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Abstract

Sufficient conditions for a symmetric jump-diffusion process to be conservative and recurrent are given
in terms of the volume of the state space and the jump kernel of the process. A number of examples are
presented to illustrate the optimality of these conditions; in particular, the situation is allowed to be that
the state space is topologically disconnected but the particles can jump from a connected component to the
other components.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let (X,d,m) be a metric measure space. We assume that every metric ball B(x, r) =
{z ∈ X: d(x, z) < r} centered at x ∈ X with radius r > 0 is pre-compact, and the measure m is
a Radon measure with full support. In particular, X is locally compact and separable. Let (E,F)

be a regular symmetric Dirichlet form in L2(X;m). We denote the extended Dirichlet space of
(E,F) by Fe, and a quasi-continuous version of u ∈ Fe by ũ. According to the Beurling–Deny
theorem, see, e.g., [8, Theorem 3.2.1 and Lemma 4.5.4], we can express (E,F) as follows

E(u, v) = E (c)(u, v) +
∫ ∫
x �=y

(
ũ(x) − ũ(y)

)(
ṽ(x) − ṽ(y)

)
J (dx, dy)

+
∫
X

ũ(x)ṽ(x) k(dx) for any u,v ∈ Fe,

where (E (c),C0(X) ∩ F) is a strongly-local symmetric form and C0(X) is the space of all
real-valued continuous functions on X with compact support; J is a symmetric positive Radon
measure on the product space X × X off the diagonal {(x, x): x ∈ X}; and k is a positive Radon
measure on X.

Let μ〈·,·〉 be a bounded signed measure, see [8, Lemma 3.2.3], such that

E (c)(u, v) = 1

2
μ〈u,v〉(X) = 1

2

∫
X

μ〈u,v〉(dx) for u,v ∈ Fe.

Throughout the paper, we assume the following set (A) of conditions:

(A-1) The killing measure k does not appear; that is, the corresponding process is no killing
inside.

(A-2) For each u,v ∈ Fe, the measure μ〈u,v〉 is absolutely continuous with respect to m. We
denote the corresponding Radon–Nikodym density by Γ (c)(u, v); namely,

μ〈u,v〉(dx) = Γ (c)(u, v)(x)m(dx).

(A-3) The jump measure J has a symmetric kernel j (x, dy) over X ×B(X) such that

J (dx, dy) = j (x, dy)m(dx)
(= j (y, dx)m(dy) = J (dy, dx)

)
.
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For u,v ∈Fe , define

Γ (j)(u, v)(x) =
∫

x �=y

(
ũ(x) − ũ(y)

)(
ṽ(x) − ṽ(y)

)
j (x, dy),

and

E (j)(u, v) =
∫

Γ (j)(u, v)(x)m(dx).

Therefore, the form E has the following expression for any u,v ∈Fe:

E(u, v) = E (c)(u, v) + E (j)(u, v)

= 1

2

∫
X

Γ (c)(u, v)(x)m(dx) +
∫
X

Γ (j)(u, v)(x)m(dx)

= 1

2

∫
X

Γ (c)(u, v)(x)m(dx) +
∫ ∫
x �=y

(
ũ(x) − ũ(y)

)(
ṽ(x) − ṽ(y)

)
j (x, dy)m(dx).

Let ψK be the distance function from a compact set K of X, i.e., ψK(·) = infy∈K d(·, y).
For every r > 0, we denote B(K, r) = {x ∈ X: ψK < r} and its closure {x ∈ X: ψK � r} by
B(K, r). Clearly, B(K, r) is pre-compact. Let Floc be the set of measurable functions u such that
for each relatively compact open set G of X there exists w ∈ F which satisfies that u|G = w|G
m-a.e. Additionally, we assume the following set (M) of conditions so that both E (c) and E (j) are
compatible with the distance d :

(M-1) ψK ∈Floc for every compact set K ⊂ X,
(M-2) Mc := ess supx∈X(c) Γ (c)(d, d)(x) < ∞,
(M-3) Mj := ess supx∈X(j)

∫
x �=y

(1 ∧ d2(x, y)) j (x, dy) < ∞,

where X(c) = {x ∈ X: Γ (c) �= 0} and X(j) = {x ∈ X: Γ (j) �= 0}.
There are many classical examples of symmetric diffusions or symmetric pure jump processes

whose Dirichlet form satisfies conditions (A) and (M): for instance, strongly-local Dirichlet
forms on a metric measure space, whose distance is the Carnot–Carathéodori distance associ-
ated with the Dirichlet form. This includes canonical Dirichlet forms on Riemannian manifolds,
CR manifolds, sub-Riemannian manifolds, and weighted manifolds; divergence type operators
with bounded coefficients on Euclidean spaces; the sum of squares of vector fields satisfying
Hörmader’s condition, the quantum graphs, and pre-fractals. Other examples are symmetric α-
stable Lévy processes with α ∈ (0,2) on Euclidean spaces, and symmetric random walks on
graphs.

Let A be the generator of (E,F) in L2(X;m). We denote the associated semigroup and the
resolvent by (Tt )t�0 = (etA)t�0 and G = ∫ ∞

0 Tt dt , respectively. The Dirichlet form (E,F) is
called conservative if

Tt1 ≡ 1, m-a.e. for any t > 0
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and recurrent if

Gf (x) ≡ 0 or ∞ for any f ∈ L1+(X;m) and m-a.e. x ∈ X.

It is a classical result that Brownian motion on R
n is conservative for any n � 1 and is recur-

rent if and only if n = 1,2. This result has been generalized to the Wiener process of complete
Riemannian manifolds, and one of the most important discoveries is that a certain bound of the
volume at infinity – rather than the dimension – implies these properties. This fact was first
found by M.P. Gaffney [10] for the conservativeness, and it has been refined by various methods
in [1,23,36,17,5,14]. Especially, R. Azencott [1] and A. Grigor’yan [14] demonstrated that the
conservativeness may fail without a condition on the curvature or volume. On the other hand,
the recurrence of the Wiener process of Riemannian manifolds or jump processes has been in-
vestigated by several authors in [4,22,38,11,12,28]. Furthermore, K.-T. Sturm [35] extended the
theory to a general strongly-local regular Dirichlet form on a metric measure space equipped
with the Carnot–Carathéodori distance.

Recently, there has been a tremendous amount of work devoted to the conservation property
of a non-local Dirichlet form; for instance, the physical Laplacian on an infinite graph [7,6,39–
41,24,18–20] and non-local Dirichlet forms [26,15,33]; however, as far as the authors know,
there is only one result by Z.-Q. Chen and T. Kumagai [3] for the Dirichlet form which has
both the strongly-local and non-local terms. Due to its nature, the associated process is called a
jump-diffusion process.

Our first main purpose is to investigate the conservative property of a jump-diffusion process.
For any x ∈ X and r > 0, the volume of B(x, r) is denoted by V (x, r).

Theorem 1.1. If

lim inf
r→∞

lnV (x0, r)

r ln r
< ∞, (1.1)

for some x0 ∈ X, then (E,F) is conservative.

