� rooted at this
node is of size at most S=2p.
At the beginning the invariant holds since T is by assumption of size S. Now assume

that the partial assignment � constructed so far is such that T� is of size at most S=2p.
Let C be the k-term labeling the root of T�. In the next round the Prover asks for C.
Now � is extended in this round to an assignment �′ that will assign a value to C.
Hence, �′ will lead to a subtree T�′ of T�. If the Delayer scores a point the Prover
is able to guarantee that T�′ is of at most half the size of T�: since the assignment
that had been chosen by the Delayer left C unassigned, the Prover is able to choose
�′ such that it leads into the smaller one of the both direct subtrees of T�. Hence T�′

has a size less than half of the size of T�, in this case. This shows that the invariant
can be maintained.

As a consequence we obtain the following corollary that we will use to prove lower
bounds for treelike Res(k) refutations.

Corollary 8. If the Delayer in Gk(F) has a strategy that yields at least p points, then
any k-decision tree for F , and any treelike Res(k) refutation for F and F + Ax(F)
as well, is of size at least 2p.

Notice however that Corollary 8 will not provide lower bounds for treelike Res(k)
refutations of formulas in k-CNF due to the trivial k-decision tree that exists for any
formula in k-CNF.

4.2. The Delayer’s strategy

This subsection is devoted to the proof of Theorem 9. It is the key step in the proof
of a lower bound for treelike Res(k) refutations of PebG; k; k+1.
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Theorem 9. If G is a dag where any non-source node has in-degree 2, and l¿k¿1,
then the Delayer can score at least (pn(G)− 3)=k points in the game Gk(PebG; l; k+1).

Let us in the following <x a dag G = (V; E) where each non-source node has
in-degree 2, <x further constants k; l with l¿k¿1. We will describe a strategy for
the Delayer that yields at least (pn(G) − 3)=k points in the game Gk(PebG; l; k+1).
For sets S; T ⊆V let us denote by pn(S; T ) the pebbling number of the graph

G′ =(V; E′) where E′ =E\((V × S)∪ (T ×V )). In other words, we obtain G′ from
G by additionally making each node in S a source node, and each node in T a target
node.
To describe the strategy of the Delayer we will need Lemma 11. It is a generalization

of the following lemma from [10].

Lemma 10 (Ben-Sasson [10]). For any node v in G and any subsets S; T ⊆V

pn(S; T )6 max{pn(S; T ∪ {v}); pn(S ∪ {v}; T ) + 1}:

Lemma 11. For any disjoint sets W; S; T ⊆V , there exists a partition X; Y of W
(X ∪Y =W and X ∩Y = ∅) such that

pn(S; T )6 |X | + pn(S ∪ X; T ∪ Y ):

Proof. We proceed by induction on |W |. If |W |=1, the claim follows by Lemma 10.
For the inductive step consider a partition of W into two nonempty sets W ′ and W ′′.
By applying the inductive hypothesis to W ′, there is a partition X ′; Y ′ of W ′ such that
pn(S; T )6|X ′| + pn(S ∪X ′; T ∪Y ′).
Let now S ′ = S ∪X ′ and T ′ =T ∪Y ′. By the inductive hypothesis applied to W ′′,

there is a partition X ′′, Y ′′ of W ′′ such that pn(S ′T ′)6|X ′′| + pn(S ′ ∪X ′′; T ′ ∪Y ′′).
De<ne X =X ′ ∪X ′′ and Y =Y ′ ∪Y ′′. All together we have

pn(S; T )6 |X ′| + pn(S ∪ X ′; T ∪ Y ′)

6 |X ′| + |X ′′| + pn(S ∪ X ′ ∪ X ′′; T ∪ Y ′ ∪ Y ′′)

= |X | + pn(S ∪ X; T ∪ Y ):

Now we are ready to describe the strategy of the Delayer for the game
Gk(PebG; l; k+1). She keeps two sets of source and target nodes that she (possibly)
modi<es at each round. At the beginning S0 =T0 = ∅. Let Sr and Tr be the sets built
after round r. Assume that at round r + 1 the Prover asks for a term C of at most k
literals. Let us denote by W the set of nodes associated with the variables in C. W
is divided into the four sets W ∩ Sr , W ∩Tr , W=, and W¿=W\(Sr ∪Tr ∪W=), where
W= ⊆W\(Sr ∪Tr) is a maximal set with the property that pn(Sr; Tr ∪W=) = pn(Sr; Tr).
Now the Delayer assigns 1 to every unassigned variable in C that is associated with a
node in W ∩ Sr , and she assigns 0 to every unassigned variable in C associated with a
node in (W ∩Tr)∪W=. If now C is either satis<ed or falsi<ed by the constructed as-
signment, the round is over, and the Delayer sets Tr+1 =Tr ∪W=, and Sr+1 = Sr . In this
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case the pebbling number remains the same, pn(Sr; Tr)=pn(Sr+1; Tr+1); otherwise the
Prover assigns a value to the remaining unassigned variables in C, the Delayer scores
one point and de<nes Sr+1 and Tr+1 as follows: by Lemma 11, she chooses a partition
X; Y of W¿ s.t.

pn(Sr; Tr ∪W=)6 pn(Sr ∪ X; Tr ∪W= ∪ Y ) + |X |:
Now Sr+1 = Sr ∪X , and Tr+1 =Tr ∪W= ∪Y . In this case the pebbling number decreases
by at most |X |6k.

