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Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the
recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth
et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by
closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments
using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in
which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or
serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions
where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all
the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential
fluorescence decay with the major phases of ∼7 ps and ∼25 ps. The relative amplitudes and, to a minor
extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations
near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay.
These results are consistent with a model in which P700 is not the primary electron donor, but rather a
secondary electron donor, with the primary charge separation event occurring between the accessory
chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of
the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary
electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the
primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the
positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0

−→AA0 charge
recombination to the ground state and, in consequence, excitation quenching in closed reaction centers.
Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to
the up-shift of the free energy level of the state A+A0

−.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Photosynthetic reaction centers (RC), in which the energy of
electronically excitedmolecules is converted into the energy of charge
separated states, are equipped with two branches (A and B) of
electron transfer cofactors embedded in a proteinmatrix. In a classical
view, the primary electron donor is a dimer of more or less strongly
interacting molecules of (bacterio)chlorophylls, depending on the
organism, positioned at one end of the two branches. Whereas in
cceptor; Chl, chlorophyll; LHCI,
osystem I; RC, reaction center;

z).

ll rights reserved.
purple bacterial RCs this view is commonly accepted [1], in
Photosystem I (PSI) it was recently proposed that the true primary
donor is in fact the accessory chlorophyll (A) positioned in between
the chlorophyll dimer (P700) and the chlorophyll serving as the
primary electron acceptor (A0) [2]. According to this model, P700 is a
secondary electron donor and gives the electron to A+ only in the
secondary electron transfer step, forming the state P700+A0

−. A
similar sequence of primary electron transfer events was also
proposed for Photosystem II [3–5].

Resolving the primary electron transfer steps in Photosystem I is
difficult because it binds as many as 90 antenna Chls, in addition to 6
electron transfer Chls [6] and excitation dynamics occurs on the same
time scale as that of the primary electron transfer events [7,8]. Decay
of the excited states coupled to electron transfer occurs on a 20- to
30-ps time scale [9–11], whereas intrinsic primary charge separation
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from the excited primary donor is much faster and is estimated to
occur on the subpicosecond to single picoseconds time scale [12–15].
Formation of the state P700+A0

− is followed by 10- to 30-ps electron
transfer from A0

− to A1, the secondary phylloquinone electron
acceptor [12,14,16–18]. Only the next electron transfer step, from
A1
− to first iron-sulfur cluster, Fx, occurs on a slower, nanosecond time

scale [19–24], and can be easily separated from the excitated state
dynamics. Electron transfer in PSI occurs along both A and B branches
of cofactors [22–30].

The different kinetic schemes for excited-state dynamics in PSI
discussed in the literature usually assume an irreversible character of
the primary charge separation and can be divided, in general, into two
models called trap-limited and transfer-to-trap-limited, respectively
[31]. In the trap-limited model, the energy equilibration between the
antenna and the RC is assumed to be very fast and completed before
the trapping event (caused by charge separation in the RC) occurs. In
the transfer-to-trap-limited model, the excitation energy transfer to
the RC is assumed to be slower than the charge separation step, and
in consequence, energy equilibration between the antenna and the
RC is not established before trapping occurs. In recent studies of PSI
from Chlamydomonas reinhardtii and higher plants, the trap-limited
modelwas proposed to describe the observed excited-states dynamics
[11,32–35]. The overall kinetics in cyanobacterial PSI complexes was
suggested by different groups to be either trap-limited [36,37] or
transfer-to-trap-limited [9,10,14,15,38]. Recently, models assuming
reversibility of the primary charge separation in PSI, and demonstrat-
ing the impact of this reversibility on the excitation dynamics, have
been proposed [32,33,35,37].

In order to best resolve the kinetics of pure electron transfer
reactions in PSI, not contaminated by the excitation energy dynamics,
a few groups have the approach of subtracting the time-resolved
transient absorption spectra recorded for the closed state of PSI (P700
pre-oxidized to P700+) from those recorded for the open state (P700
neutral) [39–42]. This approach assumes that the excitation dynamics
is identical for the two states, an assumption that is supported by
experiments showing roughly similarmonoexpoenential excited state
decay in these two cases [39,43–47]. To rationalize this similarity, it is
assumed that the quenching efficiency of P700 and P700+ are
identical, although the mechanism underlying the quenching mech-
anism by P700+ is unknown. The reversible model for the primary
charge separation in PSI, implying a more complex multiexponential
decay of excited states [2,32,33], is at odds with the idea that P700 and
P700+ have identical quenching properties, and challenges the
correctness of the subtraction procedure described above.