This result was obtained for a non-local Dirichlet form in [15, Theorem 1.1], where the left-
hand side of (1.1) is required to be less than 1/2. Let us explain the significance of removing the
constant 1/2 by comparing the uniqueness class with the conservation property. Let U be the set
of the solutions to the Cauchy problem of the heat equation with zero initial data. If any u ∈ U is
identically 0, then U is called a uniqueness class. Under an integrability assumption, determin-
ing the uniqueness class implies the conservativeness of Riemannian manifolds [13], Dirichlet
forms [35], and graphs [20]. In fact, A. Grigor’yan [13] and K.-T. Sturm [35] established the
sharp conservation test for complete Riemannian manifolds and strongly-local Dirichlet forms,
respectively, in this way. However, X. Huang [20, Section 3.3] constructed an example of a graph,
which verifies that the constant 1/2 is indeed needed for the uniqueness class. Therefore, Theo-
rem 1.1 together with Huang’s example demonstrates that the uniqueness class condition is really
stronger than the conservation property for a graph.

Next, we turn to the recurrence. For any x ∈ X and r > 0, the volumes of the closed ball
B(x, r) intersected with X(c) and X(j) are denoted by V (c)(x, r) and V (j)(x, r), respectively.
For r > 0, define
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ω(r) = sup
x∈X(j)

∫
x �=y

(
d(x, y) ∧ r

)2
j (x, dy).

Our second main result is

Theorem 1.2. If

lim inf
r→∞

1

r2

[
V (c)(x0, r) + V (j)(x0, r)ω(r)

]
< ∞, (1.2)

for some x0 ∈ X, then (E,F) is recurrent.

Theorem 1.2 was proven in the case of the Wiener process (namely, the process does not
jump) on a complete Riemannian manifold by S.Y. Cheng and S.T. Yau [4]. Theorem 1.2 is
sharp for an isotropic symmetric α-stable Lévy process on R

n, see, e.g., [30, Corollary 37.17
and Theorem 37.18] or Example 5.2 in Section 5. Here, let us mention that [30, Corollary 37.17
and Theorem 37.18] are derived from the characteristic functions of the associated processes,
see [32] for the recent development on this topic; while Theorem 1.2 is based on the theory of
Dirichlet forms.

This paper is organized as follows. Section 2 is devoted to the preliminaries. Here we establish
an integral-derivation type property for a Dirichlet form of jump-process type, which is a techni-
cal key to prove the conservation property. The main results, Theorems 1.1 and 1.2, are proved
in Sections 3 and 4, respectively. Finally, in Section 5 we present some examples of symmetric
jump-diffusions to illustrate the power of our main theorems.

2. Preliminaries: the integral-derivation property

In this section, we first prepare the preliminaries and then proceed to establish an integral-
derivation type property for a Dirichlet form with jump-diffusion type. This will be used to prove
the conservation property in the next section.

We begin with the following quite elementary fact.

Lemma 2.1. If u ∈ Floc ∩ L∞ has compact support, where L∞ = L∞(X) is the space of real-
valued bounded measurable functions on X, then u ∈F ∩ L∞.

Proof. Suppose that suppu ⊂ K with a compact set K . Let η ∈F∩L∞ agree with u on B(K,1).
Because of the regularity and the fact that the constant function belongs to Floc, see the remark
in [8, p. 117], there is a function χ ∈ F ∩ L∞ such that χ |K = 1 and suppχ ⊂ B(K,1). Since
ηχ ∈ F and u = ηχ , the statement follows. �

For the sake of simplicity, hereafter we denote Γ [·] = Γ (·,·), E[·] = E(·,·), etc. We say that
the jump range of E or E (j) is uniformly bounded, if there exists a constant a > 0 such that
supp(j (x, ·)) ⊂ B(x,a) for every x ∈ X.

Lemma 2.2. Suppose that the jump range of E is uniformly bounded. If u ∈ Floc ∩L∞ is constant
outside a compact set, then for any v ∈F ∩ L∞, uv ∈F ∩ L∞.
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Proof. Let K ⊂ X be a compact set such that u is constant outside it. Consider the sequence of
cut-off functions (χl)l∈N, where for l � 1,

χl = ((
2 − l−1ψ

) ∧ 1
)
+.

By Lemma 2.1, the function χl belongs to F for any l � 1. Obviously, χl = 1 on B(K, l) and
supp(χl) ⊂ B(K,2l).

We set for any l � 1, vl = uvχl . Since u ∈Floc ∩L∞ and v ∈ F∩L∞, vl belongs to Floc ∩L∞
and has compact support. Hence, Lemma 2.1 shows that vl ∈ F for any l � 1.

Next, we claim that the sequence (vl)l�1 is E -Cauchy. Set χl,l′ = χl − χl′ for l, l′ � 1. Since
the jump range of E is uniformly bounded, for large enough l and l′,

E[vl − vl′ ] = E
[
(χl − χl′)uv

] = κ · E[χl,l′v],

where κ = u|Kc . By [8, Lemma 3.2.5],

E (c)[χl,l′v]� 2
∫

v2Γ (c)[χl,l′ ]dm + 2
∫

χ2
l,l′Γ

(c)[v]dm.

Because of (M) and the chain rule of the strongly-local Dirichlet form, see, e.g., [35, p. 190],
Γ (c)[χl,l′ ] → 0 as l, l′ → ∞. This together with the fact χl,l′ → 0 as l, l′ → ∞ yields that
E (c)[χl,l′v] tends to zero as l, l′ → ∞.

On the other hand,

E (j)[χl,l′v] � 2
∫

v2(x)

∫ (
χl,l′(x) − χl,l′(y)

)2
j (x, dy)m(dx)

+ 2
∫ ∫

χ2
l,l′(y)

(
v(x) − v(y)

)2
j (x, dy)m(dx)

=: (I ) + (II).

For any x ∈ X,

∫ (
χl,l′(x) − χl,l′(y)

)2
j (x, dy)

=
∫ ((

χl(x) − χl(y)
) − (

χl′(x) − χl′(y)
))2

j (x, dy)

� 2
∫ (

χl(x) − χl(y)
)2

j (x, dy) + 2
∫ (

χl′(x) − χl′(y)
)2

j (x, dy)

� 2
(
l−2 + l′−2)∫

d(x, y)2 j (x, dy).

Combining the fact that supp(j (x, dy)) ⊂ B(x,a) for all x ∈ X and some a > 0 with the as-
sumption (M), the last term in the right-hand side of the equation above is dominated by

2
(
1 + a2)Mj

(
l−2 + l′−2),
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which tends to 0 as l, l′ → ∞. Hence (I ) → 0 as l, l′ → ∞. Since χl,l′ → 0, m-a.e. as l, l′ → ∞,
(II) → 0 as l, l′ → ∞. Thus, E (j)[χl,l′v] → 0 as l, l′ → ∞, and so the desired claim follows.

Finally, since vl → uv, m-a.e. as l → ∞, uv ∈ Fe. This together with the fact uv ∈ L2 and
[8, Theorem 1.5.2(iii)] yields that uv ∈ F . �

The following is the integral-derivation property for our Dirichlet form.

Lemma 2.3. Suppose that the jump range of E is uniformly bounded. If u ∈ F ∩ L∞ and φ ∈
Floc ∩ L∞ is constant outside a compact set, then

E(u,uφ) =
∫

uΓ (u,φ)dm +
∫

φΓ [u]dm, (2.3)

where Γ = 1
2 (Γ (c) + Γ (j)).