Lemma 12. Assuming that the Delayer follows this strategy, she maintains the
following invariants:
(I1) If a variable x(v)i; j is assigned a value in round r or before then the associated

node v is in Sr ∪Tr .
(I2) If v∈ Sr then there are at most k associated variables x(v)i; j that are assigned

to 0.
(I3) If v∈Tr then there are at most k−1 associated variables x(v)i; j that are assigned

to 1.
(I4) pn(G)6pn(Sr; Tr) + |Sr|.
(I5) At the end of round r the Delayer achieved at least �|Sr|=k� points.

Proof. (I1) is obvious since if x(v)i; j is assigned a value in some round p then
v∈ Sp ∪Tp, moreover Sp ⊆ Sp′ , and Tp ⊆Tp′ for p6p′.
To see that (I2) holds, notice that for any node v the Prover is allowed to assign

at most k of its associated variables, and if v∈ Sr then Delayer will assign 1 to any
associated variable in later rounds, hence the Prover can assign at most k associated
variables to 0. (I3) follows by a similar argument. Observe that if the Prover was
allowed to assign a variable in some round r + 1 then W¿ was not empty in that
round. Moreover when partitioning W¿ into X , Y , the set X has to be non-empty,
since otherwise pn(Sr; Tr ∪W=)=pn(Sr; Tr ∪W= ∪W¿) and therefore W¿ could have
been added to W= which would contradict the maximality of W=. Hence in this round,
there are at most k − 1 variables associated to a node added to Tr+1. Since in later
rounds the Delayer will assign 0 to each variable associated to a node v∈Tr+1 the
Prover can assign 1 to at most k − 1 variables associated to v.
To see invariant (I4), <rst notice that (I4) holds for r=0, since pn(G)=pn(S0; T0).

Now assume that (I4) holds at round r¿0. Then at round r + 1 either Sr+1 = Sr and
pn(Sr+1; Tr+1)=pn(Sr; Tr) (in which case it is obvious that (I4) holds at round r+1),
or there is a set X with X ∩ Sr = ∅, Sr+1 = Sr ∪X and pn(Sr; Tr)=pn(Sr; Tr ∪W=)
6pn(Sr+1; Tr+1) + |X |. Hence

pn(G)6pn(Sr; Tr) + |Sr|
6pn(Sr+1; Tr+1) + |Sr| + |X | = pn(Sr+1; Tr+1) + |Sr+1|;

which shows that (I4) holds at round r + 1.
(I5) follows since in case the Delayer scores no point in round r+1 then Sr+1 = Sr ,

and otherwise if she scores a point, |Sr+1|6|Sr| + k.
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Now observe that at the end of the game Gk(PebG; l; k+1), say at round e, the pebbling
number is considerably reduced. Namely we have:

Lemma 13. Let e be the last round, then pn(Se; Te)63.

Proof. Let G′ =(V; E′) where E′ =E\((V × Se)∪ (Te ×V )). Remember that pn(Se; Te)
was de<ned to be the pebbling number of G′. Notice also that any source node in G
is a source in G′, and that any target node in G is a target in G′.
The game ends when the constructed partial assignment falsi<es a clause of

PebG; l; k+1. If a source clause x(s)i;1 ∨ · · · ∨ x(s)i; k+1 associated to a source s in G
is falsi<ed then s∈Te due to (I1) and (I2). Hence s is both, a source in G′ and a
target node in G′, which shows that one pebble suOces for a pebbling of G′. Similarly,
when a target clause ¬ x(t)1;j1 ∨ · · · ∨ ¬ x(t)l;jl is falsi<ed then t ∈ Se by (I1) and (I3)
(since l¿k) and the pebbling number of G′ is one. Finally assume that a pebbling
clause associated to a node w with predecessors u and v is falsi<ed. Similar to the
previous considerations we obtain that u; v∈ Se, and w∈Te. Hence, for a pebbling of
G′ it suOces to use three pebbles.

Due to invariant (I4) this implies that |Se|¿pn(G) − 3. Moreover, due to (I5), the
Delayer scores at least �|Se|=k� points. This concludes the proof of Theorem 9.

