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In many questions of analysis we encounter the problem of approximating 
a given norm by “simpler” ones. For example, if 

II a II = sup I @)I, 
O<X<l 

a suitable candidate for an approximate norm is 

with m large. More generally, 

can be approximated by 

II a IL = (E; 1 a ($) ID yy. 

These are examples of so-called discrete approximations. In other problems, 
one would like to approximate 

II a II = SUP I @>I 

where pna -+ co. 
We believe that it is worth while to put the above on a more formal basis. 

The present paper is a first, modest attempt in this direction. In particular, 
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our general point of view allows us to treat, in a more systematic fashion, the 
convergence of a number of algorithms in approximation theory (discretiza- 
tion of continuous Tschebycheff-approximation, Polya algorithm etc.) We 
also give a new look at the little (or Hausdorff) moment problem. These 
general ideas are also very useful in connection with the theory of interpola- 
tion spaces but this we shall treat elsewhere. 

A notion of convergence of normed or, more generally, metric linear spaces 
has been studied in a paper by Semadeni [7] but there seems to be hardly 
any connection with the present work. (More close to our viewpoint comes 
a paper by Kripke [3].) 

The plan of the present paper is as follows. In Section 1, the general 
definitions are given. In Section 2, we briefly review some known facts in 
linear approximation theory. In Section 3, we give a general theorem on the 
convergence of algorithms, along the lines of a theorem by Cheney [l] dealing 
with the concrete case of approximation by algebraic polynomials. This case 
is studied here in Section 4. Finally, in Section 5, we use our ideas in 
connection with the moment problem, mentioned above. 

1. BASIC DEFINITIONS 

Let A be any vector space over R. 

DEFINITION 1.1. By a norm 11 I), we mean a mapping A + R+ : a --f 11 a II 
such that 

II a + b II G II a II + II b IL 
II Aa It = I h I II a II. 

Consider the linear subspace N = {a ] II a Ij = 01. If N = 0, we speak of a 
proper norm. If N is of finite codimension, we speak of a discrete norm. 

We have, thus, departed slightly from the usual terminology. 

Our terminology Usual terminology 

Norm Seminorm 
Proper norm Norm 

DEFINITION 1.2. By a normed space we mean a vector space A with a fixed 
(usually proper) norm I/ II = Ij jJA . 
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Next, we consider sequences of norms 11 Ilrn on A (where, usually, 
m = 1, 2,...). 

DEFINITION 1.3. // Ilrn is an approximation of /I /I if 

j& II a Ilm = II a II (Va E A). 

If all norms j/ Ilrn are discrete, we speak of a discrete approximation. 

DEFINITION 1.4. jj jlm. is a null-sequence if 

ki II a IL = 0 (Va E A). 

The following result is obvious. 

PROPOSITION 1.1. 11 Ijm is an approximation of I] 11 if there exist null- 
sequences 11 II: and I/ l/z* such that 

II a II d II a IL + II a IIZ , (1.1) 

!I a l!m < II a II + II a lIZi*. (1.2) 

DEFINITION 1.5. II [I: is called a majorant of the approximation and II II%* 
a minorant. 

The following is a general way of constructing approximations: Let A, be 
a sequence of normed spaces. Let there be given, for each m, linear mappings 
Qm : A + A, and P, : A, + A such that 

U,-+I (pointwise convergence: II Ulna - a II -+ 0) 

where we have set U, = P,Q, . Then we may take 

II a IL = II Qma IIA, . 

II Pma IL4 = II a IIA, , 

jjym II Qma Il.-t, < II a II, 

then clearly (cf. Theorem 5.1) 

II a IL + II a II = II a IIA . 

64=‘/3/3-2 
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If U, is of finite rank then this is a discrete approximation. Question: Does 
any (separable) normed space admit a discretization of this type? The answer 
is trivially positive if the space posseses a Schauder basis. 

2. THE FUNDAMENTAL PROBLEM OF LINEAR APPROXIMATION THEORY 

Let B be a given subspace of a normed space A. Let us set 

Clearly 

E(u) = E(u, A, B) = j$ a - b 11. 

G4 G II a - b II (Vb E B) 

and in particular (take b = 0), 

The fundamental problem of linear approximation theory consists of finding 
b E B such that 

E(a) = IIu - bjl. 

We say that b is a solution, It is a classical fact that a solution always exists in 
the following two cases: 

(a) B is finite dimensional (see [l], p. 20). 
(b) A is uniformly convex, B is complete (see [l], p. 22). 