Proof. According to Lemma 2.2, uφ ∈ F . By the derivation property of E (c), see, e.g., [8,
Lemma 3.2.5 and the note on p. 117],∫

Γ (c)(u,uφ)dm =
∫

uΓ (c)(u,φ)dm +
∫

φΓ (c)[u]dm.

Next, by the integral property of a non-local Dirichlet form, see [27, Proposition 2.2], we have∫
Γ (j)(u,uφ)dm =

∫
uΓ (j)(u,φ)dm +

∫
φΓ (j)[u]dm.

Combining the two identities, we obtain (2.3). �
3. Proof of Theorem 1.1: the conservation property

The aim of this section is to prove Theorem 1.1. For any a > 0, consider a symmetric form
(E (j,a),F) defined by

E (j,a)[u] =
∫ ∫ (

u(x) − u(y)
)2

1{d(x,y)�a} j (x, dy)m(dx) for u ∈F .

Under the condition (M), (E (j,a) + E (c),F) is a regular Dirichlet form, and it is conservative if
and only if so is (E,F), see [31, Section 4] and [26, Section 3]. Clearly, (E (j,a),F) has uniformly
bounded range. Therefore, in order to prove the conservation property, we may and do assume
that E has uniformly bounded jump range. More precisely, we suppose that there exists a constant
a > 0 such that

j (x, dy) = 1B(x,a)(y) j (x, dy) for all x ∈ X.

Our proof is basically the Davies method [5], which was used also in [15]; however, we are able
to get a better result because of the choice of a. In this section, the constant a will be

a = a(x0,m) :=
[

8 lim inf
r→∞

logV (x0, r) + 9

]−1

, (3.4)

r log r
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where x0 ∈ X is the reference point in Theorem 1.1. For f ∈ C0(X) with f � 0, set

ψ(x) = d
(
x, supp(f )

)
and

φ(x) = eαψ(x),

where α > 0 is a constant determined later. Note that if n� 1 and x ∈ X satisfy

n� a−1[4a + 2d
(
x0, supp(f )

)]
and (n − 2)a � d(x, x0) � (n + 1)a,

then

ψ(x) � d(x, x0) − d
(
x0, supp(f )

)
� (n − 2)a − d

(
x0, supp(f )

)
� an/2,

and so

φ(x) = eαψ(x) � eaαn/2. (3.5)

For the function f above and any t � 0, we denote ut = Ttf . Since (Tt )t�0 is analytic, ut belongs
to the domain of the L2-generator A of (E,F); in particular, ut ∈F ∩ L∞ for any t > 0.

The following lemma provides the key estimate.

Lemma 3.1. Using the notations above, for any t � 0,

t∫
0

∫
φΓ [us]dmds � 2eγ t

∥∥φ1/2f
∥∥2

2, (3.6)

where γ = α2(e2αa + 1)M/2 and M = Mc ∨ Mj .

Proof. In the following, we denote the norm and the inner product of L2(X;m) by ‖ · ‖2 and
〈·,·〉, respectively. For any n� 1, set

φn(x) = eα(ψ(x)∧n).

Since ψ ∈ Floc, we may apply an argument in [8, pp. 116–117] to deduce that φn ∈Floc for every
n� 1. Taking into account that ψ ∈ L∞ is constant outside a compact set, Lemma 2.2 shows that
for every t > 0 and n� 1, utφn ∈ F . Therefore, by Lemma 2.3, for all t > 0,

1

2

d

dt

∥∥φ
1/2
n ut

∥∥2
2 = 〈u̇t , φnut 〉
= −E(ut , φnut )

= −
∫

φn Γ [ut ]dm −
∫

ut Γ (ut , φn) dm

� −
∫

φn Γ [ut ]dm +
∣∣∣∣
∫

ut Γ (ut , φn) dm

∣∣∣∣,
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where u̇t = d
dt

ut . This is,

∫
φnΓ [ut ]dm�

∣∣∣∣
∫

utΓ (ut , φn) dm

∣∣∣∣ − 1

2

d

dt

∥∥φ
1/2
n ut

∥∥2
2. (3.7)

Next, we estimate the first term on the right side of this equation. For every x ∈ X, according to
the Cauchy–Schwarz inequality,

∣∣Γ (j)(ut , φn)(x)
∣∣ =

∣∣∣∣
∫ (

ut (x) − ut (y)
)(

φn(x) − φn(y)
)
j (x, dy)

∣∣∣∣
�

√∫ (
ut (x) − ut (y)

)2
j (x, dy)

√∫ (
φn(x) − φn(y)

)2
j (x, dy)

=
√

Γ (j)[ut ](x)

√
Γ (j)[φn](x).

By the Cauchy–Schwarz inequality again,

∣∣∣∣
∫

utΓ
(j)(ut , φn) dm

∣∣∣∣�
∫

φ
1/2
n

√
Γ (j)[ut ]φ−1/2

n

√
u2

t Γ
(j)[φn]dm

�
√∫

φnΓ (j)[ut ]dm

√∫
φ−1

n u2
t Γ (j)[φn]dm.

Since

∣∣eαr − 1
∣∣� α eαa|r| for any r ∈ (0, a],

it follows that

∣∣φn(x) − φn(y)
∣∣ � αeαa φn(x) d(x, y) for any x, y ∈ X with d(x, y)� a,

and so

Γ (j)[φn](x) �
(
αeαaφ(x)

)2
∫

d2(x, y) j (x, dy) for every x ∈ X.

Since supp(j (x, dy)) ⊂ B(x, a) for any x ∈ X and some constant a ∈ (0,1), we get

∫
φ−1

n u2
t Γ

(j)[φn]dm� α2e2αa

∫
φn(x)u2

t (x)

∫
d(x, y)2 j (x, dy)m(dx)

� α2e2αa

∫
φn(x)u2

t (x)

∫ (
d(x, y) ∧ a

)2
j (x, dy)m(dx)

� Mjα
2e2αa

∫
φn u2

t dm.

Therefore, for any λ > 0,
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∣∣∣∣
∫

utΓ
(j)(ut , φn) dm

∣∣∣∣�
√

Mj

∫
φn Γ (j)[ut ]dm

√
α2e2αa

∫
φn u2

t dm

� Mj

2λ

∫
φn Γ (j)[ut ]dm + λα2e2αa

2

∫
φn u2

t dm

= Mj

2λ

∫
φn Γ (j)[ut ]dm + λα2e2αa

2

∥∥φ
1/2
n ut

∥∥2
2,

where in the last inequality we have used the fact that 2ξη � λ−1ξ2 + λη2 for any ξ, η � 0 and
λ > 0.

On the other hand, we apply the argument above for the local term to get that

∣∣∣∣
∫

utΓ
(c)(ut , φn) dm

∣∣∣∣�
√∫

φnΓ (c)[ut ]dm

√∫
φ−1

n u2
t Γ

(c)[φn]dm.

According to the chain rule for a strongly-local Dirichlet form, see, e.g., [35, p. 190],∫
φ−1

n u2
t Γ

(c)[φn]dm� α2
∫

u2
t φnΓ

(c)[d]dm,

which along with the assumption (M) gives us∫
φ−1

n u2
t Γ (c)[φn]dm� Mcα

2
∫

u2
t φn dm.

