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Autosomal dominant polycystic kidney disease (ADPKD) is a

frequent cause of kidney failure; however, urinary biomarkers

for the disease are lacking. In a step towards identifying such

markers, we used multidimensional-multinuclear nuclear

magnetic resonance (NMR) spectroscopy with support vector

machine-based classification and analyzed urine specimens

of 54 patients with ADPKD and slightly reduced estimated

glomerular filtration rates. Within this cohort, 35 received

medication for arterial hypertension and 19 did not. The

results were compared with NMR profiles of 46 healthy

volunteers, 10 ADPKD patients on hemodialysis with residual

renal function, 16 kidney transplant patients, and 52 type 2

diabetic patients with chronic kidney disease. Based on the

average of 51 out of 701 NMR features, we could reliably

discriminate ADPKD patients with moderately advanced

disease from ADPKD patients with end-stage renal disease,

patients with chronic kidney disease of other etiologies, and

healthy probands with an accuracy of 480%. Of the 35

patients with ADPKD receiving medication for hypertension,

most showed increased excretion of proteins and also

methanol. In contrast, elevated urinary methanol was not

found in any of the control and other patient groups. Thus,

we found that NMR fingerprinting of urine differentiates

ADPKD from several other kidney diseases and individuals

with normal kidney function. The diagnostic and prognostic

potential of these profiles requires further evaluation.
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Autosomal dominant polycystic kidney disease (ADPKD;
Mendelian Inheritance in Man (MIM) 173900) is the most
common inherited renal disorder, affecting 1:400–1:1000 live
births. It is caused by mutations in the PKD1 (polycystic
kidney disease 1 (autosomal dominant)) and PKD2 (polycystic
kidney disease 2 (autosomal dominant)) genes that are
responsible for 85 and 15% of cases, respectively.1 ADPKD
is characterized by multiple cysts in both kidneys, destruction
of the normal kidney architecture, and a progressive
deterioration of renal function, with B50% of patients
suffering from end-stage renal disease (ESRD) at the age of
60 years.2 Hypertension and cysts in other organs, particu-
larly in the liver, are frequent complications.

Diagnosis of ADPKD is based on the detection of multiple
cysts by renal ultrasound and a positive family history. The
cystic transformation of the kidneys may precede the decline
of renal function by several decades.3 Thus, biomarkers
that aid the diagnosis and/or prognostication are of interest.
In this context, several candidate urinary protein biomarkers
have been evaluated, including the proteins MCP1 (MIM
158105), KIM1 (MIM 606518), NGAL (MIM 600181), and
SFRP4 (MIM 606570).4–7 In addition, proteomic approaches
have been applied to the unbiased detection of urinary
proteins that might serve as diagnostic biomarkers for
ADPKD.8

Because of the kidney’s role in maintaining homeostasis,
the chemical composition of urine may vary greatly as a
function of endogenous and exogenous factors. Distinct
changes in composition may shed valuable insights into the
pathophysiology of disease and provide novel biomarkers for
the purposes of diagnosis, prognostication, and monitoring
of therapeutic response.9 To that end, nuclear magnetic
resonance (NMR) is a powerful tool, because it allows the
nonderivatized and nondestructive determination of free
metabolites and other compounds in biological fluids with
little sample pretreatment.10 Signal volumes scale linearly
with concentration and, in most cases, are independent of the
chemical properties of the investigated molecules. NMR
spectroscopy has previously been used in the context of cystic
kidney disease in a rat model,11 the analysis of dietary

o r i g i n a l a r t i c l e http://www.kidney-international.org

& 2011 International Society of Nephrology

Received 21 April 2010; revised 21 December 2010; accepted 4 January

2011; published online 9 March 2011

Correspondence: Wolfram Gronwald, Institute of Functional Genomics,

University of Regensburg, Josef-Engert-Strasse 9, 93053 Regensburg, Germany.

E-mail: Wolfram.Gronwald@klinik.uni-regensburg.de

1244 Kidney International (2011) 79, 1244–1253

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82188847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1038/ki.2011.30
http://www.kidney-international.org
mailto:Wolfram.Gronwald@klinik.uni-regensburg.de


effects,12 and the examination of cyst aspirates,13 but a
systematic analysis of urine from ADPKD patients is lacking.

In this study, we applied one-dimensional (1D) NMR
spectroscopy to urine specimens obtained from patients with
ADPKD and other renal pathologies as well as apparently
healthy controls. The NMR data were subjected to supervised
learning with a support vector machine (SVM) to identify
spectral features that predict ADPKD. Finally, we attempted
to elucidate the chemical nature of the discriminatory
features by two-dimensional (2D) NMR spectroscopy.