(For more recent results in this direction, see also Cheney and Wulbert [2].) 
Concerning uniqueness, we list two typical cases where it holds: 

(CX) A strictly convex, B finite dimensional (see [l], p. 23). 
(8) //a 11 a Tschebycheff-norm (maximum-norm), B a Haar subspace 

(see [l], p. 80). 

(For more recent results, see, e.g., Phelps [6], Singer [8].) If uniqueness holds, 
we denote the unique solution by Tu (Tschebycheff-operator). Clearly, 

%4 = II a - Tu II d II a - b II (Vb E B). 

We say that we have strong uniqueness if 

where y > 0 depends on a only. Strong uniqueness is known to hold in case 
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(/I) above (see [1], p. SO). I n case (L-X), strong uniqueness does not hold. How- 
ever, we have the following substitute 

E(a) Is-1 ( ” b ;(ay ” ) + II a - Ta II < II a - b II, 

where 

h(E) = (1 + 4 8 (&)P 

6(c) denoting the modulus of convexity. 

DEFINITION 2.1. By an algorithm for T we mean a sequence of 
Tschebycheff-operators T, corresponding to an approximation 11 . Ilrn of 11 . 11. 

3. CONVERGENCE OF ALGORITHMS (GENERAL CASE) 

We consider the following situation: T, is an algorithm for the 
Tschebycheff-operator T. We assume (strong uniqueness) that 

~(llb--~ll)+IIa--~/l~IIa--II WEB), (3.1) 

&<ll b - T,a IIn) + II a - La lIm < II a - b IL (Vb E B), (3.2) 

where 4 and & are positive functions depending on a. We also assume that 
there are given a majorant 11 11; for 11 jlm such that 

II b II: < N: II b II (Vb E B) (3.3) 

and a minorant // I$* such that 

II b Ilit* < Xi* II b II (Vb E B) (3.4) 

for some constants N,* and N,**. If B is finite dimensional, the existence of 
such constants is automatically guaranteed. Also N,* + 0 and Nz* -+ 0 as 
m + co. First we prove: 

LEMMA 3.1. If (3.3) holds and N,* < 1, then 

llbll ~&m-llUn WEB). 

Proof. From (1.1) and (3.3) 

II b II < II b llm + II b II: < II b llm + Nm* II b II. 

(3.5) 
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Hence 

Our main result is 

(1 - Nm”) II b It G II b llm . 

THEOREM 3.1. Assume that (3.1), (3.2), (3.3), and (3.4) hold and that 
N,* < 1. Then 

Ml Ta - T,a II> + bdll Ta - Tma L> 

2N,* 
< II a II,* + II a IIt* + 1 _ Nm* II a IL + 2N2” II a II (Va E A). (3.6) 

Proof. Using (3.1) and (3.2), we get 

9(ll Ta - T,,a II> + &dII Ta - Tma M 

< (II a - T,a II - II a - Ta III + (II a - Ta IL - II a - T,a IL). 

But, by (1.1) and (1.2), we have 

lla-T,all-lla-TaI/~IIa-TT,aII,-lI/a-TaII+IIa-TT,aII~, 

II a - Ta Ilm - II a - T,a llm < II a - Ta II - II a - T,a IL + II a - T,a II:*. 

Adding up, we arrive at 

#II Ta - T,a II) + yL(lI Ta - T,a II,> d II a - Tma II: + II a - Ta IIf*. 

(3.7) 
We estimate each term separately. Using (3.3) and (3.5), we get 

II a - T,a II: < II a llf + N,* II T,a II < II a 11; + 1 2; * II T,a IL . 
m 

But 

Hence 
II T,,a Ilm < II a IL + II a - T,a Ilm < 2 II a IL . 

2N,* 
II a - T,a 11: G II a II: -I- 1 _ N,* II a IL . (3.8) 

Next, using (3.4), we get 

But, again, 
II a - Ta Hii* < II a II:* + N,** II Ta Il. 

II Ta II d II a II + II a - Ta II G 2 II a II. 
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Hence, 

II a - Tu II,?* < II a II:* + 2Ni” II a II. (3.9) 

Inserting inequalities (3.8) and (3.9) into inequality (3.7), we end up with (3.6). 
Q.E.D. 

Two special cases deserve special mention. 

COROLLARY 3.1. If 1) Ilm ** = 0, so that 11 a Ilm < /I a 11 (Vu E A), and if 
N,* < 1, then 

4(II Ta - T’a II> + h(ll Ta - GaIM G II allii + 1 F&I* II all. (3.10) 

COROLLARY 3.2. Ifll II:* = 11 l/z, Nz* = N,* < 1, then 

$(I Ta - T,a II) + ~L(ll Ta - T,a I13 
2N,* 

< 2 II a II: + 1 _ &* II a IL + 2%* II a II. (3.11) 

4. CONVERGENCE OF ALGORITHMS (CONCRETE CASES) 

We now turn to concrete applications of the results of Section 3. 