We again follow the argument above to obtain the estimate:∣∣∣∣
∫

utΓ
(c)(ut , φn) dm

∣∣∣∣� Mc

2λ

∫
φn Γ (c)[ut ]dm + λα2

2

∥∥φ
1/2
n ut

∥∥2
2 for any λ > 0.

Combining the estimates for the non-local and strongly-local terms, we get that∣∣∣∣
∫

utΓ (ut , φn) dm

∣∣∣∣� M

2λ

∫
φnΓ [ut ]dm + λα2(e2αa + 1)

2

∥∥φ
1/2
n ut

∥∥2
2.

By applying this inequality for (3.7), we have(
2 − M

λ

)∫
φnΓ [us]dm� λα2(e2αa + 1

)∥∥φ
1/2
n us

∥∥2
2 − d

ds

∥∥φ
1/2
n us

∥∥2
2. (3.8)

If we integrate this with respect to s over [0, t], then

(
2 − M

λ

) t∫
0

∫
φnΓ [us]dm

� λα2(e2αa + 1
) t∫ ∥∥φ

1/2
n us

∥∥2
2 ds − (∥∥φ

1/2
n ut

∥∥2
2 − ∥∥φ

1/2
n f

∥∥2
2

)
. (3.9)
0
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We estimate ‖φ1/2
n us‖2

2 for any s � t by first letting λ = M/2 in (3.8),

d

ds

∥∥φ
1/2
n us

∥∥2
2 �

Mα2(e2αa + 1)

2

∥∥φ
1/2
n us

∥∥2
2,

and then, by applying the Gronwall inequality:

∥∥φ
1/2
n us

∥∥2
2 � exp

(
Mα2(e2αa + 1)s

2

)∥∥φ
1/2
n f

∥∥2
2.

Substituting this into (3.9), we have

(
2 − M

λ

) t∫
0

∫
φnΓ [us]dmds

�
∥∥φ

1/2
n f

∥∥2
2 + 2λ

M

[
exp

(
Mα2(e2αa + 1

)
t/2

) − 1
]∥∥φ

1/2
n f

∥∥2
2.

Setting λ = M , this becomes

t∫
0

∫
φnΓ [us]dmds � 2 exp

(
Mα2(e2αa + 1

)
t/2

)∥∥φ
1/2
n f

∥∥2
2.

The required assertion (3.6) follows by letting n → ∞. �
We are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We adopt the notations in the proof of Lemma 3.1. Define a cut-off
function gn for any n� 1 as follows

gn(x) := ((
n − a−1d(x, x0)

) ∧ 1
)
+.

By Lemma 2.1, gn belongs to F . To the end of the proof, we show that there exists a sequence
(nk)k�0 such that nk → ∞ as k → ∞, and for every t > 0,

t∫
0

〈u̇s , gnk
〉ds → 0 as k → ∞.

Indeed, we can deduce from this and the dominated convergence theorem that

〈Ttf,1〉 = lim
k→∞〈ut , gnk

〉 = lim
k→∞〈f,gnk

〉 + lim
k→∞

t∫
0

〈u̇s , gnk
〉ds = 〈f,1〉,

which immediately implies the conservation property.
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Since (us)s>0 solves the heat equation and gn ∈F ,

t∫
0

〈u̇s , gn〉ds = −
t∫

0

E(us, gn) ds = −
t∫

0

(
E (c)(us, gn) + E (j)(us, gn)

)
ds. (3.10)

First, we estimate the second term, the harder one, on the right side. For any t > 0,

∣∣∣∣∣
t∫

0

E (j)(us, gn) ds

∣∣∣∣∣�
t∫

0

∣∣∣∣
∫

Γ (j)(us, gn) dm

∣∣∣∣ds

�
t∫

0

[∫ √
Γ (j)[us]

√
Γ (j)[gn]dm

]
ds

=
t∫

0

[∫ √
φΓ (j)[us]

√
φ−1Γ (j)[gn]dm

]
ds

�
t∫

0

√∫
φΓ (j)[us]dm

√∫
φ−1Γ (j)[gn]dmds

�

√√√√√
t∫

0

∫
φΓ (j)[us]dmds

√√√√√
t∫

0

∫
φ−1Γ (j)[gn]dmds

=

√√√√√
t∫

0

∫
φΓ (j)[us]dmds

√
t

∫
φ−1Γ (j)[gn]dm, (3.11)

where all the inequalities above follow from the Cauchy–Schwarz inequality. For any n > 0, let
An denote the following annulus associated with the constant a

An = An(a) = B
(
x0, (n + 1)a

) \ B
(
x0, (n − 2)a

)
.

Since supp(gn) ⊂ B(x0, na) and supp(j (x, dy)) ⊂ B(x, a) for all x ∈ X, it holds that if x /∈ An,

Γ (j)[gn](x) =
∫ (

gn(x) − gn(y)
)2

j (x, dy) = 0;

if x ∈ An,

Γ (j)[gn](x) � a−2
∫

d(x, y)2 j (x, dy)

� a−2
∫ (

d(x, y) ∧ a
)2

j (x, dy)

� a−2Mj,
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where in the last inequality we have used the fact that 0 < a < 1. Choosing n large enough so
that n� a−1[4a + 2d (x0, supp(f ))], we get from (3.5) that∫

φ−1Γ (j)[gn]dm =
∫
An

φ−1Γ (j)[gn]dm

� a−2Mje
−aαn/2 m(An).

Therefore, by (3.11),∣∣∣∣∣
t∫

0

E (j)(us, gn) ds

∣∣∣∣∣
2

� a−2tMje
−aαn/2 m(An)

t∫
0

∫
φΓ (j)[us]dmds.

In a similar way, we can prove that∣∣∣∣∣
t∫

0

E (c)(us, gn) ds

∣∣∣∣∣
2

� a−2tMce
−aαn/2 m(An)

t∫
0

∫
φΓ (c)[us]dmds.

Therefore, ∣∣∣∣∣
t∫

0

E(us, gn) ds

∣∣∣∣∣
2

� 2a−2tMe−aαn/2 m(An)

t∫
0

∫
φΓ [us]dmds. (3.12)

We now apply (3.12) and Lemma 3.1 for (3.10) to get that

∣∣∣∣∣
t∫

0

〈u̇s , gn〉ds

∣∣∣∣∣
2

� 2a−2tMe−aαn/2 m(An)

t∫
0

∫
φΓ [us]dmds

� 4a−2tM
∥∥φ1/2f

∥∥2
2 exp

(
Mα2 (e2αa + 1)t

2
− αan

2
+ logm(An)

)
. (3.13)

Finally, we estimate (3.13) by applying the volume assumption (1.1). Indeed, according to (1.1),
there exists a sequence (nk)k�1 such that nk → ∞ as k → ∞, and for a large enough k � 1,

logm(Ank
)� logV

(
x0, (nk + 1)a

)
� (c3 − 1/2)

(
(nk + 1)a

)
log

(
(nk + 1)a

)
� ac3nk lognk,

where

c3 = lim inf
logV (x0, r) + 1.
r→∞ r log r
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Taking α = 4c3 lognk and k large enough such that nk � a−1[4a+2d(x0, supp(f ))], we estimate
the right side of (3.13) to get

∣∣∣∣∣
t∫

0

〈u̇s , gnk
〉ds

∣∣∣∣∣
2

� 4a−2tM
∥∥φ1/2f

∥∥2
2

× exp

(
Mα2(e2αa + 1)t

2
− 2ac3nk lognk + ac3nk lognk

)

= 4a−2tM
∥∥φ1/2f

∥∥2
2 exp

(
Mα2(e2αa + 1)t

2
− ac3nk lognk

)
.