RESULTS
Patient characteristics

We included 54 patients with ADPKD (group 1) and a mean
estimated glomerular filtration rate (eGFR) of 95.5±27.7 ml/
min per 1.73 m2, indicating that most patients had well-
preserved renal function. Nevertheless, there was significant
disease burden as the mean total kidney volume, determined
by magnetic resonance imaging-based volumetry,14 was
significantly enlarged over that of nonaffected individuals:
1869±1244 ml vs 334 ml (range between minimum and

maximum volume 194–614 ml).15 The clinical characteristics
along with those of the other patient groups investigated
are summarized in Table 1. Of the 54 ADPKD patients,
35 received blood pressure-lowering medication, including
angiotensin-converting enzyme inhibitors and angiotensin II
type 1 blockers such as enalapril, lisinopril, ramipril, and
candesartan, with or without the co-administration of
furosemide and b-blockers (group 1A). The other 19 ADPKD
patients received no medication in the absence of hyper-
tension (group 1B). A total of 46 healthy volunteers with
normal renal function, 23 men and women each, with a mean
age of 38.7±10.4 years served as the control group (group 2).

To gain insight into the specificity of the identified
metabolite biomarkers for ADPKD, we included four
additional groups of patients with chronic kidney diseases.
The first of these groups (group 3) included 10 stable
ADPKD patients with ESRD on hemodialysis with residual
urine excretion. The second cohort (group 4) comprised 16
patients 3 months after renal transplantation, who had not
experienced acute organ rejection; their mean eGFR was
53.3±20.9 ml/min per 1.73 m2. Group 5 comprised 30 patients

Table 1 | Clinical characteristics of the diseased patients enrolled: (a) group 1 ADPKD patients; and (b) patients suffering from
other kidney ailments

(a)

ADPKD
All (N=54)
(group 1)

Male (N=30)
(group 1)

Female (N=24)
(group 1)

Medication
(N=35) (group 1A)

No medication
(N=19) (group 1B)

Sex, male (%) 30 (56%) — — 22 (63%) 9 (47%)
Age, years 40.6±5.9 40.6±5.0 40.6±7.0 41.2±4.5 39.6±7.8
BMIa, kg/m2 25.9±4.3 26.1±4.0 25.7±4.7 26.7±4.6 24.6±3.3
Systolic BPa, mm Hg 129±15 134±16 123±11 129±14 130±17
Diastolic BPa, mm Hg 86±10 88±10 83±8 86±9 84±10
Serum creatininea, mg/dl 1.0±0.3 1.2±0.3 0.8±0.2 1.1±0.4 0.9±0.2
eGFRa, ml/min per 1.73 m2 95.5±27.7 87.9±24.3 106.3±29.3 88.5±29.0 108.4±20.4
ACRa, mg/g 32.4±37.3 34.4±35.7 29.7±39.9 38.3±43.9 29.7±34.2
Total kidney volumea, ml 1869±1244, N=38b 2152±1477, N=24b 1383±383, N=14b 1949±1293, N=34b 1184±138, N=4b

(b)

Control groups with
reduced kidney function

ADPKD with ESRD
(N=10) (group 3)

Renal transplant
(N=16) (group 4)

Diabetes type 2 with
microalbuminuria (N=30)

(group 5)

Diabetes type 2 w/o
microalbuminuria (N=22)

(group 6)

Sex, male (%) 7 (70.0%) 11 (69%) 13 (43.3%) 8 (36.4%)
Agea, years 60.0±10.0 53±15.4 66.0±10.7 71.5±6.5
BMIa, kg/m2 25.8±3.5 26.3±3.4 31.6±5.6 32.5±5.4
Systolic BPa, mm Hg 133±17.3 133.8±21.6 140±21.0 136±14.0
Diastolic BPa, mm Hg 76±13.3 77.2±8.9 76±14.0 78±8.0
Serum creatininea, mg/dl NA 1.6±0.6 0.88±0.1 1.35±0.2
eGFRa, ml/min per 1.73 m2 NA 53.3±20.9 74.2±7.2 44.0±5.6
ACRa, mg/g 1581.9±1535.8 53.7±125.3 74.0±40.0 8.9±8.1
Treatment with ACE-I or ARB 10 (100.0%)c — 22 (73.3%) 19 (86.4%)

Abbreviations: ACE-I, angiotensin-converting enzyme inhibitor; ACR, albumin/creatinine ratio; ADPKD, autosomal dominant polycystic kidney disease; ARB, angiotensin
receptor blocker; BMI, body mass index; BP, blood pressure; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; NA, not available.
aGiven are the mean value and the s.d.
bNumber of patients, for whom magnetic resonance imaging (MRI) volumetric data were available.
cADPKD patients with ESRD received individual combinations of drugs to treat hypertension.
Patients suffering from other kidney ailments were grouped as follows: group 3, stable renal failure ADPKD patients on hemodialysis with residual urine excretion;
group 4, renal transplant recipients without acute organ rejection; group 5, diabetes mellitus type 2 patients with reduced eGFR and microalbuminuria; group 6,
diabetes mellitus type 2 patients with severely reduced eGFR but no microalbuminuria. Details for the group of 46 apparently healthy volunteers (group 2) are given in
the text of the article.
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with diabetes mellitus type 2 with an eGFR ranging from
60 to 89 ml/min per 1.73 m2 and an albumin/creatinine ratio
of 30–300 mg/g, whereas the 22 patients of group 6 suffered
from diabetes mellitus type 2 with an eGFR o50 ml/min per
1.73 m2, although no microalbuminuria.