EXAMPLE 4.1. We take 

A = Cl = the set of continuously differentiable functions on Z = [0, 11, 
B = the set of algebraic polynomials of degree <n, 

II a II = 2:: I aWl, 

II a IL = yGy I 44, m 

where Z, is a finite subset of Z consisting of points xk , which we call nodes. 
]I a Ilm is a discrete norm. Moreover, 

II a Ilm d II a IL 
so we can take (as in Corollary 3.1) 

Choose 
11 a II;* = 0. 

k 
xk = m (k = 0, l,..., m - 1). 
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(A slightly more advantageous choice would have been 

xk = k + UP) 
m 

(k = 0, I,..., m - I); 

cf. [I], p. 93). Let XI, < x d xk + l/m. Since 

Hence we get 

II a II < II a llm + $ II a’ II, 

so that we may choose 

II a lIza = ; II a’ II. 

If b E B (i.e., b is a polynomial of degree <n), we have by Markoff’s inequality 
(cf. VI, P. 91) 

II b II: = ; II b’ II < g II b II. 

Thus, we may take 
2n2 

N,* = -. 
m 

Applying Corollary 3.1, we now get with &CT) = yo (dropping the term 
involving &J: 

1 
Y II TU - Tma II G ; II a’ II + 1 _ c2n2,mJ 2CWm) II u ,, (m > 2n2), (4.1) 

an inequality essentially contained in Cheney [1], p. 92. We are here particu- 
larly interested in the behavior of the left hand side of (4.1) as m -+ co. 

Obviously, (4.1) implies 

I/ Tu - T,u 11 = 0 (&). (4.2) 

To improve this estimate we have to put further restrictions upon the 
functions a. [Cheney’s result in [1], p. 92, is in the opposite direction. He 
requires just continuity of a and gets a weaker estimate in terms of 
the modulus of continuity w(t, a).] 
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EXAMPLE 4.2. Take 

A = C2 = the set of twice continuously differentiable functions on I= [0, I], 
B, I/ a 11, I/ u llrn as in Example 4.1. We augment, however, I, , by adding to it 
x, = m/m = 1. Thus, we have 

k 
xk = m 

(k = 0, l,..., m). 

If xk < x < xk + l/m = x~+~ , we use the formula 

a(x) = &+c) +7c,, - 4 + Nxk+J 4x - xd + j-1 &, 5) a”(5) 6, 

with 
if x < 4, 
if x >, 5, 

and deduce 

I 4dl d max(l 4xk)lp I 4xk+l)l) + 0 - hJ(~k+~ - 4 max I a”@% 

< II a Ilm + & II a” IL 
Hence 

II a II d II a llm + & II a” II 

and we are lead to take 

If b E B we get, again, by MarkofT’s inequality (iterated) 

II ~II~ = & II 6” II d & II b II 
and subsequently 

N *:= n4 
m -52. 

Corresponding to (4.1), we thus have 

Y II Ta - La II G $ II a” II + 1 ~‘~$$I II a II (m > l/2/2 n”) (4.3) 

and corresponding to (4.2), 

/I Tu - T.czII = 0 (-$-). 

We have improved the previous 0(1/m) to 0(l/m2). It does not seem likely 
that this can be easily improved further; O(l/mz) is about the optimum which 
we can hope for. 



252 PEETRE 

Remark 4.1. A theoretical possibility of improving the estimate is, 
however, the following. For each m, we consider the mapping (function to 
sequence) 

Q m : a ---f (4x0),..., a(x,J) 

and the mapping (sequence to function) 

where h&x) are given functions and r,,, = 1 + card Z, . (In Example 4.1 we 
had 

1 if xE 
1 

L,(x) = I xk, xk + -& , I r,= m, 
0 elsewhere, 

and in Example 4.2, 

if x E [x~-~ , ~1, 
if x E [Xk , xk+l], r, = m + 1.) 

elsewhere 

The basic assumption is that 

U,+Z as 

where U,,, = P,,,Q, . The corresponding 

m-+ 00, 

assumptions on h,,(x) are well- 
known. Indeed, under suitable assumptions on h&x), it is even possible to 
prove a much stronger result, namely, 

II a - Uma II < $ II dN) II. 