In order to critically test the recent models of energy transfer and
reversible charge separation in C. reinhardtii PSI, and to gain a deeper
insight into themechanismof the excitation energy quenching in closed
PSI, we have performed time-resolved fluorescence measurements on
PSI-core preparations fromwild type (WT) and twomutants (MHB and
MSB, or PsaB: M664H and M664S) with open or closed RCs. In the
mutants, the methionine axial ligand to the primary acceptor A0 in the
B-branch of the electron transfer cofactors was replaced by histidine
(MHB) or serine (MSB). By using opticalmethods, thesemutations have
been previously shown to block the electron transfer from A0

− to the
secondary electron acceptor A1 by modifying the properties of A0 [28–
30] (similar mutations were also characterized by using EPR [25–27]).
Both pre-oxidation of P700, and mutations of the A0 axial ligands, were
expected to influence the primary electron transfer events.

The dynamics of the excited states strongly depends on the
presence of so-called red chlorophylls in the investigated PSI particles
that makes the interpretation of the experimental data more difficult.
However, in contrast to what is observed in PSI from cyanobacteria
and higher plants [9,10,35,37,48], no indications of red Chls absorbing
above 700 nm were found in the PSI core particles isolated from CC
2696 strain of C. reinhardtii [11,49], which were investigated in this
contribution.
2. Materials and methods

The experiments were performed on wild type (WT) and on MHB
andMSBmutants in which the methionine axial ligand to the primary
electron acceptor A0 in branch B of electron transfer cofactors (Met
B664) was replaced with histidine (MHB) or serine (MSB) using
methods described previously [50,51]. The C. reinhardtii strain for
transformation was CC2696 in WT and mutants, and was obtained
from the Chlamydomonas Culture Collection at Duke University. The
CC2696 strain carries a deletion in the chloroplast psbA gene that
causes a complete loss of Photosystem II, and also contains the DS-521
nuclear mutation leading to a 90% reduction in LHC II content. The
cells were grown in CC liquid medium [51] and then the thylakoid
membranes were isolated according to the method presented in [52].
The PSI complexes were extracted from thylakoid membranes and
purified using protocols described previously [28], and finally
suspended in a buffer containing 50 mM HEPES (pH=7.2), 5 mM
MgCl2, 12 mM CaCl2, 20% glycerol (v/v), 1 mM benzamidine, 1 mM
aminocapric acid, 1 mM EDTA, and 0.03% dodecyl maltoside. During
experiments the primary donor was kept neutral (open RC) by
addition of 20 mM sodium ascorbate and 20 μM phenazine
methosulfate or oxidized (closed RC) by addition 3 mM K3(FeCN)6.

The time-resolved fluorescence measurements were carried out
with a Streak camera setup. Excitation pulses of 400 nm with a time
duration of ∼100 fs and were generated in a system composed of a
titanium:sapphire laser (Coherent, Vitesse), a regenerative amplifier
(Coherent, RegA) and a double pass optical parametric amplifier
(Coherent, OPA). The sample was excited with vertically polarized
1.2-nJ pulses (which corresponds to ∼0.1 excitations per PS1) and a
repetition rate of 125 kHz. The fluorescence was detected without any
polarizer at a right angle with respect to the excitation beam using a
spectrograph (Chromex 250IS) and streak camera (Hamamatsu
C5680), and recorded by a CCD camera (Hamamatasu C4880). The
temporal width of the detection system response function was ∼3 ps
(FWHM). The sample was placed in a rotating cuvette to ensure that
each laser pulse illuminated a fully relaxed sample. The exposure
times per image were 8–12 min and 4–6 min for the time windows of
200 ps and 500 ps, respectively. The detected streak images from both
time windows were analyzed globally together from 635 to 780 nm
with 5 nm resolution and decay-associated spectra (DAS) were
obtained. The data were also modeled using the target analysis
method [53,54].
3. Results