Discrimination of ADPKD patients with early disease from
healthy volunteers by urine NMR fingerprinting

For each individual, both 1D 1H and 2D 1H-13C HSQC
(heteronuclear single quantum coherence) NMR spectra
of spot urine specimens were acquired. Figure 1 shows
exemplary 1D 1H and 2D 1H-13C HSQC NMR spectra
obtained for the same urine specimen of a healthy proband.
The displayed 2D spectrum served as a reference for meta-
bolite assignment (Figure 1); close to 120 different meta-
bolites were assigned unambiguously based on these spectra
(Supplementary Table S1 online). Metabolites significantly
up- or down-regulated between healthy probands and group 1
ADPKD patients are color coded in red and green, respectively.
Note that for reasons of clarity, only a subset of the metabolites
has been marked.

Classification of the urine specimens of the 54 group 1
ADPKD patients against the 46 healthy volunteers was
performed using the SVM algorithm on the 1D 1H NMR
data. To that end, each 1D NMR spectrum was split in 701
evenly spaced subsections (buckets or features), each of them
ideally corresponding to a distinct urinary compound.

Classification results were obtained by a nested cross-vali-
dation approach, whereby the patients and healthy volunteers
were iteratively split into a training set and a test set. The
classification algorithm was then trained on the training data
to predict the test data. This procedure ensured that the
training procedure was not biased by the test data. To obtain
an optimal prediction accuracy of the SVM, the selection of
discriminatory features is of prime importance. Therefore, in
a nested loop, an inner cross-validation was performed for
parameter optimization, thus obtaining an almost unbiased
estimate of the true classification error.16 A detailed descrip-
tion of the used nested cross-validation approach is given in
the Supplementary Materials online.

Applying the nested cross-validation procedure, the
number of discriminating features was on average optimized
to 51. This allowed the prediction of ADPKD with an average
accuracy of 85.0±3.1%. Classification results of all tests are
summarized in Table 2. Receiver operating curves were then
employed to evaluate the performance of the classification.
The area under the receiver operating curve (AUC; Figure 2a)
amounted to 0.91, indicating a high probability that the
classifier, an SVM in this case, would rank a randomly chosen
ADPKD case higher than a randomly chosen control.

Table 3 lists the positions of the 51 predictive features in
the 1D spectra and their chemical identity. Their significance
is indicated by the corresponding P-values calculated for the
comparison between ADPKD patients and healthy volunteers.
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Figure 1 | The two-dimensional (2D) 1H-13C heteronuclear single quantum coherence (HSQC) spectrum of a healthy control urine
specimen. In total, the signals of close to 120 metabolites could be unambiguously assigned in this spectrum. For reasons of clarity,
only a subset is marked. Metabolites that are significantly up- or down-regulated in the specimens of the autosomal dominant polycystic
kidney disease (ADPKD) patients of group 1 are color coded in red and green, respectively. The complete list of discriminating features is
given in Table 3 and the full assignment of this spectrum is given in Supplementary Table S1 online. The insert shows the corresponding
one-dimensional (1D) 1H spectrum.
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Both raw P-values based on a two-sided t-test assuming
Gaussian distribution of the data, which was confirmed using
the Kolmogorov–Smirnov test, and P-values corrected for
multiple testing are given. The latter values were adjusted
for the false discovery rate according to Benjamini and
Hochberg.17 For some of these features, it was additionally
possible to determine accurate concentration levels (Supple-
mentary Table S2 online). Note that several of the discrimi-
nating features were only present in concentrations below
their lower limits of quantification and, therefore, could not
be quantified. Concentrations of discriminating features
that could be quantified plus values for other highly
abundant metabolites for the healthy control group and
ADPKD patients are given. The discriminating features listed
in Table 3 are also displayed in a heat map representation in
Figure 3. Their upregulation and downregulation are color
coded for all analyzed urine specimens in yellow and blue,
respectively. Unambiguously identified discriminatory meta-
bolites in decreasing order of their corrected P-values included
formate (P¼ 3.5e–07), proteins (P¼ 5.6e–07), tartaric acid
(P¼ 2.9e–06), 3-hydroxy-isovalerate (P¼ 9.8e–06), citrate
(P¼ 1.3e–05), threonine (P¼ 2.7e–05), methanol (P¼
3.1e–05), carbohydrates (P¼ 3.3e–05), sucrose (P¼ 3.4e–05),
alanine (P¼ 4.6e–05), 6-hydroxynicotinic acid (P¼ 5.9e–05),
D-saccharate (P¼ 7.8e–05), and tyrosine (P¼ 1.4e–04). In
case that more than one NMR signal contributed to a given
metabolite, the corresponding bucket showing the smallest
P-value is shown. For the buckets attributed to proteins the
assignment was additionally verified by acid hydrolysis that
showed a clear decrease in the protein signals and a
corresponding increase in free amino acids.