4.3. Almost exponential separations for treelike Res(k)

It is shown in [25] that there is an in<nite family of graphs Gn, where each non-
source node in Gn has in-degree 2, such that pn(Gn)=�(n=log n), and n is the number
of nodes in G. Moreover these graphs are uniform, where we call a family Fn uniform
if there is an algorithm that on input n produces Fn in time polynomial in n.
Combining Theorem 9 with Corollary 8 shows that for such a graph Gn, any treelike

Res(k) refutation for PebGn; k; k+1 has size 2�(n=log n). On the other hand, PebGn; k; k+1

consists of at most O(n) clauses, hence by Theorem 2 there is a treelike Res(k + 1)
refutation of PebG; k; k+1 of size O(n). This yields an almost exponential separation
between treelike Res(k) and Res(k + 1).

Corollary 14. Let k¿0. There is a uniform family of formulas Fn=PebGn; k; k+1 with
a treelike Res(k +1) refutation of size O(n) such that any treelike Res(k) refutation
of Fn and Fn + Ax(Fn) as well, has size 2�(n=log n).

Corollary 15. Treelike Res(k + 1) dominates treelike Res(k).

Moreover, resolution simulates treelike Res(k). The following theorem follows by
adapting to Res(k) the proof sketch in [21] that treelike depth d+ 1 LK is simulated
by depth d LK, see [21] for a de<nition of these notions, and see e.g. [24] for a more
detailed proof of the simulation from [21].

Theorem 16. If F is a formula in CNF that has a treelike Res(k) refutation of size
S then F has a resolution refutation of size 2S.
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Proof. For a Res(k) derivation P (treelike or daglike) let s(P) denote the number of
occurrences of k-clauses in P that are not obtained by the weakening rule, and let a(P)
denote the number of occurrences of k-clauses in P that are obtained by ∧-introduction.
Below we will prove the following statement by induction on a(T ): for all formulas
F in CNF, and for all clauses C, if T is a treelike Res(k) derivation of C from F
then there is a resolution derivation P of C from F with s(P)= s(T ) + a(T ). Since
weakenings can be removed in resolution refutations the theorem follows.
If a(T )= 0 then T is already a resolution derivation. Now assume a(T )¿0, and

consider the last k-cut in T where a k-term
∧
l∈Ll with |L|¿2 is involved, say

A ∨ ∧
l∈L l B ∨ ∨

l∈L ¬l
A ∨ B :

Since this was a last cut, A∨B, and B∨∨
l∈L¬l are clauses. Let T1; T2 denote subtrees

deriving A ∨ ∧
l∈Ll and B ∨ ∨

l∈L¬l, respectively. Since T1 must contain some ∧-
introduction to produce the term

∧
l∈Ll we have that a(T2)¡a(T ) and we conclude by

the inductive hypotheses that there is a resolution derivation P2 of B∨∨
l∈L¬l from F

of size s(P2)= s(T2)+a(T2). Consider also the rest of the derivation T ′ =T\(T1 ∪T2).
T ′ derives C from F ∧ (A ∨ B). By the inductive hypothesis we obtain a resolution
derivation P′ of C from F ∧ (A ∨ B) with s(P′)= s(T ′) + a(T ′)= s(T ) + a(T ) −∑

i=1;2 s(Ti) + a(Ti).
Now we add B ∨ ∨

l∈L¬l to the initial clauses and show how to transform T1 to
a derivation tree T ′

1 of A ∨ B from F ∧ (B ∨ ∨
l∈L¬l) with s(T ′

1)= s(T1) + r, and
a(T ′

1)= a(T1)−r for some r¿1. Note that
∧
l∈Ll can arrive to A∨∧

l∈Ll through several
paths, say r. Now, trace in T1 the occurrence of the term

∧
l∈Ll towards the leaves until

one encounters a k-clause in which this term is introduced by ∧-introduction. Denote
these k-clauses by Ci ∨

∧
l∈Ll for i=1; : : : ; r, and denote the clauses from which they

are derived by Ai ∨ ∧
l∈Li l and Bi ∨ ∧

l∈L′
i
l with L=Li ∪L′

i , and Ci=Ai ∨ Bi. Now
replace for i=1; : : : ; r the ∧-introduction

Ai ∨
∧
l∈Li l Bi ∨

∧
l∈L′

i
l

Ci ∨
∧
l∈Ll

by two k-cuts (and eventually one weakening)

B ∨ ∨
l∈L¬l Ai ∨

∧
l∈Li l

Ai ∨ B ∨ ∨
l∈L\Li¬l

Ai ∨ B ∨ ∨
l∈L′

i
¬l Bi ∨

∧
l∈L′

i
l

Ci ∨ B :

Further replace on the path towards the root of T1 the term
∧
l∈Ll by B. To obtain the

derivation tree T ′
1 one may again need to add some weakenings on this path.