Since e2αa = n
8ac3
k and 8ac3 < 1, the inequality above implies that for any t > 0

lim
k→∞

t∫
0

〈u̇s , gnk
〉ds = 0.

This completes the proof. �
4. Proof of Theorem 1.2: the recurrence

This section is devoted to the proof of the recurrence test, Theorem 1.2.

Proof of Theorem 1.2. Let x0 ∈ X be the reference point in Theorem 1.2. For R > 2, set

θR(x) =
((

R − d(x, x0)

R − 1

)
∧ 1

)
+
.

Since θR belongs to Floc ∩ L∞ and has compact support, by Lemma 2.1, θR belongs to F .
According to the condition (M) and the chain-rule for a strongly-local Dirichlet form,

E (c)[θR] =
∫
X

Γ (c)[θR]dm

=
(

1

R − 1

)2 ∫
B(x0,R)

Γ (c)[d]dm

� Mc

(
1

R − 1

)2

V (c)(x0,R)

� 4McV
(c)(x0,R)

R2
.

On the other hand, we find that for any c1 > 2
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E (j)[θR] =
∫ ∫ (

θR(x) − θR(y)
)2

j (x, dy)m(dx)

� 2

(R − 1)2

∫
B(x0,R)

∫
B(x0,c1R)

d(x, y)2 j (x, dy)m(dx)

+ 2
∫

B(x0,R)

∫
B(x0,c1R)c

j (x, dy)m(dx)

� 2

(R − 1)2

∫
B(x0,R)

∫
d(x,y)�2c1R

d(x, y)2 j (x, dy)m(dx)

+ 2
∫

B(x0,R)

∫
d(x,y)�(c1−1)R

j (x, dy)m(dx),

where we used the facts that d(x, y) � R + c1R � 2c1R if x ∈ B(x0,R) and y ∈ B(x0, c1R);
d(x, y) � c1R − R � R1 if x ∈ B(x0,R) and y /∈ B(x0, c1R). The last expression is bounded
from above by

�
8c2

1

(R − 1)2

∫
B(x0,R)

∫ (
d(x, y) ∧ R

)2
j (x, dy)m(dx)

+ 2

R2

∫
B(x0,R)

∫ (
d(x, y) ∧ R

)2
j (x, dy)m(dx)

�
33 c2

1

R2

∫
B(x0,R)

∫ (
d(x, y) ∧ R

)2
j (x, dy)m(dx).

Therefore, under the assumption (M), we have that for c2 = 4Mc + 33c2
1

E[θR] � 1

R2

[
4McV

(c)(x0,R) + 33c2
1V

(j)(x0,R) sup
x∈X(j)

∫ (
d(x, y) ∧ R

)2
j (x, dy)

]

� c2

R2

[
V (c)(x0,R) + V (j)(x0,R) sup

x∈X(j)

∫ (
d(x, y) ∧ R

)2
j (x, dy)

]
.

According to the volume condition (1.2), there exists a sequence (nk)k�0 such that nk → ∞ as
k → ∞, and

lim inf
k→∞ E[θRnk

] < ∞.

Applying [8, Theorem 1.6.3] and [34, (1.6.1) and (1.6.1′)], this completes the proof. �
5. Examples

In this section we present some examples to illustrate the power of Theorems 1.1 and 1.2.
Throughout the section, we denote the space of real-valued Lipschitz continuous functions with
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compact support on a metric space X by C
Lip
0 (X). For a measure space (X,m) and a quadratic

form E defined in L2(X;m), we denote

E1[u] = ‖u‖2
L2 + E[u],

whenever the right side makes sense. We start with the following remark for the volume test in
Theorem 1.1.

Remark 5.1. Let (X,d,m) be a complete metric measure space such that m is a Radon measure
with full support. Assume that there is a point x0 ∈ X such that

sup
r>0

V (x0,2r)

V (x0, r)
< ∞,

where V (x0, r) denotes the volume of the closed ball centered at x0 with radius r > 0. This
assumption is called the volume doubling condition at point x0, and it implies that there is a
constant κ > 0 such that

sup
r>0

V (x0, r)

rκ
< ∞.

In particular, condition (1.1) in Theorem 1.1 is satisfied. A typical example which fulfills the
volume doubling condition is a Riemannian manifold with non-negative Ricci curvature.

5.1. Sharpness examples

In the following example, we consider two classes of symmetric jump processes on the so
called κ-set.

Example 5.2. Let (X, | · |,m) be a closed κ-set in R
n with 0 < κ � n, i.e., | · | is the Euclidean

distance, and for all x ∈ X and r > 0,

m
(
B(x, r)

) � rκ .

Here, the symbol � means that the ratio of the left and the right-hand sides is pinched by two
positive constants. Assume that the jump kernel j (x, dy) has a density j (x, y) with respect to
the measure m(dy) such that one of the following two conditions is satisfied with a constant
α ∈ (0,2):

(i) j (x, y) � 1

|x − y|κ+α
1{|x−y|�1} + 1

|x − y|κ+β
1{|x−y|>1}, where 0 < β < ∞;

(ii) j (x, y) � 1

|x − y|κ+α
1{|x−y|�1} + e−c|x−y|

|x − y|κ+α
1{|x−y|>1}, where c > 0.

For u,v ∈ C
Lip
0 (X), define

E(u, v) =
∫ ∫ (

u(x) − u(y)
)(

v(x) − v(y)
)
j (x, y)m(dx)m(dy).
x �=y
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Let F be the closure of C
Lip
0 (X) with respect to the

√
E1-norm. The symmetric form (E,F)

is a regular Dirichlet form in L2(X,m), see, e.g., [37]. According to Theorems 1.1 and 1.2,
the Dirichlet form (E,F) is conservative, and it is recurrent if additionally 0 < κ � β ∧ 2 and
0 < κ � 2 for the cases (i) and (ii), respectively.

Remark 5.3. Example 5.2 is motivated by recent developments for layered stable processes [16]
and tempering stable processes [29]. In particular, in case (i) if β = α, then the associated Hunt
process is called a stable-like process [2].

5.2. Disconnected space

The following example shows that the state space may be topologically disconnected, and the
particles jump between different connected components and it behaves as a jump-diffusion inside
a connected component.

Example 5.4. Let X = ⋃
i∈Z Xi , where for each i ∈ Z, Xi = {(xi, i) ∈ R

n+1: xi ∈ R
n}. Any

point x in X can be expressed uniquely as x = (xi, i) with xi ∈ Rn and i ∈ Z, and we denote the
associated projections by p :X → R

n and q :X → Z. For any x, y ∈ X, the distance d is given
by

d(x, y) = ∣∣p(x) − p(y)
∣∣ + ∣∣q(x) − q(y)

∣∣,
where | · | is the Euclidean distance. Let m(dx) = ∑

i∈Z mi(dxi) be a measure on X such that for
each i � 1, mi(dxi) = Ψ (xi) dxi is a measure on Xi , where Ψ ∈ C(Rn) is a positive function,
and dxi is the n-dimensional Lebesgue measure. Clearly, m is a Radon measure on X. The state
space is the triple (X,d,m).