Discrimination of ADPKD patients with early disease from
other kidney ailments

Next, the question was addressed whether the 51 NMR
features (Table 3) that had allowed the successful discrimina-
tion of group 1 ADPKD patients from healthy controls would
also distinguish the former from patients suffering from
chronic kidney disease of other etiologies. To that end, the
NMR fingerprints of the 54 ADPKD patients of group 1 were
first compared with those of the 10 ADPKD patients with
ESRD (group 3). A perfect separation between these two

Table 2 | Summary of classification results obtained by the SVM approach

Groups
compared

Prediction accuracy
(arith. mean±s.d.)

Area under
ROC curve

Statistical
approach No. of features

1 vs 2 85.0±3.1% 0.91 Nested CV Average of 51 (Table 3)
1 vs 3 100.0±0% 1.00 CV Fixed set of 51 (Table 3)
1 vs 4 95.4±0.6% 0.99 CV Fixed set of 51 (Table 3)
1 vs 5 89.5±1.0% 0.92 CV Fixed set of 51 (Table 3)
1 vs 6 92.6±1.4% 0.97 CV Fixed set of 51 (Table 3)
1 vs 2–6 81.0±1.7% 0.89 CV Fixed set of 51 (Table 3)
1A vs 2 86.6±2.3% 0.92 Nested CV Average of 44 (Supplementary Table S2 online)
1B vs 2 82.0±2.0% 0.79 Nested CV Average of 23 (Table 4)

Abbreviations: CV, cross validation; ROC, receiver operating curve; SVM, support vector machine.
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Figure 2 | Performance of classification. (a) Receiver operating
curve (ROC) analysis of healthy volunteers versus all diseased
autosomal dominant polycystic kidney disease (ADPKD) patients.
ROC curve obtained from the analysis of 10 nested cross-validation
runs using an inner cross-validation for parameter optimization.
The number of features was optimized to 51. (b) ROC analysis
of healthy volunteers versus nonmedicated ADPKD patients.
ROC curve obtained from the analysis of 10 nested cross-validation
runs using an inner cross-validation for parameter optimization.
The number of features was optimized to 23.
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groups was achieved with an average prediction accuracy of
100±0.0% and an AUC of 1.0. Next, the NMR data of the
ADPKD patients of group 1 were compared with those of the
16 patients 3 months after renal transplantation without a

history of acute allograft rejection (group 4). It proved
feasible to distinguish the ADPKD patients from kidney
transplant recipients with an average prediction accuracy of
95.4±0.6% and an AUC of 0.99. Visual inspection of the heat

Table 3 | Spectral positions and P-values of predictive features used by the SVM for classification of ADPKD patients
irrespective of medication versus healthy controls

ID
Spectral

position (p.p.m.)
P-value

unadjusted
P-value

BH adjusteda Metabolite

104 8.465 4.99e�10 3.50e�07 Formate
327 4.245 1.90e�09 5.63e�07 Threonine/guadinosuccinic acidb

691 0.605 2.63e�09 5.63e�07 Proteins
690 0.615 3.21e�09 5.63e�07 Proteins
699 0.525 6.87e�09 8.07e�07 Proteins
342 4.095 6.90e�09 8.07e�07 D-saccharate/glucosanb

698 0.535 2.40e�08 2.40e�06 Proteins
693 0.585 3.33e�08 2.80e�06 Proteins
642 1.095 3.59e�08 2.80e�06 2-Methylbutyrylglycine/3-methyl-2-oxovaleric

acid/2-methylbutyroylcarnitineb

318 4.335 4.06e�08 2.85e�06 Tartaric acid
700 0.515 4.96e�08 3.05e�06 Proteins
692 0.595 5.22e�08 3.05e�06 Proteins
687 0.645 6.07e�08 3.16e�06 Proteins
701 0.505 6.32e�08 3.16e�06 Proteins
689 0.625 2.03e�07 9.13e�06 Proteins
696 0.555 2.08e�07 9.13e�06 Proteins
514 2.375 2.38e�07 9.83e�06 3-Hydroxy-isovalerate
482 2.695 3.37e�07 1.25e�05 Citrate
483 2.685 3.37e�07 1.25e�05 Citrate
694 0.575 4.61e�07 1.61e�05 Proteins
640 1.115 4.97e�07 1.66e�05 2-Methylbutyrylglycine/3-methyl-2-oxovaleric

acid/2-methylbutyroylcarnitineb

683 0.685 8.11e�07 2.58e�05 Proteins/bile acids
326 4.255 8.83e�07 2.69e�05 Threonine
678 0.735 9.54e�07 2.78e�05 Proteins/bile acidsb

688 0.635 9.90e�07 2.78e�05 Proteins
415 3.365 1.17e�06 3.14e�05 Methanol
314 4.375 1.27e�6 3.30e�05 Hydroxyacetone/N-acetyltyrosineb

684 0.675 1.34e�06 3.33e�05 Proteins
256 6.945 1.38e�06 3.33e�05 Catechol/salicylic acidb