Fig. 1 shows decay associated spectra (DAS) of three preparations:
WT and two A0 mutants of PSI from C. reinhardtii in either the open or
closed state. DAS are the wavelength-dependent pre-exponential
factors, Ai(λ), of the multiexponential fluorescence (Fl) decay
components, Fl=Σ Ai(λ)exp(− t/τi), associated with particular
exponential lifetimes, τi. They were determined from the global
fitting performed simultaneously for all wavelengths from the
recorded spectral range of fluorescence emission (see [53,54] for
further details on global fitting). The subpicosecond spectra are
assigned to internal conversion of Chls from their Soret to Qy state.
The negative amplitudes of these spectra are due to the appearance of
fluorescence in Qy region. The 4.5- to 5-ns spectra are assigned to Chls
uncoupled from the electron transfer reactions, whereas the ∼100- to
200-ps spectra with very small amplitudes are assigned to a minor
fraction of PSI particles showing either slow excitation energy transfer
to RCs or nonphotochemical quenching. On the basis of the spectra
presented in Fig. 1, the contribution of PSI particles showing these two
types of slow decay is estimated to be below 15%. Both these phases
were often observed in PSI core preparations from C. reinhardtii
[11,29,32] and will not be discussed further here.



Fig. 1. Fluorescence decay associated spectra of WT and two mutant (MSB and MHB) Photosystem I core preparations from C. reinhardtii. (A, C, E) - reaction centers in open state
(P700 neutral); (B, D, F) reaction centers in closed state (P700 chemically pre-oxidized to P700+).
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The most prominent feature of all three preparations shown in
Fig. 1, both in the open and closed state, is a biexponential decay
occurring with ∼7-ps and ∼25-ps lifetimes. Similar fluorescence
lifetimes were previously observed for PSI from C. reinhardtii [33],
cyanobacteria [9,10,37], and green plants [35]. However, unlike in PSI
from cyanobacteria and green plants, in which the few-picosecond
component is clearly related to energy transfer from bulk to red Chls,
in the PSI core from C. reinhardtii which lacks far-red Chls [49], the
∼7-ps DAS, positive at all wavelength, clearly reveals excited state
decay.

In open WT PSI, the amplitude of the 6.7-ps DAS is significantly
larger than that of the 23-ps spectrum (Fig. 1A). Both these spectra
peak at the samewavelength, ∼685 nm, and the slower DAS is slightly
wider, which is related to the equilibration of excitation over a
broader spectral distribution of Chls over a longer time scale. Upon
chemical pre-oxidation of P700, the relation between the two DAS is
reversed (Fig. 1B): the amplitude of the slower component (24 ps) is
larger than that of the 7-ps DAS, whereas the maxima and the shapes
of the DAS are not changed. This observed change in the relative
amplitudes of the ∼7- and 25-ps components in closed RC is
qualitatively in agreement with results of fluorescence studies on
PSI from Synechococcus elongatus [48]. In ref. [48], a 12% increase in
fluorescence quantum yield, and a slight increase in fluorescence
lifetime, from 34 to 37 ps, was reported upon P700 oxidation at room
temperature. Overall, slower excitation decay in closedWT PSI from C.
reinhardtii is also demonstrated in Fig. 2A.

The effects of both amino acid mutations are very similar to each
other. The fast, ∼7-ps excitation decay is no longer dominating the
overall decay in the open state (Fig. 1C, E). Instead, the contributions of
the ∼7-ps and ∼25-ps spectra are similar. Chemical pre-oxidation of
the primary donor yields a further relative decrease of the ∼7-ps DAS,
qualitatively similar to what was observed in WT PSI. In effect, the
overall decay of excited states is slightly slower in closed RCs (Fig. 2B).