For any u ∈ C
Lip
0 (X), define

E[u] = E (c)[u] + E (j)[u],

where

E (c)[u] =
∫
X

|∇u|2 dm,

E (j)[u] =
∫
X

∫
x �=y

(
u(x) − u(y)

)2
j (x, y)m(dx)m(dy),

and

j (x, y) � d(x, y)−(n+α)1{d(x,y)<1} + d(x, y)−(n+β+1)1{d(x,y)�1}
Ψ (p(x)) + Ψ (p(y))

, x, y ∈ X

with some constants 0 < α < 2 and β > 0. Let F be the closure of C
Lip
0 (X) with respect to the√

E1-norm. Since for any x ∈ X
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∫
x �=y

(
1 ∧ d(x, y)2)j (x, y)m(dy)

�
∫

0<d(x,y)<1

d(x, y)−(n+α−2)Ψ (p(y)) dp(y)

Ψ (p(x)) + Ψ (p(y))
+

∫
d(x,y)�1

d(x, y)−(n+β+1)Ψ (p(y)) dp(y)

Ψ (p(x)) + Ψ (p(y))

�
∫

0<d(x,y)<1

d(x, y)−(n+α−2) dp(y) + 2
∑
k�0

∫
|p(x)−p(y)|�k+1

∣∣p(x) − p(y)
∣∣−(n+β+1)

dp(y),

which is bounded from above by some absolute constant c > 0, it follows form the proof of [37]
that (E,F) is a regular Dirichlet form in L2(X,m).

According to the arguments above, we can easily claim that the condition (M) is satisfied.
Therefore, by Theorem 1.1, if there is a constant c > 0 such that for r > 0 large enough

∑
0�k�[r]

∫
B(0,[r]−k)

Ψ (z) dz � rcr , (5.14)

where dz is the n-dimensional Euclidean measure and [r] is the least integer such that
[r] � r , then the Dirichlet form (E,F) is conservative. For instance, (5.14) is satisfied, if
Ψ (x)� |x||x| ln |x| for |x| large enough.

For the recurrence, we additionally assume that there are two constants c0, c1 > 0 such that

j (x, y) � 1{d(x,y)�c0}
d(x, y)1+α

(5.15)

and

Ψ (x)� c1|x|1−n for |x| large enough. (5.16)

Condition (5.16) will imply that for any point x0 ∈ X,

lim inf
r→∞

V (x0, r)

r2
� 2 lim inf

r→∞
1

r2

∑
0�k�[r]

∫
B(x0,[r]−k)

Ψ (x) dx < ∞.

Next, by (5.15), there is a constant c2 > 0 depending only on the dimension such that

ω(r) � sup
x∈X

∫
X

d(x, y)2j (x, y)Ψ
(
p(y)

)
dp(y)

� c1 sup
x∈X

∫
d(x,y)�c0

d(x, y)1−α
∣∣p(y)

∣∣1−n
dp(y)

� 2c1c2

∑
0�k�[c0]

[c0]−k∫
0

r1−α dr < ∞.

Therefore, (E,F) is recurrent by Theorem 1.2.
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5.3. Volume tests

The first volume test for non-local Dirichlet forms to be conservative was obtained in [26,
Main Result], and then refined in [15, Theorem 1.1]. It is easy to construct an example, which
is not covered by these tests but by Theorem 1.1. Here, we illustrate this by using a weighted
Euclidean space as well as a model manifold.

Example 5.5. Let (R, | · |,m) be a weighted Euclidean space, where | · | is the Euclidean distance
and the measure is m(dx) = e2λ|x| dx for some λ > 0. For u ∈ C

Lip
0 (R), define

E[u] =
∫ ∫
x �=y

(
u(x) − u(y)

)2
j (x, y)m(dx)m(dy),

where

j (x, y) = (
e−λ(|x|+|y|))1{|x−y|�1}.

Let F be the closure of C
Lip
0 (R) with respect to the

√
E1-norm. The symmetric form (E,F)

becomes a regular Dirichlet form in L2(R,m), see, e.g., [37]. Let j (x, dy) = j (x, y)m(dy). It
holds that

sup
x∈R

∫ (
1 ∧ |x − y|2) j (x, dy) = sup

x∈R

∫
{|y−x|�1}

|x − y|2j (x, y)m(dy)

= sup
x∈R

e−λ|x|
∫

{|z|�1}
z2eλ|x−z| dz

�
∫

{|z|�1}
z2eλ|z| dz < ∞.

On the other hand, it is easy to see that in this example (1.1) is also satisfied. Therefore, according
to Theorem 1.1, the Dirichlet form (E,F) is conservative.

However, since x �→ e−r|x| /∈ L1(R,m) for any r � 2λ, this example is not covered by [26,
Main Result].

Example 5.6 (Model manifolds). (See, e.g., [14].) Let (Sn, g) be the n-dimensional unit sphere
with n � 1. A model manifold M = (0,+∞) × S

n is a Riemannian manifold with Riemannian
tensor

dr2 + σ 2(r)g

where σ is a locally-Lipschitz continuous positive function on [0,+∞) such that σ(0) = 0 and
σ ′(+0) = 0. Thanks to these two conditions, the manifold M is geodesically complete, and so it
satisfies the assumption for the state space as explained in Introduction. Let dm = ωnσ

n(r) dr

be a measure on M , where ωn is the volume of Sn.



J. Masamune et al. / Journal of Functional Analysis 263 (2012) 3984–4008 4003
For any u ∈ C
Lip
0 (M), define

E[u] = E (c)[u] + E (j)[u],
where

E (c)[u] =
∫
M

|∇u|2 dm,

E (j)[u] :=
∫ ∫

M×M\diag

(
u(x) − u(y)

)2
j (x, y)m(dy)m(dx)

and

j (x, y) =
[

1{d(x,y)<1}
σ(r(x))σ (r(y))

]n

.

Let F be the closure of C
Lip
0 (M) with respect to the

√
E1-norm. It is easy to check that the

symmetric form (E,F) is a regular Dirichlet form in L2(M,m).
By [9], it is known that (M-2) is satisfied. On the other hand, since

sup
x,y∈M

j(x, y)σn
(
r(y)

)
� 1,

we obtain that

Mj = sup
x∈M

∫
M

(
1 ∧ d(x, y)2) j (x, dy)

� sup
x∈M

∫
M

d(x, y)2 j (x, y)m(dy)

� sup
x∈M

∫
d(x,y)<1

d(x, y)2ωn dy

� ωn.

Therefore, (M-3) is also satisfied. Since (M-1) clearly follows, we can apply our main theorem.
For example, if σ satisfies

σ(r) � [
rr (1 + ln r) ∨ 1

]1/n
,

then for any fixed x0 ∈ M ,

rr/2 < V (x0, r) < 2rr for large r > 0.

Therefore, (E,F) is conservative by Theorem 1.1. We note that this model manifold M does not
satisfy the volume tests in [26,15].
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5.4. A mixed-type Laplacian on graphs

A graph admits natural different “Laplacians”; namely, a physical Laplacian, a combinatorial
Laplacian, and a quantum Laplacian. The former two are non-local operators, and the last one is a
local operator. The combinatorial Laplacian is bounded, and so the corresponding process always
is conservative. The conservativeness of the process associated with the physical Laplacian was
studied in [6,7,39,40,15]. The conservativeness and recurrence of the process generated by the
quantum Laplacian was studied in [35]. In the following example, we consider the sum of a
physical Laplacian and a quantum Laplacian, and study its conservativeness.