360 3.915 1.43e�06 3.34e�05 Carbohydrates
328 4.235 1.50e�06 3.39e�05 Sucrose
672 0.795 1.77e�06 3.88e�05 Proteins
602 1.495 2.15e�06 4.56e�05 Alanine
330 4.215 2.23e�06 4.58e�05 Sucrose
686 0.655 2.29e�06 4.58e�05 Proteins
329 4.225 2.57e�06 5.00e�05 Sucrose
670 0.815 2.72e�06 5.16e�05 Proteins
283 6.675 3.21e�06 5.93e�05 6-Hydroxynicotinic acid
257 6.935 3.54e�06 6.36e�05 Catechol/salicylic acidb

337 4.145 4.46e�06 7.81e�05 D-saccharate
315 4.365 5.62e�06 9.60e�05 Hydoxyacetone/N-acetyltyrosineb

671 0.805 6.68e�06 1.12e�04 Proteins
641 1.105 7.03e�06 1.15e�04 2-Methylbutyrylglycine/3-methyl-2-oxovaleric

acid/2-methylbutyroylcarnitineb

682 0.695 7.38e�06 1.18e�04 Proteins
285 6.655 8.04e�06 1.25e�04 6-Hydroxynicotinic acid
478 2.735 8.25e�06 1.26e�04 Dimethylamine/citrateb

262 6.885 9.43e�06 1.41e�04 Tyrosine
477 2.745 1.09e�05 1.59e�04 Citrate
309 4.425 1.12e�05 1.60e�04 Dihydroxyacetone/N-acetyltyrosineb

455 2.965 1.22e�05 1.71e�04 Isocitrateb

680 0.715 1.49e�0.5 2.05e�04 Proteins

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; SVM, support vector machine.
aAdjusted for the false discovery rate according to Benjamini and Hochberg (BH).17

bAssignments where a signal could be attributed to more than one metabolite or where in case of very weak signals an unambiguous assignment was not possible.
In case that a feature could be assigned to more than one metabolite, all possible assignments are given.
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map presented in Figure 3 shows that for most of the 51
features marked differences existed between these two
groups. One of the few exceptions included citrate that
was downregulated in both groups. After that, we investi-
gated the discrimination of ADPKD patients from group 5
(30 microalbuminuric patients from the GENetics of
DIAbetic Nephropathy (GENDIAN) study18 with an eGFR
of 60–89 ml/min per 1.73 m2): an average prediction accuracy
of 89.5±1.0% and an AUC of 0.92 were obtained. For the
discrimination of group 6 (22 patients selected from the
GENDIAN study, who had a significantly reduced eGFR
o50 ml/min per 1.73 m2 but no microalbuminuria) from
the ADPKD group, an average prediction accuracy of
92.6þ 1.4% with an AUC of 0.97 was obtained. In addition,
we investigated whether it was possible to discriminate
between the ADPKD patients of group 1 and all other groups,
including diseased and healthy subjects, in a single step. For
this purpose, the data of all 6 groups were combined, yielding
a single data set of 178 samples. In this data set, the ADPKD
samples of group 1 were assigned to one group and all
other samples including ADPKD patients with ESRD were
combined into a second group. Using the same set of 51
features as above, an average prediction accuracy of 81.0þ
1.7% and an AUC of 0.89 were obtained for the distinction
between these two groups.

Investigation of medication and disease stage

To investigate whether pharmaceuticals administered to ADPKD
patients, or metabolites thereof, or metabolic changes induced
by these pharmaceuticals, influenced the classification results,
the 35 ADPKD patients belonging to group 1A were compared
with the healthy control group. Of the 35 ADPKD patients
receiving medication for arterial hypertension, the vast majority
was treated with ACE inhibitors or angiotensin II type 1 blockers.19

A nested cross-validation run with inner-loop parameter
optimization yielded on average 44 predictive features and
an overall prediction accuracy of 86.6±2.3% with an AUC
of 0.92. The corresponding model (Supplementary Table S3
online) was very similar to the model obtained for all group 1
ADPKD patients versus the healthy controls.

To further elucidate the impact of medication and non-
medication, respectively, on the urinary NMR fingerprints, the
predictive outcome for the 19 nonmedicated patients (group 1B)
was analyzed against the healthy control group (group 2).
Arterial hypertension is an early indication of ADPKD present in
B60% of all cases before significant impairment of renal
function.20 As the average total renal volume of these 19 non-
medicated patients was considerably smaller than that of the
medicated group 1A, this group presumably included subjects at
an earlier stage of the disease. As above, a nested cross-validation
run with inner-loop parameter optimization was performed. The
number of predictive features was optimized within the inner
cross-validation to an average number of 23, and an overall
prediction accuracy of 82.0±2.0% was obtained with an AUC of
0.79 (Figure 2b). The corresponding model is shown in Table 4.
Some of the compounds present in this model, such as citrate
and 3-hydroxyisovaleric acid, were identical to the model
presented in Table 3, whereas other compounds, including
1-methylnicotinamide, trigonelline, and nicotinamide riboside,
constituted new additions.

Among the compounds not included in the new model were
methanol and formate, as well as features representing proteins,
peptides, and bile acids. This indicated that reabsorption of filtered
proteins was still intact in the nonmedicated ADPKD patients.