For example, it suffices to assume that 

f hmk(X) = 1, 
k=l 

& (x - xlc) L,(x) = 0, 

. . . 

zl (x - &c)N-lhmk(X) = 0, 

s”,p f 1 x - xk INi hnk(X)I < *. 
k=l 
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With 

A = CN = the set of iV times continuously differentiable functions on 

1 = 10, 11, II a llna = II K8 II, 

and B, /j a 1) as before (Examples 4.1 and 4.2), we are, then, lead to 

11 Tu - T,a/I = 0 (&). (4.5) 

The problem is that /I 4 (Inz is quite a complicated norm, in general not of the 
Tschebycheff type, so in concrete cases the computation of T,,,a might cause 
difficulties and the fact that we have a better estimate will be of little actual 
help. 

EXAMPLE 4.3. We take A and B as in Example 4.1; A = Cl, B = the set 
of polynomials of degree <n, but change the norms, namely, 

and 

II a II = (j, I &>l~ dxjliD, 

II a Ilm = (C, I a(x# -!-)liP (with xlc = k). 

Here 1 < p < co. We have 

II a llD - II a IlEt = j: I aw kc - y I U(Xk>lP 6 
k=O 

= ;g i::“‘” (I 4W - I &WJ) dx 

In view of Holder’s inequality, the last integral is bounded above by 

and, thus, the corresponding summand is bounded above by the last expression 
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multiplied by l/m. Thus, using once more Holder’s inequality (for sums), we 
get 

On the other hand, 

and so, 
I II a II’ - II a II; I 3 II a II’-’ I II a II - II a iL I, 

Thus, we can take 

I II a II - II a Ilm I < 5 II a’ Il. 

II a II2 = II a II:* = 5 II a’ Il. 

If b E B, we may apply the &-version of Markoff’s inequality (cf. Stein [9]) 
and get 

II b II; = II b II:* < ‘+ II b’ II, 

where A, is a constant depending on p only. Thus, we may take 

N,” = N;* = !i%$ (with B, = PA,). 

Applying Corollary 3.2, we now get with 4(u) = yu*, l/q = max(&, 1 - l/p), 

4 VDn2/m) Y II Ta - Tma IP < m II a’ II + I _ tB,n2,mj ,, u ,, + 2Bpn2 7 II a Ilm 

which, in particular, implies 
(m > BDn2), (4.6) 

II Tu - Tma II = 0 (A). (4.7) 

EXAMPLE 4.4. [Polya (or de la VallCe-Poussin) algorithm.] Take 

A = Co = the set of continuous functions on I = [0, 11, 
B = the set of algebraic polynomials of degree <n, 

/I a II = mp I 441, 

II a l/m = (I, I &rm dn)? 
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where pm --+ cc as m --f co. From the inequality 

I 4x>l < I45)l + I x - 6 I II a’ II9 

we obtain by virtue of the &-triangle inequality for p 3 1, 

I &>I (j,, 1" 4yn G (j,, I ag>lP uqp + (j,, I x - E P dqp I/ a’ II? 

where Jh is any subinterval of I of length h < 4, containing x. This yields 

11 a jl < h-l’“‘” II a llm + h II a’ II 

= I/ u JJm + ((e(log(l’h)ipm) - 1) )I u jlrn + h I/ a’ II). 

On the other hand, it is trivial that 

II a llm < II a !I. 
We now choose 

(This is about the best choice.) We then end up with 

II a llm < II a II 6 II a Ilm + c ‘y (II a II + II a’ II), 

with C independent of m. Accordingly, we choose 

/I ug = “;fpm (II a II + II a’ II>, /I a II;* = 0. 

If b E B, Markoff’s inequality is again available. We do not include the 
details and content ourselves with the estimate 

I/ Tu - Tmu 11 = 0 (+I, m --+ co. 

We feel that it is unlikely that this can be improved upon very much. 

5. AN ABSTRACT MOMENT PROBLEM 

Let A be a normed space and let A,,, be a sequence of such spaces. Let 
Pm : A,, + A and Qm : A + A, be as in Section 1, with 

U,-tI, (5.1) 
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where U, = PmQm . If C# is a continuous linear functional on A, its norm is 
by definition given by 

II 4 HA’ = SUP I d(~>llll a II‘4 * 

Let us define, for each m, a continuous linear functional & on A,, by setting 

&a(4 = wm4. 