Let X = (V ,E) be a locally finite graph, where V and E are the sets of vertices and edges,
respectively. Let μ be a positive function on X, and ω :X × X → [0,∞) be a symmetric non-
negative function, such that ω(x, y) = 0 whenever x = y for x, y ∈ X or at least one of x and y

does not belong to V . Now, we recall the standard adapted distance d in [15]. For any x, y ∈ X,
x ∼ y means that x, y are neighbors; that is, (x, y) ∈ E. For all x, y ∈ V with x ∼ y, define

σ(x, y) = min

{
1√

deg(x)
,

1√
deg(y)

,1

}
,

where

deg(x) = 1

μ(x)

∑
y: y∼x

ω(x, y).

It naturally induces a metric d on V as

d(x, y) = inf

{
n−1∑
i=0

σ(xi, xi + 1): x0, . . . , xn is a chain connecting x and y

}
.

The metric d can be extended to X by linear interpolation. We assume that the lengths of all
edges e ∈ E are uniformly bounded from below by a positive constant. This implies that (X,d)

is a metrically complete space; in particular, our assumption on the space is satisfied.
We further assume that each edge e ∈ E is isometric to an interval of R, which yields the

measure dx on e. The space (X,d) is a metric graph. Consider the following measure m on X:

m := δEφ dx + δV μ,

where φ is a continuous positive function on E.
For u ∈ C

Lip
0 (X), define

E[u] := E (c)[u] + E (j)[u],

where

E (c)[u] =
∫ (

∂u

∂x

)2

dm,
E
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and

E (j)[u] =
∑

x,y∈V

(
u(x) − u(y)

)2
ω(x, y).

The generators associated with E (c) and E (j) are called the quantum graph, see, e.g. [25] and the
physical Laplacian, respectively. Let F be the closure of C

Lip
0 (X) with respect to the

√
E1-norm.

We have

Lemma 5.7. The form (E,F) is a regular Dirichlet form.

Proof. First, we claim that C
Lip
0 (X) is dense in L2(X;m). Let x0 be a fixed point in V . For any

u ∈ L2(X;m) and any ε > 0, choose R > 0 so large that there is a function vε ∈ C∞
0 (B(R) ∩ E)

which satisfies

‖vε − u|E‖L2(E;dx) < ε,

and that the function wε = 1B(R)u satisfies that

‖wε − u|V ‖L2(V ;μ) < ε,

where B(R) := B(x0,R). Set ũε = δEvε + δV wε . For any x ∈ B(R) and e ∈ E with x ∼ e (i.e.,
x ∈ e), let δ = δ(x, e) be a positive number such that δ < |e|/2, and modify ũε on e ∩ B(x, δ)

so that ũε is linear and continuous on e ∩ B(x, δ). Furthermore, since B(R) ∩ V is finite, by the
Hopf–Rinow type property of locally finite graphs [21], we are able to do this modification for
any x ∈ B(R) ∩ V and any e ∈ E with x ∼ e. Consequently, we obtain a sequence of functions
uδ

ε ∈ C
Lip
0 (B(R)) which converges to u in L2(X;m) as δ, ε → 0. The required claim is proved.

Next, we verify that (E,C
Lip
0 (X)) is closable. Let (un)n�1 ⊂ C

Lip
0 (X) be an E1-Cauchy se-

quence such that un → 0 in L2(X;m) as n → ∞. One can easily prove that E (c)[un|E] → 0
as n → ∞, since E (c) is equivalent to the Dirichlet integral of an open interval. Moreover, if
v ∈ C

Lip
0 (X), then

E (j)(un|V , v|V ) =
∑

x,y∈V

(
un(x) − un(y)

)(
v(x) − v(y)

)
ω(x, y) → 0 as n → ∞.

Therefore, the desired claim follows and we denote the closure of (E,C
Lip
0 (X)) by (E,F).

The Markov property of (E,F) follows immediately from the definition of E . Finally, since
C0 ∩ F is both dense in C0 and F with respect to the sup-norm and the E1-norm, respectively,
(E,F) is regular. �

It is easy to see that the conditions (M-1) and (M-2) are satisfied since X(c) = E. Moreover,
since E (j) can be expressed as

E (j)[u] =
∫ ∫ (

u(x) − u(y)
)2 ω(x, y)

μ(x)μ(y)
m(dy)m(dx),
X×X
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the associated jump kernel j and Γj have the forms

j (x, dy) = ω(x, y)

μ(x)μ(y)
m(dy)

and

Γj [u](x) =
∫
X

(
u(x) − u(y)

)2 ω(x, y)

μ(x)μ(y)
m(dy) for any x ∈ X.

Clearly, (M-3) is satisfied. Therefore the Dirichlet form (E,F) satisfies the condition (M).
To state our main result in this subsection, we need some notations. Denote by ρ the graph

distance extended to X, and by Bρ(x0,R) the associated ball at x0 ∈ V with radius R > 0. For
any n ∈ N, let Sρ(x0, n) be the “boundary” Bρ(x0, n) \ Bρ(x0, n − 1).

Proposition 5.8. If μ is the counting measure and there are a point x0 ∈ V and a constant C > 0
such that

m
(
Sρ(x0, n)

)
� Cn2 for all large enough n ∈ N, (5.17)

then (E,F) is conservative.

Proof. The condition (5.17) implies that for any x ∈ V ,

d(x0, x) � δ logρ(x0, x), (5.18)

where δ > 0 is a constant depending only on C in (5.17) (see [15]). Let xx′ be the edge
with boundary {x, x′}. Let y ∈ X and x, x′ ∈ V such that y ∈ xx′. Without loss of generality,
we assume that ρ(x0, y) � ρ(x0, x

′). By using (5.18), the triangle inequality and the fact that
d(x, x′) � ρ(x, x′) = 1, we find that

ρ(x0, y) � ed(x0,x
′)/δ � e1/δed(x0,x)/δ.

Since d(x0, y)� d(x0, x) ∧ d(x0, x
′), we obtain that there is a constant c > 0 such that

ρ(x0, y) � ced(x0,y)/δ for any y ∈ X.

It follows that there exists a constant b > 0 such that

m
(
Bd(x0, r)

)
� m

(
Bρ(x0, ce

r/δ)
)
� exp(br) for all large enough r > 0.

Therefore, (E,F) is conservative by Theorem 1. �
Remark 5.9. By an example of R. Wojciechowski [41], the boundary volume growth of quadratic
rate (5.17) is sharp. The second part of Proposition 5.8 was obtained in [15] for a physical Lapla-
cian on a graph.

On the other hand, it is easy to check that the condition (5.17) is satisfied, if there is a constant
C > 0 such that
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(1) μ(Sρ(x0, n)) � Cn2 for all large enough n ∈N,
(2) φ(x) � Cρ(x0, x)−2 for every x ∈ X.

Indeed, the first condition implies that there are at most (Cn2)2-many edges in Sρ(x0, n) connect-
ing vertices in Sρ(n) and Sρ(n − 1). The second condition then implies that there is a constant
c > 0 such that

m
(
Sρ(x0, n) ∩ E

)
� C3n4

(n − 1)2
� cn2 for all large enough n.