DISCUSSION

In this study, we have characterized the urinary NMR
fingerprints of ADPKD patients with well-preserved renal
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Figure 3 | Heat map representation of the six groups of investigated specimens. Displayed is the variation in nuclear magnetic
resonance (NMR) signal volume for the 51 features that were identified for the discrimination between all autosomal dominant polycystic
kidney disease (ADPKD) patients and the healthy controls. These features are also summarized in Table 3. The upregulated features are indicated
in yellow, whereas downregulated ones are marked in blue. Rows are ordered in correlation with disease status. Rows that are mostly upregulated
in ADPKD patients and downregulated in all other groups are shown in the top part of the figure and vice versa. Patients were grouped as
follows: group 1A, ADPKD patients who received medication; group 1B, patients who received no medication; group 2, apparently healthy
volunteers; group 3, stable renal failure ADPKD patients on hemodialysis with residual urine excretion; group 4, renal transplant recipients without
acute organ rejection; group 5, diabetes mellitus type 2 patients with reduced eGFR and microalbuminuria; group 6, diabetes mellitus type 2
patients with severely reduced eGFR but no microalbuminuria. Ala, alanine; Carb, carbohydrates; D-Sac, D-saccharic acid; MeOH, methanol; Suc,
sucrose; Tar, tartaric acid; Thr, threonine; Tyr, tyrosine; 3-OH-IVA, 3-hydroxyisovaleric acid; 6-OH-NA, 6-hydroxynicotinic acid.
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function. We could demonstrate that SVM-based classifica-
tion of urinary NMR fingerprints allowed the reliable
discrimination between ADPKD patients at a relatively early
stage of kidney disease and those with ESRD, as well as
patients suffering from chronic kidney disease for reasons
other than ADPKD and apparently healthy controls. These
data suggest the existence of a set of urinary compounds
specific to early stages of ADPKD.

For the discrimination of ADPKD patients with early
disease from apparently healthy volunteers, a set of 51
distinct urinary features was identified (Table 3). Here,
elevated urinary protein levels are mainly observed for
ADPKD patients, hinting at an endocytosis defect that
disturbs the reabsorption of low-molecular-weight proteins
by proximal tubular cells.21 For the ESRD patients, this effect
is much more pronounced as can be seen in Figure 3. Other
discriminating metabolites included citrate and formate.
Hypocitraturia is a common metabolic abnormality found in
ADPKD patients, which is believed to contribute to the risk
of stone formation aside from the anatomic obstruction of
the renal collecting system by the cysts.22 One probable
explanation for the reduced urinary concentration of formate
is that it reflects changes in the folate-mediated one-carbon
metabolism, which generates one-carbon units in mitochon-
dria in the form of formate by conversion of serine to glycine
and incorporates formate after its entry into the cytoplasm

into tetrahydrofolate to produce 10-formyl-tetrahydrofolate,
which is utilized for the biosynthesis of purines and
thymidine, and the remethylation of homocysteine to
methionine. The latter, in turn, can be converted to S-
adenosylmethionine, a cofactor for many methylation reac-
tions, including the methylation of proteins, phospholipids,
neurotransmitters, and DNA.23,24

The finding of elevated levels of urinary methanol in
ADPKD patients not on hemodialysis came as a surprise.
To the best of our knowledge, this is the first report on
increased excretion of methanol for reasons other than acute
methanol poisoning, chronic alcohol abuse, and occupa-
tional exposure to methanol vapor or methyl formate. The
possibility of an erroneous assignment of the NMR signal
(see Supplementary Materials online) to methanol was
excluded by the independent confirmation of the quantitative
NMR measurements by headspace-gas chromatography (data
not shown). Elevated levels of urinary methanol were not
observed in the 10 ADPKD patients on hemodialysis. A
possible explanation for the observed increase in urinary
methanol levels in ADPKD patients at a progressed stage, but
not yet in need of dialysis, is an increased activity of the
enzyme protein methylesterase 1 (PME1, MIM 611117),
which produces methanol by hydrolyzing the protein-methyl
esters formed by S-adenosylmethionine-dependent protein-
carboxyl methyltransferases.25 In most tissues, the activity of

Table 4 | Spectral positions and P-values of predictive features used by the SVM for the classification of nonmedicated ADPKD
patients versus healthy controls

ID
Spectral

position (p.p.m.)
P-value

unadjusted
P-value

BH adjusteda Metabolite

62 8.885 6.08e�5 0.028 1-Methylnicotinamide
14 9.365 1.34e�4 0.028 Nicotinamide riboside
640 1.115 1.52e�4 0.028 2-Methylbutyrylglycine/3-methyl-2-oxovaleric

acid/2-methylbutyroyl-carnitineb

548 2.035 1.62e�4 0.028 N-acetyl-L-glutamine/pyroglutamic acidb

23 9.275 2.12e�4 0.030 Nicotinuric acidb

404 3.475 3.47e�4 0.041 Carbohydrates/theobromineb

643 1.085 7.50e�4 0.075 2-Methylbutyrylglycine/3-methyl-2-oxovaleric
acid/2-methylbutyroyl-carnitineb