Applying the inductive hypothesis to T ′
1 we obtain a resolution derivation P1 of

A∨ B from F ∧ (B∨ ∨
l∈L¬l) with s(P1)= s(T ′

1) + a(T ′
1)= (s(T1) + r) + (a(T1)− r)=

s(T1) + a(T1).
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Now combine the resolution derivations P2, P′, and P1 to obtain the resolution
derivation P=P2; P1; P′ of C from F with size s(P)= S(P2) + s(P1) + s(P′)=
s(T ) + a(T ).

Let us note that Theorem 16 still holds when allowing in Res(k) a ∧-introduction
rule that involves up to j6k premises. See for example [30], or [21] for the unbounded
∧-introduction for LK.

A1 ∨ l1 · · · Aj ∨ lj
A1 ∨ · · · ∨ Aj ∨ (l1 ∧ · · · ∧ lj) :

To see this, notice that in the proof of Theorem 16 we just need to introduce one
additional cut for each premise of a ∧-introduction.

Moreover, since the increase in size does not depend on k, the simulation holds also
for Res(∞) where we allow unbounded conjunctions, i.e. a refutation in Res(∞) is
de<ned to be a refutation in Res(k) for some k.

Corollary 17. If F has a treelike Res(∞) refutation of size S then F has a resolution
refutation of size 2S.

From Theorem 16 and Corollary 14 we get:

Corollary 18. Resolution dominates treelike Res(k) for k¿1.

5. Space complexity in Res(k)

We consider now the space complexity of Res(k). We show that, as happened for
size, treelike Res(k) for constant k, also forms a strict hierarchy for space. Moreover,
we extend all known resolution space lower bounds to Res(k).

5.1. Space separations for the treelike Res(k) hierarchy

Consider the following de<nition from [3]. Given a formula F over variables in
X , and a k¿1, de<ne the formula F + Exk(F) as follows: for any set L of at most
k literals over X introduce a new variable zL meaning

∧
l∈Ll. Now Exk(F) contains

for each of these variables zL the clauses ¬zL ∨ l, for l∈L, and zL ∨ ∨
l∈L¬l. Then

F + Exk(F) is obtained by adding these clauses to F .
Atserias and Bonet proved in [3], that resolution refutations (treelike resolution refu-

tations, resp.) of F + Exk(F) can be easily converted into Res(k) refutations (treelike
Res(k) refutations, resp.) of F and vice-versa incrementing the size by
only factor k.
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Lemma 19 (Atserias and Bonet [3]). For any formula F in CNF and k¿1, if F has
a (treelike) Res(k) refutation of size S, then F + Exk(F) has a resolution refutation
(treelike resolution refutation, resp.) of size O(kS).

Lemma 20 (Atserias and Bonet [3]). For any formula F in CNF and k¿1, if
F + Exk(F) has a (treelike) resolution refutation of size S, then F + Ax(F) has a
Res(k) refutation (treelike Res(k) refutation, resp.) of size O(kS).

Using the same simulations employed in [3] to prove Lemmas 19 and 20, it is easy
to see that similar relations hold for the space as well. We sketch the proofs of the
next two lemmas.

Lemma 21. For any F in CNF and k¿1, if F has a (treelike) Res(k) refutation in
space S, then F + Exk(F) has a resolution refutation (treelike resolution refutation,
resp.) in space S + 2.

Proof sketch. Each step in the Res(k) proof of F involving a conjunction of the
form l1 ∧ · · · ∧ lr , r6k, is simulated in resolution using the variable zl1 ;:::;lr and the
corresponding axioms of Exk(F). For instance, in the case of the r-Cut there is a
straightforward space 3, treelike proofs of ¬zl1 ;:::;lr from ¬l1∨· · ·∨¬lr and the clauses of
Exk(F), ¬zl1 ;:::;lr∨li, for i=1; : : : ; r. Hence the space of the original proof is incremented
by at most 2.

Lemma 22. For any F and k¿1, if F+Exk(F) has a (treelike) resolution refutation
in space S, then F +Ax(F) has a Res(k) refutation (treelike Res(k) refutation, resp.)
in space S + 2.

Proof sketch. For each clause of Exk(F) including a literal zl1 ;:::;lr , we derive in Res(k)
a k-clause in which zl1 ;:::;lr has been replaced by l1∧· · ·∧ lr and ¬zl1 ;:::;lr by (¬l1∨· · ·∨
¬lr) . For instance, there is a straightforward space 3 treelike Res(k) proof deriving
¬l1 ∨· · · ¬lr ∨ (l1 ∧· · ·∧ lr), using the tautological axioms li ∨¬li and ∧-introductions.
The space is incremented by at most 2.