4. Discussion

The observation of two phases of excitation decay (∼7 and ∼25 ps)
may be explained either by a trivial heterogeneity model, or by a
reversible model. In the latter model, the forward reaction leads to
decay of the emitting excited state ((Ant/RC)⁎) and formation of a
non-emitting charge-separated state (S1), which then may evolve
irreversibly into a secondary non-emitting state (S2), or undergo a
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back-reaction to the emitting state (the nature of the states S1 and S2
is discussed below):

Ant= RCð Þ4 X
k1

k�1

S1 →
k2 S2 ð1Þ

It is worth noting that in contrast to an earlier report [33], in our
preparation we did not resolve two spectrally distinct emitting states,
which were previously assigned to excited antenna (maximum at
∼685 nm) and excited RC (maximum at ∼714 nm) [33]. A possible
origin of this difference may be more uniform excitation at 400 nm of
all PSI Chls, including those in the RC, in this work compared to
selective 675-nm excitation of antenna Chls in [33]. Thus, in our case,
the energy transfer from the antenna to RC may be more difficult to
resolve. However, the difference in the shapes of the ∼7- and ∼25-ps
DAS may be due to a small contribution from the excitation energy
transfer from antenna to RC to the ∼7-ps spectrum. Since the effect is
small in our experiment, we model fluorescence dynamics with only
one emitting state, including contributions from both excited antenna
and excited RC, (Ant/RC)⁎.

In the frame of the scheme (1), the fast ∼7-ps excitation decay is
an effect of energy equilibration between the initially excited state
(Ant/RC)⁎ and the non-emitting state S1. This equilibration leads to a
decrease in the concentration of the emitting state and the
appearance of the charge separated state S1. The ∼25-ps decay is
directly related to the decay of the both of the equilibrated states,
(Ant/RC)⁎ and S1, due to the S1→S2 electron transfer reaction. The
Fig. 2. Kinetic traces, fits, and residuals of fluorescence decay at maximum of
fluorescence transient bands for open and closed WT PSI (A), and open and closed
MSB PSI mutant. The parameters of the fits are the same as in respective panels in Fig. 1.
At longer times (50–60 ps) the kinetic traces for open and closed RCs crosses due to
overall faster decay of open RCs. Because of limited temporal resolution of the setup
faster signals are “cut off” to a higher extent than the slower signals and therefore, after
normalization of both traces to the same peak amplitude, an apparent higher
contribution of the slow decay is observed in open RCs.
different relative contributions of the ∼7- and ∼25-ps components in
open and closed PSI, in all three preparations under study, may be
qualitatively easily explained by the shift in the (Ant/RC)⁎↔S1
equilibrium towards the emitting state as a result of pre-oxidation of
the primary donor (Fig. 1). Such a shift results in a decrease in the
equilibrium concentration of the S1 state and a decrease in the
relative contribution of the ∼7-ps component (see the results of target
analysis and energetic calculations below). However, this explanation
implies that the charge separated state S1 is formed independently of
the redox state of P700, and consequently that P700 is not the primary
electron donor. In the opposite case, i.e. if P700 is the primary donor,
the identity of S1 in scheme 1 would be different for open and closed
RCs, or scheme 1 would be fundamentally wrong at least for closed
RCs. In the following, we argue that in the frame of scheme 1, with S1
being the same charge separated state for open and closed RCs,, we
are able to explain all of our results and, moreover, that this scheme is
consistent with a recent model of PSI in which the accessory Chl A
plays the role of the primary electron donor [2].

According to the model put forward by Holzwarth and coworkers
[2], the primary charge separation in PSI occurs between the accessory
Chl A and Chl A0, forming the primary charge separated state A+A0

−. In
the second step, the electron is transferred from P700 to A+, forming
the secondary charge separated state P700+A0

−. Adapting this
assignment, scheme (1) may be rewritten for open RCs:

Ant= RCð Þ4 XAþA−
0 YP700þA−

0 : ð2Þ

In closed RCs, P700 is oxidized but we postulate that the primary
charge separation between A and A0 is still possible. The secondary
electron transfer step characteristic for open RCs, from P700 to A+, is
naturally not possible. Instead, we propose that the charge on P700+

induces fast charge recombination between A+ and A0
− to the ground

state, which occurs with an apparent lifetime of ∼25 ps—similar to the
lifetime of the secondary electron transfer step in open RCs. It remains
to be theoretically verified whether these postulates are physically
plausible. Conceptually, however, they offer an attractive mechanism
of excitation energy quenching in closed RCs. According to the
postulated scenario, scheme (1) may be rewritten in the following
way for closed RCs:

Ant= RCð Þ4 XAþA−
0 YAA0: ð3Þ

The shift of the (Ant/RC)⁎↔ A+A0
− equilibrium towards the left

upon closing the RCs postulated above, could be explained by an effect
of the charge localized on the neighboring species P700+. This charge
is expected to slow down the primary charge separation between A
and A0, due to the electrostatic field being unfavorable for this
reaction, and accelerate charge recombination between A+ and A0

− to
the state (Ant/RC)⁎AA0, due to the electrostatic interactions with the
electron on A0

−. On the other hand, the same charge on P700+ induces
fast charge recombination between A+ and A0

− to the ground state, as
stated above.