514 2.375 1.18e�3 0.078 3-OH-isovaleric acid
309 4.425 1.18e�3 0.078 Dihydroxyacetone/N-acetyltyrosineb

13 9.375 1.23e�3 0.078 1-Methylnicotinamide
494 2.575 1.34e�3 0.078 Citrate
495 2.565 1.34e�3 0.078 Citrate
641 1.105 2.22e�3 0.113 2-Methylbutyrylglycine/3-methyl-2-oxovaleric

acid/2-methylbutyroyl-carnitineb

55 8.955 2.25e�3 0.113 1-Methylnicotinamide
304 4.475 2.45e�3 0.115 1-Methylnicotinamide
644 1.075 2.75e�3 0.121 2-Methyl-3-ketovaleric acid/3-methyl-2-oxovaleric acidb

148 8.025 3.34e�3 0.124 3-Methylxanthineb

61 8.895 3.38e�3 0.124 1-Methylnicotinamide
483 2.685 3.54e�3 0.124 Citrate
482 2.695 3.54e�3 0.124 Citrate
37 9.135 3.75e�3 0.125 Trigonelline
132 8.185 4.24e�3 0.135 1-Methylnicotinamide
129 8.215 4.85e�3 0.148 1-Methylnicotinamide/hypoxanthineb

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; SVM, support vector machine.
aAdjusted for the false discovery rate according to Benjamini and Hochberg (BH).17

bAssignments where a signal could be attributed to more than one metabolite or where in case of very weak signals an unambiguous assignment was not possible.
In case that a feature could be assigned to more than one metabolite, all possible assignments are given.
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the latter is at least tenfold greater than that of PME1.26 In
the proximal tubules of the rat kidneys, however, the activity
of PME1 surpasses that of the protein-carboxyl methyltrans-
ferases by a factor of 1.5. Protein methylation–demethylation
plays an important role in the regulation of protein
function.25 However, the significance of the unique ratio of
methylating and demethylating enzyme activities in the
kidney is still not understood. The high levels of PME1
activity in the proximal tubules suggest that this enzyme may
be involved in the transmembrane transport of compounds
such as sodium, phosphate, bicarbonate, amino acids,
organic acids, and proteins. Indeed, it has been shown
recently that phosphorylation of PME1 by the salt-inducible
kinase-1 (SIK1, MIM 605705) in response to elevated
intracellular sodium promotes the dissociation of PME1
from the catalytic subunit of protein phosphatase-2A (PP2A,
MIM 603113), thereby activating the latter enzyme, which
increases in turn the catalytic activity of Naþ ,Kþ -ATPase
upon dephosphorylation of its a-subunit.27 Interestingly,
mislocation of functionally active Naþ ,Kþ -ATPase to apical,
luminal plasma membranes of ADPKD epithelia is one of the
cell biological hallmarks of ADPKD, which constitutes a
complete reversal of the normal renal tubule polarized
location in basolateral membranes.28 Consequently, misloca-
tion of Naþ ,Kþ -ATPase might disturb the above regulation
process and in turn this could lead to an increased methanol
production by PME1.

Another discriminating metabolite was alanine. Increased
excretion of alanine had been previously identified as a
marker of impaired proximal tubular function in a study on
mercury-induced nephrotoxicity23 and in an experimental
model of ADPKD in rats.11 Interestingly, in the ADPKD
patients investigated here, alanine excretion was reduced
(Figure 3). Among other discriminating features observed
were threonine and carbohydrates (Table 3 and Figure 3),
which had been also identified in a recent study of juvenile
cystic mice.29 Because of the presence of signal overlap in
both the 1D and 2D spectra, unambiguous signal assignment
of the carbohydrates to a specific sugar was in some cases not
feasible. For the discriminating metabolite tyrosine, it is
known that the excretion of tyrosine is reduced in chronic
kidney disease, and so is the rate of tyrosine synthesis.30

Other metabolites included 3-hydroxyisovalerate, sucrose,
6-hydroxy-nicotinic acid, and D-saccharate. The increased
urinary levels of 3-hydroxyisovalerate in ADPKD patients
might be an indicator of biotin deficiency due to impaired
renal reclamation.31 6-Hydroxynicotinic acid is an inter-
mediate in the oxidation of nicotinic acid by Pseudomonas
and its measurement in urine by 1H NMR spectroscopy has
been applied to the diagnosis of Pseudomonas aeruginosa in
urinary tract infection.32 Finally, tartaric acid was identified
as a discriminating feature. Dietary intake, in particular of
grapes and grape products, is usually the major contributor
to urinary tartrate.33,34 In the case of ADPKD patients the
administration of metoprolol tartrate might have served as an
additional source of urinary tartrate.