Esteban and Tor6an [16] proved the following relation between size and space, for
treelike resolution.

Lemma 23 (Esteban and Tor6an [16]). If a formula over n variables has a treelike
resolution refutation in space S, then it has a treelike resolution refutation of size at
most

(
n+S
S

)
.

We extend the previous lemma to treelike Res(k), obtaining the following.

Theorem 24. For any formula F in CNF over n variables and k¿1, if Size∗
k (F +

Ax(F))¿S, then Space∗
k (F)¿�(log S=log n).
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Proof. Let Size∗k (F + Ax(F))¿S for some formula F in CNF with n variables. We
have that Size∗1 (F +Exk(F))¿�(S=k) by Lemma 20. Since it is known, see [16], that
the number of variables is an upper bound for treelike resolution space, it is easy to
see that Lemma 23 in turn implies that Space∗

1 (Fk + Exk(F))¿�(log S=log n), which
implies the claim by Lemma 21.

As a corollary of the previous theorem and the size lower bound of Corollary 14,
we obtain a space lower bound for PebGn; k; k+1.

Corollary 25. Let k¿1. There is a uniform family of formulas Fn=PebGn; k; k+1 with
O(n) variables such that any treelike Res(k) refutation for Fn needs space �(n=log

2n).

On the other hand, the treelike Res(k + 1) refutation of PebG; k; k+1 we constructed
in the proof of Theorem 2 needs only constant space, since it essentially consists of a
linear tree in which the leaves are replaced by subtrees of constant size.

Theorem 26. There are O(1) space refutations for PebG; k; k+1 in treelike Res(k + 1).

Therefore, the treelike Res(k) space hierarchy is strict.

Corollary 27. For k¿1 there is a uniform family of formulas Fn over O(n) vari-
ables that have constant space refutations in treelike Res(k + 1) but require space
�(n=log2 n) in treelike Res(k).

5.2. Space lower bounds for Res(k)

A general way to obtain space lower bounds for resolution was given in [5] as a
consequence of width lower bounds. We de<ne the concept of 3-dynamical satis<abil-
ity for CNF formulas which provides a direct way to obtain space lower bounds, not
only for resolution but also for Res(k). It is not diOcult to see that dynamical satis<a-
bility is equivalent to a particular case of the extended existential pebble game de<ned
in [5].

De�nition 28. Let F be a CNF over n variables and let 1636n. F is 3-dynamically
satis<able if there is a class RF of partial assignments such that the following prop-
erties hold:
1. Closure under inclusion: if �∈ RF and � � �, then �∈ RF ;
2. Extendibility: if �∈ RF and |�|¡3 and C is a clause in F , then there is a partial

assignment �∈ RF such that �� �, �(C)= 1.

We show that dynamical satis<ability implies space lower bounds for Res(k). Obvi-
ously when k is 1, the result is valid for resolution.

Theorem 29. Let F be an unsatis<able formula in CNF, which moreover is 3-dynam-
ically satis<able. Then Spacek(F)¿3=k.
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Proof. Let RF be the class of partial assignments that makes F 3-dynamically satis<-
able. Let C0; : : : ; Cs be a set of con<gurations representing a refutation of F in Res(k).
Assuming by contradiction that Spacek(F)63=k, we build by induction a sequence
of partial assignments, �i, to the variables of F , where i=0; : : : ; s. These assignments
have the following three properties: �i ∈ RF , Ci|�i ≡ 1 and |�i|6k|Ci|. The contradiction
is reached since no partial assignment can satisfy Cs which includes the empty clause,
so Spacek(F)¿3=k.
Since C0 = ∅, �0 can be set as the empty assignment. Given �i, we build �i+1 ac-

cording to the rule used to produce Ci+1 from Ci.
• Axiom download: Let C be the down-loaded clause of F . If a clause can be down-
loaded, then |Ci|63=k − 1, hence |�i|63 − k63 − 1, since k¿1. Since F is 3-
dynamically satis<able and |�i|¡3, by the extendibility of RF , there is a �∈ RF
such that � � � and C|� ≡ 1. Notice that by the closure property of RF and the
fact that C is a clause, we can assume that � is setting to 1 at most one literal in
C. Setting �i+1 = � it follows that �i+1 ∈ RF and Ci+1|�i+1 ≡ 1. As |�|6|�| + 1 and
|Ci+1|= |Ci| + 1, then |�i+1|6k|Ci+1|.

• Inference adding: Set �i+1 = �i. The derived k-clause is satis<ed from soundness of
Res(k) and �i+1 ∈ RF because �i ∈ RF .