Our results do not offer a direct proof for the proposed mechanism
of excitation energy quenching in closed RCs and, in principle, direct
quenching by P700+ cannot be completely ruled out. However, in this
case it would be difficult to consistently explain the biphasic
excitation decay observed in closed RCs similar to that observed for
open RCs. In fact, the idea of direct quenching by P700+ arose from the
observation of similar monophasic decays of antenna exited states in
both open and closed RCs [39,43–47].

Similar to the effect observed by closing RCs, the different rela-
tive amplitudes of the ∼7- and ∼25-ps spectra found for open WT
and open mutant PSI may also be explained by a simple shift in the
(Ant/RC)⁎↔A+A0

− equilibrium towards the emitting state in the
mutated samples (compare Fig. 1A to Fig. 1C, E). It was previously
reported that electron transfer leading to formation of P700+A0

−
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occurs on a picosecond time scale in both branches of WT and A0

mutant PSI [28–30]. In both branches of WT PSI, A0
− is reoxidized

within 20–30 ps by electron transfer to A1 whereas in the mutated
branch of the A0 mutants, reoxidation of A0

− is slowed down to 1–
2 ns. This dramatic slowing down of A0

− reoxidation was suggested
to originate from the significant modifications of the A0

−/A0 redox
potential caused by replacement of the methionine A0 axial ligand
by other amino acids [55].

The shift of the (Ant/RC)⁎↔A+A0
− equilibrium towards the

emitting state in the mutants can be rationalized in two ways. First,
the modified A0

−/A0 redox potential is expected to shift the free
energy level of the state A+A0

−. Apparently this shift is related to
slower primary charge separation (decrease in k1 value, scheme (1))
and/or faster primary charge recombination (increase in k−1 value)
to the emitting state. Second, energy transfer from the antenna to RCs
is expected to be less efficient, and slower, in the mutants due to loss
of excitonic coupling in the mutated branch of the electron transfer
cofactors. Such a loss of excitonic coupling leading to a decrease of RC
absorption was demonstrated previously [28,29,56]. It should be
noted that the rate of the reaction (Ant/RC)⁎→A+A0

− may depend on
the time of excitation equilibration over the antenna system, on the
time necessary for excitation energy transfer from equilibrated Ant⁎
to RC, and on the intrinsic primary charge separation rate. In this study
we do not determine the contributions of these three steps to the
overall rate of the (Ant/RC)⁎→A+A0

− reaction. However, observation
of the effect of mutations and pre-oxidation of P700 on the observed
rates (see below) implicates that the two latter steps may be rate
limiting.

In order to treat the problem more quantitatively, we performed a
target analysis of the data by using locally developed software. Detailed
theory underlying the target analysis may be found in [53,54]. Briefly,
target analysis is fitting the experimental decays of the whole
investigated spectral region with intrinsic rate constants related to a
real physical model (in our case, that presented in schemes 1–3) rather
thanwith a simple sum of exponential decay components (presented in
Figs. 1–2). The rate constants resulting from this target analysis are
presented in Fig. 3. For WT PSI from C. reinhardtii, electron transfer
reactions occur symmetrically in both branches of electron transfer
cofactors on the subnanosecond time scale of our experiment [28–30].
Therefore, there is no need to double the number of compartments
modeling each of the states in the A and B branches. For mutant PSI, in
Fig. 3. Kinetic schemes of excitation energy and electron transfer reactions in Photosystem I c
Holzwarth and coworkers (2005) [33]; (B) by us. The molecular rate constants were calcul
principle, separate sets of states related to each of the branches should
be constructed and a separate set of rates should be calculated for each
branch. However, this leads to an increase in the number of parameters
that exceeds anypossibility of their experimental verification. Therefore,
only a single set of states is considered in the modeling of the results
from themutants, but the obtained values of the rates should be treated
as average values for the mutated and non mutated branch (Fig. 3).
Assuming that the rates in the branch which does not carry a mutation
are thesameas those inWTPSI,we can then concludehowtheparticular
rate constants in the mutated branch are influenced by the mutations.