Our findings have several implications for a better
understanding and monitoring of the disease process, which
deserve exploration in future studies. First, they imply that
the set of distinguishing features or single components might
support an early diagnosis of the disease. Ultrasound criteria
have been developed for individuals with a positive family
history,35 but in patients with a negative family history
diagnostic criteria are less well defined. The present study
included patients with normal eGFR, in whom the urine
metabolite profile was distinguishable, but long-term follow-
up studies in patients with uncertain diagnosis are needed to
define the diagnostic value of these parameters. Second,
urinary compounds specific for ADPKD might help to
monitor disease progression and could serve as surrogate
markers for the success of interventions that aim to slow
disease progression. There is uniform agreement that such
markers could significantly facilitate the testing of therapeu-
tic interventions, all the more as recent data suggest that great
variability exists in the correlation between change in kidney
function and cyst volume increase.36 The present study was
designed as a cross-sectional proof-of-concept study and,
therefore, does not allow firm conclusions on changes of
urinary fingerprints with disease progression. It is note-
worthy, however, that the pattern in residual urine of ADPKD
patients on hemodialysis was grossly different. Third, the
urinary fingerprint may point to some important aspects in
the pathogenesis of the disease and its progression.

In addition to the NMR-based metabolomic approach
pursued in this study, urinary proteomics has been success-
fully applied to the prediction of ADPKD.8 The coupling of
capillary electrophoresis to mass spectrometry allowed the
identification of a unique set of proteins serving as reliable
biomarkers for the prediction of ADPKD. The comparison of
these two studies clearly shows that ADPKD is reflected in
both the urinary proteome and metabolome. The use of
NMR-based metabolomics offers the additional advantage of
only minimal required sample pretreatment and easy sample
handling, enabling fast and fully automatic data collection.

In conclusion, this study demonstrates that an unbiased
urinary fingerprint analysis of metabolites and proteins
clearly differentiates ADPKD from several other kidney
diseases and individuals with normal kidney function and
that there is a significant potential for the identification of
clinically useful biomarkers of ADPKD.

PATIENTS AND METHODS
Patient selection

The n¼ 54 ADPKD patients (group 1) with sonographically
confirmed multiple renal cysts, an eGFR 460 ml/min per
1.73 m2, and a positive family history according to the criteria
published by Ravine et al.35 were recruited at the outpatient
clinic of the University of Erlangen-Nuremberg. Group 1
could be subdivided into a subset of n¼ 35 patients treated
for arterial hypertension (group 1A) and a set of n¼ 19
nonmedicated patients without hypertension (group 1B).
The n¼ 46 healthy volunteers (group 2) were recruited at the

Kidney International (2011) 79, 1244–1253 1251

W Gronwald et al.: Detection of ADPKD by NMR o r i g i n a l a r t i c l e



University of Regensburg and the University Clinic of
Erlangen, respectively. The group included 23 men and
women each with a mean age±s.d. of 38.7±10.4 years and a
mean urinary creatinine concentration±s.d. of 8.517±5.053
mmol/l. We further included 10 stable ADPKD patients
with ESRD on hemodialysis with residual urine excretion
(group 3), 16 patients 3 months after kidney transplantation
with an uneventful postoperative course (group 4),37 and
52 patients from the GENDIAN study:18 selected were 30
patients in GENDIAN with CKD stage 2 (eGFR 60–89 ml/
min per 1.73 m2 and microalbuminuria; group 5), and 22
GENDIAN patients with an eGFR o50 ml/min per 1.73 m2

but no micro-albuminuria (group 6). Urine samples and
anthropometric measures for the GENDIAN patients in-
cluded in the present study were obtained at the 6-year
follow-up examination.

Written declarations of consent had been obtained from
all study participants before inclusion. eGFR was calculated
using the four-variable Modification of Diet in Renal Disease
equation for traceable serum creatinine assays.38 Spot urine
samples were collected from all subjects, immediately frozen,
and stored at �80 1C until NMR analysis.

NMR spectroscopy

A total of 400 ml of urine was mixed with 200 ml of phosphate
buffer, pH 7.4, and 50 ml of 29.02 mmol/l 3-trimethylsilyl-
2,2,3,3-tetradeuteropropionate (TSP; Sigma-Aldrich, Taufkirchen,
Germany) in deuterium oxide as internal standard. NMR experi-
ments were carried out on a 600 MHz Bruker Avance III (Bruker
BioSpin GmbH, Rheinstetten, Germany) employing a triple-
resonance (1H, 13C 31P, 2H lock) cryogenic probe equipped
with z-gradients and an automatic cooled sample changer.
For each sample, a 1D 1H NMR spectrum and a 2D 1H-13C
HSQC spectrum were acquired following established proto-
cols.10 As described previously, NMR signals were assigned by
comparison with reference spectra of pure compounds.10

Data analysis

Details about data analysis including the used software
routines are given in the Supplementary Materials online.

Acid hydrolysis

Selected urine samples of group 1 were treated for 24 h with
6 N HCl at 120 1C. For NMR measurements, the dried
residuals were dissolved in 400 ml H2O, the pH was adjusted,
and 200 ml of phosphate buffer, pH 7.4, plus 50 ml of
29.02 mmol/l TSP in deuterium oxide were added.
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