This together with the first condition yields (5.17).

Acknowledgments

Part of this work was done when J. Masamune and J. Wang visited TU Dresden as a visitor and
a Humboldt fellow, respectively. They are grateful to Professor René L. Schilling for providing
them with nice working environment and for stimulating discussions. J. Masamune also would
like to express his sincere gratitude to Professor Umberto Mosco for several inspiring discussions
and acknowledge the support by the National Science Foundation Grant No. 1109356. J. Wang
also gratefully acknowledges the financial support through National Natural Science Foundation
of China (No. 11126350 and 11201073) and the Program for Excellent Young Talents and for
New Century Excellent Talents in Universities of Fujian (No. JA10058, JA11051 and JA12053).

References

[1] R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. 102 (1974) 192–240.
[2] Z.-Q. Chen, T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stochastic Process. Appl. 108

(2003) 27–62.
[3] Z.-Q. Chen, T. Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffu-

sions with jumps, Rev. Mat. Iberoam. 26 (2010) 551–589.
[4] S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm.

Pure Appl. Math. 28 (1975) 333–354.
[5] E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math. 58 (1992)

99–119.
[6] J. Dodziuk, Elliptic operators on infinite graphs, in: B. Bavnbek, S. Klimek, M. Lesch, W. Zhang (Eds.), Analysis,

Geometry and Topology of Elliptic Operators, World Sci. Publ., Hackensack, NJ, 2006, pp. 353–368.
[7] J. Dodziuk, V. Mathai, Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians, in:

J. Jorgenson, L. Walling (Eds.), The Ubiquitous Heat Kernel, in: Contemp. Math., vol. 398, Amer. Math. Soc.,
Providence, RI, 2006, pp. 69–81.

[8] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter,
Berlin, 1994.

[9] M.P. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. 60 (1954) 140–145.
[10] M.P. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl.

Math. 12 (1959) 1–11.
[11] A. Grigor’yan, On the existence of a Green function on a manifold, Uspekhi Mat. Nauk 38 (1983) 161–162 (in

Russian); Russian Math. Surveys 38 (1983) 190–191 (in English).
[12] A. Grigor’yan, On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds,

Uspekhi Mat. Nauk 128 (1985) 354–363 (in Russian); Math. USSR Sb. 56 (1987) 349–358 (in English).
[13] A. Grigor’yan, On stochastically complete manifolds, Dokl. Akad. Nauk SSSR 290 (1986) 534–537 (in Russian);

Soviet Math. Dokl. 34 (1987) 310–313 (in English).
[14] A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on

Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999) 135–249.



4008 J. Masamune et al. / Journal of Functional Analysis 263 (2012) 3984–4008
[15] A. Grigor’yan, X.-P. Huang, J. Masamune, On stochastic completeness of jump processes, Math. Z. 271 (2012)
1211–1239.

[16] C. Houdré, R. Kawai, On layered stable processes, Bernoulli 13 (2007) 261–287.
[17] E.P. Hsu, Heat semigroup on a complete Riemannian manifold, Ann. Probab. 17 (1989) 1248–1254.
[18] X. Huang, Stochastic incompleteness for graphs and weak Omori–Yau maximum principle, J. Math. Anal. Appl. 379

(2011) 764–782.
[19] X. Huang, On stochastic completeness of weighted graphs, Dissertation, Bielefeld University, 2011.
[20] X. Huang, On uniqueness class for a heat equation on graphs, J. Math. Anal. Appl. 393 (2012) 377–388.
[21] X. Huang, M. Keller, J. Masamune, R. Wojciechowski, A note on self-adjoint extensions of the Laplacian on

weighted graphs, arXiv:1208.6358.
[22] L. Karp, Subharmonic functions, harmonic mappings and isometric immersions, in: S.T. Yau (Ed.), Seminar on

Differential Geometry, in: Ann. of Math. Stud., vol. 102, Princeton, 1982, pp. 133–142.
[23] L. Karp, P. Li, The heart equation on complete Riemannian manifolds, unpublished manuscript, 1983.
[24] M. Keller, D. Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew.

Math. 666 (2012) 189–223.
[25] P. Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004) 107–128.
[26] J. Masamune, T. Uemura, Conservation property of symmetric jump processes, Ann. Inst. H. Poincaré Probab.

Stat. 47 (2011) 650–662.
[27] J. Masamune, T. Uemura, Lp-Liouville property for nonlocal operator, Math. Nachr. 284 (2011) 2249–2267.
[28] H. Okura, Capacity inequalities and recurrence criteria for symmetric Markov processes of pure jump type, in:

S. Watanabe, et al. (Eds.), Probability Theory and Mathematical Statistics, World Sci. Publ., River Edge, NJ, 1996,
pp. 387–395.

[29] J. Rosinski, Tempering stable processes, Stochastic Process. Appl. 117 (2007) 677–707.
[30] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.
[31] R.L. Schilling, T. Uemura, On the Feller property of Dirichlet forms generated by pseudo-differential operator,

Tohoku Math. J. 59 (2007) 401–422.
[32] R.L. Schilling, J. Wang, Some theorems on Feller processes: transience, local times and ultracontractivity, Trans.

Amer. Math. Soc., in press.
[33] Y. Shiozawa, Conservation property of symmetric jump-diffusion processes, Forum Math., in press.
[34] M. Silverstein, Symmetric Markov Processes, Lecture Notes in Math., vol. 426, Springer, Berlin, 1974.
[35] K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties,

J. Reine Angew. Math. 456 (1994) 173–196.
[36] M. Takeda, On a martingale method for symmetric diffusion processes and its applications, Osaka J. Math. 26

(1989) 605–623.
[37] T. Uemura, On symmetric stable-like processes: Some path properties and generators, J. Theoret. Probab. 17 (2004)

541–555.
[38] N.Th. Varopoulos, Potential theory and diffusion of Riemannian manifolds, in: W. Beckner, A.P. Calderón, R.

Fefferman, P.W. Jones (Eds.), Conference on Harmonic Analysis in Honor of Antoni Zygmund, in: Wadsworth
Math. Ser., Wadsworth, 1983, pp. 821–837.

[39] A. Weber, Analysis of the physical Laplacian and the heat flow on a locally finite graph, J. Math. Anal. Appl. 370
(2010) 146–158.

[40] R. Wojciechowski, Heat kernel and essential spectrum of infinite graphs, Indiana Univ. Math. J. 58 (2009) 1419–
1441.

[41] R. Wojciechowski, Stochastically incomplete manifolds and graphs, in: D. Lenz, F. Sobieczky, W. Woess (Eds.),
Boundaries and Spectra of Random Walks, in: Progr. Probab., vol. 64, Birkhäuser, Kathrein, 2009, pp. 165–181.


	On the conservativeness and the recurrence of symmetric jump-diffusions
	1 Introduction and main results
	2 Preliminaries: the integral-derivation property
	3 Proof of Theorem 1.1: the conservation property
	4 Proof of Theorem 1.2: the recurrence
	5 Examples
	5.1 Sharpness examples
	5.2 Disconnected space
	5.3 Volume tests
	5.4 A mixed-type Laplacian on graphs

	Acknowledgments
	References