• Memory erasing: Let C be the k-clause deleted from Ci to get Ci+1. Clearly Ci+1|�i≡1.
For every k-clause Cj in Ci+1 let �j � �i be minimal (with respect to �) such that
Cj|�j ≡ 1. De<ne �i+1 =

⊔
j �j. As �i+1 � �i and �i ∈RF then by the closure property

�i+1 ∈ RF . By construction Ci+1|�i+1 ≡ 1. Finally, as at most k variables are needed
to satisfy a k-clause, |�i+1|6k|Ci+1|.

It is easy to prove size lower bounds for treelike Res(k) from Theorem 29 and a
lemma from [16] which states that if a formula F requires resolution space S, then F
requires treelike resolution size 2S .
Since Space∗

k (F)¿Spacek(F), a space lower bound for resolution also yields a size
lower bound for treelike resolution.

Corollary 30. If F is 3-dynamically unsatis<able, then Size∗k (F)¿2�(3=k).

The rest of this section will be devoted to prove space lower bounds for Res(k)
using 3-dynamical satis<ability.

5.2.1. Semiwide formulas
We show that the concept of semiwideness, introduced in [1], implies dynamical

satis<ability.

De�nition 31 (Alekhnovich et al. [1]). A partial assignment � for a satis<able CNF
F is F-consistent if � does not falsify F and can be extended to an assignment
satisfying F .

The notion of consistency is used to de<ne semiwideness for a CNF F .
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De�nition 32 (Alekhnovich et al. [1]). A CNF F is 3-semiwide if and only if there
exists a partition F ′;F ′′ of F such that F ′ is satis<able and for any clause C in
F ′′, any F ′-consistent assignment �, with |�|¡3, can be extended to an F ′-consistent
assignment satisfying C.

Now we prove that semiwideness is a particular case of dynamical satis<ability.

Lemma 33. Let F be an unsatis<able CNF over n variables. If F is 3-semiwide, then
F is 3-dynamically satis<able.

Proof. Let F ′;F ′′ be the partition of F guaranteed by 3-semiwideness of F . Fix

RF = {� | � is F ′-consistent}
If � is F ′-consistent, any � such that �� � is F ′-consistent, so RF has the closure
property. Finally to show that RF has the extendibility property, we prove that for
any clause C in F and any �∈ RF , such that |�|¡3, there is an extension � of �
in RF that satis<es C. If C ∈ F ′, by F ′-consistency of �, there is a F ′-consistent �
extending � that satis<es C. Hence �∈ RF .
If C ∈ F ′′, since |�|¡3, then by semiwideness of F , there is a F ′-consistent �

extending � that satis<es C. Hence �∈ RF .

We will consider now two semiwide formulas, namely Graph Tautologies and
Pigeonhole Principle. Alekhnovich et al. [3] proved that the class of contradictions
GTn is n=2-semiwide. Hence by Lemma 33 and Theorem 29:

Corollary 34. GTn is n=2-dynamically satis<able and Spacek(GTn)¿n=2k.

Besides, these formulas provide another example that separates resolution from tree-
like Res(k). In [31] it is proved that GTn has polynomial size resolution refutations,
hence also Res(k) polynomial size refutations. This along with Corollaries 34 and 30
gives another proof for Corollary 18.
Alekhnovich et al. prove in [3] that for m¿n, PHPmn is n-semiwide, so we have by

Lemma 33 and Theorem 29:

Corollary 35. For any m¿n, the formula PHPmn is n-dynamically satis<able and
Spacek(PHP

m
n )¿n=k.

5.2.2. Random formulas
Let Fnm be the probability distribution obtained by selecting m clauses of size exactly

3 independently, uniformly at random from the set of all 23 · ( n
3

)
clauses of size 3

built on n distinct variables. F ∼ Fnm, means that F is selected at random from this
distribution. A random 3-CNF formula is a formula F ∼ Fnm. In this subsection, we
prove that random 3-CNF with clause/variable ratio 5¿4:6 requires �(n=k51+”) space
in Res(k). Our result can be extended to any l-CNF.
We need some preliminary de<nitions from [9].
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The matching game is a two-player game de<ned on bipartite graphs G=(U; V; E).
For a node u∈U , let N (u)= {v∈V | (u; v)∈E}.
The <rst player, Pete, is looking for a subset U ′ ⊆U unmatchable into V , down-

loading vertices of U into U ′ or removing vertices from U ′, one at time. The second
player, Dana, tries to delay Pete as long as she can, forcing a matching of U ′ into V .
During the game the players will build a set of edges m⊆E and the set U ′ as follows:

Initially m= ∅=U ′. At each round only one of the following occurs:
1. Pete downloads a u∈U into U ′, and Dana, if possible, answers by vu ∈N (u) such

that vu is not a vertex of any edge in m. Then (u; vu) is added to m;
2. Pete removes a u from U ′. Then (u; vu) is also removed from m, releasing vu for a

future use by Dana.
Pete wins when no answer is possible for Dana in case 1. Dana wins the game when

she can force a matching of the whole U into V . The set m de<nes a partial matching
in G. The complexity of the game, MSpace(G), is the cardinality of the smallest U ′