The corresponding norm is 

11 &n /iA, = suP 1 $m(~)l/li a IlAm = suP I $(Pmu>l/~l u IlA, * 

What we term as a moment problem is to relate the norms II 4 IIA, and 
11 $hn ilAm’ . To this end, we prove 

THEOREM 5.1. Assume that besides (5.1), we have 

11 P%@ IIA d I/ a I/A, 3 (5.2) 

5 11 Qmu IlA, < 11 a 11. (5.3) 

Then 

Proof. We have by (4.2) 

1 &&)I = 1 +(pmu)I d 11 d IIA’ I/ Pea IIA d II + IIA’ I/ u liA,- 

Therefore 

To prove an inequality in the opposite sense, choose, for E > 0, an u such 
that 

1 +@)I 2 11 + I/A+ - E>~ 11 u IIA = l, 

and m so that 
II a - Ulna II < E; 

we have used (5.1). It follows that 

1 &umu>l 3 11 ‘$ ilA’(l - 24. 

But 
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so that 
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and, E > 0 being arbitrary, 

lim II h lL4,* 3 II 9 IId - Q.E.D. 
Fizz 

We now give a concrete application (corresponding to the classical little 
moment problem; cf., e.g. [lo], Chap. III). 

EXAMPLE 5.1. We take 

A = Co = the set of continuous functions on I = [0, 11, 

11 a IIA = 11 a [I+ = (II j a( dx)l” with 1 <p < 03 

(interpreted as in:? j a(x)\ if p = OO), 

A, = Euclidean (m + 1)-space, 

(interpreted as 1 ?I$~ I ak I if p = co), 
. . 

(pmu>(x) = k$o pkm@> uk 3 with j&&(X) = (T) xk(l - A)“-~, 

Qd = (401, a (-+), a (G),..., 4)). 

We check the validity of (5. l), (5.2), and (5.3). That (5.1) holds is the classical 
theorem of Bernstein (cf. [l], p. 66-69). Note that U, = P,Q, is the 
Bernstein operator. That (5.3) holds is obvious (existence of Riemann 
integral, cf. also Example 4.3). There remains thus (5.2), i.e., the inequality 

II P,a II9 G II a Ilp for l<p<co. (5.4) 
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In view of the Schur interpolation theorem (a special case of the M. Riesz 
interpolation theorem), it suffices to prove (5.4) in the extremal cases p = 1 
and p = co. We obtain 

Using the Euler integrals, we have 

II ,fkm 111 = (;) j: ~“(1 - xPk dx 

= (F) B(k + 1, m - k + 1) = (F) r(k ‘$~~2~ + ‘) 

m k!(m-k)! 
0 

1 1 = 
k (m+l)! 

E-----G.- 
m+l 172’ 

so that II P,a II1 < 11 a II1 . Let 4 be any continuous linear functional on A. We 
now have 

with hk, = m#&). Therefore we find 

II An IIA,, = (2 I hkm @&f-” 
k=O 

(+ + $ = 1). 

Application of Theorem 5.1 thus yields 

II c 11‘4’ = $$ (5 I kcm T’ $)‘;“‘. 
k=O 

(5.6) 

This should be compared with the classical results (cf., notably, [8]). 

Remark 5.1. Using a more general interpolation theorem we can cover 
the case of an arbitrary rearrangement invariant norm (in place of the L, 
norm Ij II,); cf. [3], p. 80. This is the widest range for Schur interpolation. 
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EXAMPLE 5.2. We take 

A = Cl = the set of continuously differentiable functions on I = [0, I], 

I/ U//A = oyzl I4x)L 

A, = Euclidean (m + 1)-space 

II~IIA, = o<yp.& I&+1 - ak I? 

Pm and Qm as in Example 5.1. 

The following formula is of interest: 

DP, = mP,,+,A. (5.7) 

Here D and A denote differentiation and the difference operators, respectively, 
i.e., 

Da(x) = u’(x), Au, = ukfl - uk . 

Using (5.7), it is not hard to see that 

mx~, 1 D&u(x) - Da(x)1 -+ 0 as m -+ co. .-. 

In other words, (5.1) holds in this case, too. Also (5.2) and (5.3) can be 
readily verified. If 4 is any continuous linear functional on A, the corre- 
sponding & is again given by (5.5) and we have 

where A,, is defined by 

4-1.m - 4wn = &wn (k = l,..., m - l), 

--A - ho,,, 4n.m = An,, . 
(5.8) 

O.m - 

Note that A,, is well-defined since the compatibility condition 

i. hc*Tn = 0 

for the solvability of (5.8) is obviously fulfilled. Application of Theorem 5.1 
now yields 

(5.9) 
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Remark 5.2. The result (5.9) can be extended in several direction. For 
example, we can treat the case of Lipschitz norms (i.e., 

II a IIA = sup I 4-4 - a(y) x - Y Ia 

with 0 < 01 < 1). Here it is advantageous to use the theory of interpolation 
spaces. Note that these spaces were used by LGfstriim [4] to solve a dual 
problem. 
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