Rate constants for openWT PSI compare well with those published
previously (Fig. 3A and B, [33]). The rates of the reversible reactions
cannot be compared directly, since there is an extra RC⁎ compartment
in the cited paper. However, the free energy gap between the states
Ant⁎ (or (Ant/RC)⁎ in our case) and S1, calculated from the forward
and backward rates assuming the Boltzmann distribution, is not very
different in both studies: 34 meV in our study vs. 41 meV in the
previous study [33]. The secondary electron transfer step is also
described by similar rates of 74 and 80 ns−1, respectively.

In closedWT PSI, the value of k1 (compare scheme (1) and Fig. 3B)
decreases and the value of k−1 increases as compared to open PSI.
Thus, changes of both rates contribute to a shifting of the equilibrium
towards the excited states in agreement with the expectations
expressed above on the basis of the qualitative analysis of the DAS
presented in Fig. 1. A similar trend is also observed in both mutant PSI
preparations. Apparently, the primary radical pair formation is a
shallower excitation trap in closed than in open PSI RCs (Table 1). On
the other hand, in closed RCs, the value of k2 increases both inWT and
in mutant preparations. The fact that the value of k2 is different for
closed and open RCs is not surprising since, as mentioned above, it
describes two very different reactions in these two cases.

Comparison of the rate constants for open WT and open mutant
PSI leads to the conclusion that the value of k1 is smaller in mutants,
whereas the mutations have little effect on the value of k−1. The net
effect of both mutations is a shift in the (Ant/RC)⁎↔A+A0

− equili-
brium to the left (see also Table 1). Since, as noticed above, the value
of k1 in the open mutant PSI is expected to be an average value for the
mutated and non mutated branch, the k1 value in the mutated branch
is expected to be even lower.

Finally, we would like to mention an alternative scheme in which
the reversible step is excitation energy transfer between the antenna
ore preparations from C. reinhardtiimodeling the experimental results obtained: (A) by
ated from the target analysis and are given in ns-1. S1—primary radical pair.



Table 1
Free energy gap between the excited state (Ant/RC)⁎ (or Ant⁎ in the case of [33]) and
primary charge separated state RP1 in WT and two mutant Photosystem I core
preparations from C. reinhardtii (in open and closed reaction centers). The gap was
calculated from the Boltzmann distribution: ΔG=kBT⁎ln(k1/k−1); kB—Boltzmann
constant, T—absolute temperature, k1 and k−1—molecular rate constants explained in
scheme (1).

ΔG [meV]

Open RCs Closed RCs

WT (Holzwarth et al. 2005) 41
WT 34 23
MSB 26 19
MHB 29 25
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and RC, and the primary charge separation occurs irreversibly
between P700 and A0 according to the classical model [57]:

Ant4 XRC4YP700þA−
0 : ð4Þ

Formally, this scheme is identical to scheme 1. However, in order to
yield biphasic fluorescence decay, the state RC⁎ should be a much
poorer fluorescence emitter than the state Ant⁎. Such a postulate is
not supported by any experimental observation. In fact, it was shown
that the RC⁎ state is an efficient emitter [33]. For these reasons we
discard model (4) as less likely.

5. Conclusion

In this contribution, a reversible primary charge separation model
was successfully applied to both open and closed PSI from both wild
type and samples containing a mutation of the A0 axial ligand. It was
demonstrated that moderate modulation of the free energy level of
the primary charge separated state, A+A0

−, by the mutations near A0
−,

as well as by the charge on P700+, leads to slight deceleration of the
overall excitation decay. On the other hand, the positive charge on
P700+ exerts a pronounced effect on the A+A0

− charge recombination
rate to the ground state. This fast charge recombination process is
proposed to be a mechanism for effective excitation quenching by
closed PSI.
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