Pete has to produce in any strategy to win. Notice that when |U |¿|V | Pete can always
win and MSpace(G)6|V |+1. Moreover, if MSpace(G)¿k, then there is strategy for
Dana such that for any U ′ ⊆ U , |U |6k, and for any u∈U\U ′ she can always <nd a
vu to match u.
Given a CNF F , the bipartite graph GF =(U; V; E) associated to F is de<ned this

way: U is the set of clauses of F , V is the set of variables of F and (C; x)∈E iR
the variable x appears (negated or not) in C. It is clear that any partial matching m
in G(F), de<nes an assignment �m that satis<es all clauses mentioned in m and such
that |�m|= |m|.

Lemma 36. Let F be a CNF formula. If MSpace(G(F))¿3, then F is 3-
dynamically satis<able.

Proof. Let F be formed by the clauses C1; : : : ; Ct . Since MSpace(G(F))¿3, there
is a strategy S for Dana such that as long as |U ′|¡3, she can always extend the
matching m built so far, to any other possible clause still not in U ′ (cf. de<nition of
MSpace).
Let I = {i1; : : : ; il} ⊆ [t] be a set of indices. We need the order of the indices in I

to be meaningful. Therefore, any set J obtained permuting the elements of I will be
considered diRerent from I . For I ⊆ [t], let PI = {J | J is a permutation of I}. Given
an ordered set I ⊆ [t], let FI = {Ci ∈ F | i∈ I}, where the order of I is inherited in
FI . Let moreover mI the matching built by Dana following the strategy S when the
clauses in FI are put by Pete into U ′ in the order inherited from I . Let �I be the
assignment associated to the matching mI . We de<ne RF as follows:

RF = {�J | J ∈ PI for some I ⊆ [t]; |I | 6 3}:
RF is clearly closed under inclusion by de<nition. Let �∈ RF , with |�|¡3 and let

Cl be a clause in F . There is a I ⊆ [t], and a J ∈PI , such that �= �J . Since there is
a 1-1 correspondence between mJ and the domain of �J , then |J |¡3. If l∈ J , then Cl
is satis<ed by �J and we have nothing to prove. Otherwise let J ′ = J ∪ {l} and l is
the last element in the order of J ′. |J ′|63 and hence �J ′ ∈ RF . Moreover �J ′ clearly
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satis<es Cl, �J ′ � �J since l is de<ned as last element in the order of J ′. Hence RF
veri<es extendibility.

When F is a random k-CNF, Ben-Sasson and Galesi in [9] proved the following
result

Lemma 37 (Ben-Sasson and Galesi [9]). Let F ∼Fn5·n, 5¿4:6. For any :¡1,
MSpace(GF)¿n=51+:.

Which, by Lemma 36, implies

Corollary 38. If F ∼ Fn5·n, 5¿4:6, then F is n=51+:-dynamically satis<able.

Which by Theorem 29 and Corollary 30 in turns implies:

Corollary 39. If F ∼ Fn5·n, 5¿4:6, then for each k¿1, Spacek(F)¿�(n=k51+:) and
Size∗k (F)¿2�(n=k5

1+:).

5.2.3. Tseitin contradictions
Tseitin contradictions are unsatis<able sets of clauses associated to undirected graphs.

Let G=(V; E) be a graph and let w : V → {0; 1} be an odd weight function, that is,
a function such that

⊕
v∈ V w(v)= 1. The Tseitin contradiction T (G;w) is de<ned as

follows. Consider variables xe associated to each edge e of G. For all v∈V , let Par(v)
be the CNF expansion of

⊕
e	v xe ≡w(v). Then

T (G;w) :=
∧
v∈V

Par(v):

Observe that if the maximal degree d(G) of G is constant, the number of clauses
de<ning T (G;w) is linear in the number of nodes in G.

De�nition 40. Let G be a connected graph over n nodes. The connectivity expansion
c(G) of a connected graph G is the minimal number of edges to remove from G to
obtain a graph in which the largest connected component is of size at most n=2.

Let G=(V; E) be a constant degree connected graph and w an odd weight func-
tion. Let � be a partial assignment on variables of T (G;w). E(�) is the subset of E
corresponding to the variables assigned by �, and Gmax(�)= (Vmax(�); Emax(�)) is the
maximal connected component in (V; E − E(�)). Note that by De<nition 40, for any
set E′ ⊆E of edges, such that |E′|¡c(G) there is a maximal connected component in
the graph (V; E − E′) of size bigger than n=2, which moreover is unique.
Following [1], we de<ne a special class of assignments.

De�nition 41. An assignment � with |�|¡c(G) is admissible for T (G;w) if there exists
an assignment � such that (1) � � �, and (2) for all v �∈Vmax(�), � satis<es Par(v).



368 J.L. Esteban et al. / Theoretical Computer Science 321 (2004) 347–370

Notice that the class of admissible assignments is clearly closed under inclusion.
This follows since for any �′ � � where � is admissible it holds Vmax(�)⊆Vmax(�′).

The following lemma was proved in [1].

Lemma 42. Assume that � is admissible for T (G;w). Then for any v0 ∈Vmax(�) there
exists an assignment � such that �� � and for each vertex v �= v0, � satis<es Par(v).

We are ready to prove dynamical satis<ability of Tseitin formulas. The proof is very
similar to the resolution space lower bounds for Tseitin formulas in [1].

Theorem 43. Let G=(V; E) be a graph with d(G)¿1 and let w : V → {0; 1} be such
that

⊕
v∈V w(v)= 1. Then T (G;w) is (c(G) − d(G))-dynamically satis<able.

Proof. We prove that R, the class of admissible assignments for T (G;w), witnesses
the (c(G) − d(G))-dynamical satis<ability of T (G;w).
The closure property is immediate by the closure property of the class of admissible

assignments.
Let C be a clause in T (G;w) and �∈ R, |�|¡c(G)−d(G). Let v be the node of G

such that C ∈Par(v). We will show an assignment � in R, extending � and satisfying
C. This proves the extendibility property of R.
If v is not in the maximal connected component of G(�), i.e. v �∈Vmax(�), then, by

admissibility, there is a � extending � and satisfying Par(v), in particular C. Observe
that Vmax(�)=Vmax(�), so � is admissible and hence in R.
Assume now that v∈Vmax(�). Let E(v) be the set of edges adjacent to v, clearly

|E(v)|6d(G). Let E(�) be the edges assigned in �. Let E′ =E(�)∪E(v). Notice also
that, since |�|= |E(�)|¡c(G) − d(G) and |E(v)|6d(G), then |E′|¡c(G).

Let V ′
max be the maximal connected component of (V; E\E′). Since |E′|¡c(G) we

have that |V ′
max|¿n=2 and therefore unique, which means that V ′

max ⊆Vmax(�)\{v}. Fix
v0 ∈V ′

max and let �′ be the extension of � from Lemma 42, such that for all v′ �= v0,
�′ satis<es Par(v′). Clearly C is satis<ed by �′, say by setting the variable xe to the
truth value x:e.
Let �= �∪ {xe := x:e}. We prove that � is admissible and hence in R. Clearly

|�|¡c(G) since |�|¡c(G) − d(G) and d(G)¿1. Observe that V ′
max ⊆Vmax(�) and

therefore v0 ∈Vmax(�). Now notice that �′ is the required extension of � that satis<es
Par(v′) for any node v′ �∈Vmax(�).

Linear lower bounds for Tseitin contradictions are a consequence of the following
lemma which uses expander graphs.

Lemma 44 (Urquhart [33], Alekhnovich [1]). There exists a family of constant de-
gree connected graphs G=(V; E) with connectivity expansion �(|V |).

Theorem 45. Let G=(V; E) be connected graph over n vertices provided by
Lemma 44, and let w be an odd weight function. Then for any k¿1,
Spacek(T (G;w))¿�(n).
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6. Discussion and open problems

One interesting open problem regarding space complexity is to <nd out the space
for refuting PebG;1;2 in resolution. This problem was posed in [8] and mentioned as an
open problem in several other papers. Notice that Theorem 26, giving constant space
Res(2) refutations for PebG;1;2, answers to this question for Res(2).
As suggested by Ben-Sasson, a problem arising from this work is to know whether

Spacek(F)¿Space1(F)=k, for all unsatis<able CNF F and for all k. Notice that, again
by Theorem 26, a positive answer to this question would solve the resolution space
complexity of PebG;1;2, giving a constant upper bound. On the other hand, proving
a non-constant lower bound for resolution space of PebG;1;2, would give a counter-
example to the previous inequality. Moreover, since PebG;1;2 has a constant-width res-
olution refutation, see [10], this lower bound would also separate the space complexity
measure from the width complexity measure for general resolution, solving a problem
arising in [5].
There are purely combinatorial characterizations of width [5], and of treelike space

[17]. So, one natural question to ask is whether dynamical satis<ability could provide
a combinatorial characterization of Res(k) space. The constant-space Res(2) refutations
of Theorem 26 prove that PebG;1;2 is O(1)-dynamical satis<able. Therefore a super-
constant lower bound for resolution space of PebG;1;2 formulas cannot be proved using
the dynamical satis<ability property. On the other hand, proving that dynamical satis<-
ability is equivalent to Res(k) space, would give constant space refutations of PebG;1;2
in resolution.
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