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SUMMARY

Organisms with targeted genomic modifications are
efficiently produced by gene editing in embryos us-
ing CRISPR/Cas9 RNA-guided DNA endonuclease.
Here, to facilitate germline editing in rats, we used
CRISPR/Cas9 to catalyze targeted genomic muta-
tions in rat spermatogonial stem cell cultures.
CRISPR/Cas9-modified spermatogonia regenerated
spermatogenesis and displayed long-term sperm-
forming potential following transplantation into rat
testes. Targeted germline mutations in Epsti1 and
Erbb3 were vertically transmitted from recipients
to exclusively generate ‘‘pure,’’ non-mosaic mutant
progeny. Epsti1 mutant rats were produced with or
without genetic selection of donor spermatogonia.
Monoclonal enrichment of Erbb3 null germlines un-
masked recessive spermatogenesis defects in cul-
ture that were buffered in recipients, yielding mutant
progeny isogenic at targeted alleles. Thus, sper-
matogonial gene editing with CRISPR/Cas9 provided
a platform for generating targeted germline muta-
tions in rats and for studying spermatogenesis.

INTRODUCTION

CRISPR/Cas9 RNA-guided DNA endonuclease technology is

being widely utilized to generate targeted genomic mutations

in diverse cell types and organisms to study their biological pro-

cesses (Harrison et al., 2014). Gene editing with CRISPR/Cas9 in

mammals yields high rates of donor-embryo-derived progeny

harboring targeted gene mutations in rodents, pigs, goats, and

monkeys (Hai et al., 2014; Li et al., 2013; Ni et al., 2014; Niu

et al., 2014; Wang et al., 2013; Yang et al., 2013). Mutant rodents

can be produced in <1 month upon injection of constructs ex-

pressing gRNAs andCas9 that direct cleavage of target gene se-

quences in donor zygotes (Li et al., 2013;Wang et al., 2013; Yang

et al., 2013). CRISPR/Cas9 is so efficient, both alleles for multiple
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target genes can be disrupted in animals produced by co-inject-

ing zygotes with respective gRNAs (Li et al., 2014; Ma et al.,

2014; Ni et al., 2014; Wang et al., 2013; Yang et al., 2013).

CRISPR/Cas9 also efficiently catalyzes target allelemosaicism

in animals, which reflects independent gene editing eventsmade

during early embryonic cleavage stages as the totipotent zygote

undergoes pre-implantation development (Yen et al., 2014).

CRISPR/Cas9 is typically delivered into mammalian zygotes on

embryonic day (E)0.5 to E1, which is�5–6 days before the germ-

line is specified in rodents. As an example, themouse germline is

specified within a small population of 10–20 proximal epiblast

cells between E6 to E6.5 (Ohinata et al., 2005). Taken together,

this explains why CRISPR/Cas9-target allele mosaicism is

observed in tissues of first-generation mutant animals and why

targeted alleles in somatic tissues can differ from those specified

in the germline. Target allele heterogeneity in mosaic animals

must be outcrossed to generate colonies of pure, non-mosaic

germline mutants isogenic for a given targeted allele in all cells

of their body (Jaenisch et al., 1981; Soriano and Jaenisch,

1986; Wilkie et al., 1986). Sorting out new mutant strains by

experimentally outcrossing allelic mosaicism takesmonths in ro-

dents but can require years in some species due to longer life cy-

cles and/or low fecundity (Niu et al., 2014; Pursel et al., 1989).

Target allele mosaicism is also generated when host embryos

are reconstituted with pluripotent stem cells genetically modified

using CRISPR/Cas9 (Wang et al., 2013). As with the early

embryo, CRISPR/Cas9 holds potential to distinctly modify multi-

ple target alleles within a stem cell clone as it divides (Wang

et al., 2013). In addition to this variation, reconstitution of wild-

type blastocysts with pluripotent donor cells further generates

‘‘chimeric’’ animals with organ systems and germlines devel-

oping frommixtures of host and donor embryonic cells (Tarkow-

ski, 1961). Mosaicism and chimerism was substantially reduced

when clonally enriched donor cells modified with CRISPR/Cas9

were used to produce pigs and goats by somatic cell nuclear

transfer into enucleated oocytes (i.e., cloning) (Ni et al., 2014).

Reconstituting tetraploid embryos with pre-screened, clonally

expanded pluripotent lines would also be predicted to minimize

mosaicism and chimerism in epiblast-derived tissues (Nagy

et al., 1990). Alternatively, direct germline editing in donor
s
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Figure 1. CRISPR/Cas9-Mediated Gene

Targeting in Donor Stem Spermatogonia

(A) CRISPR/Cas9 cleavage of Epsti1 in rat fibro-

blast and spermatogonial (Sg day 11) cultures

on day 11 post-transfection and in flow-sorted

EGFP+ spermatogenic cells (R1661) on day 56

after transplantation into the right testis of recipient

R1661: � and + symbols indicate transfection

without and with Epsti1 gRNA. Arrows indicate

predicted �461 base pairs (bp) plus �226 bp

Surveyor products.

(B) Spermatogenesis (green fluorescence) in testis

of R1661 on day 56 after transplantation that

developed from donor EGFP+ rat spermatogonial

cultures containing CRISPR/Cas9-catalyzed Ep-

sti1 mutations.

(C) Targeted mutagenesis of Epsti1 exon 2 in

rats by CRISPR/Cas9 spermatogonial gene edit-

ing. Donor spermatogonia were hemizygous for

tgGCS-EGFP. DTB, days from transplantation to

first litter containing Epsti1 mutant animals; FS,

frame shift mutation; IF, mutation in frame. yR(n),
recipient identifier, ǁlitters born 99–128 days post-

transplantation,%, percentage of total F1 progeny

per recipient; +average value.

(D) Donor germline chimerism (%) in wild-type

recipient rat testes. Ratio of seminiferous tubules

containing EGFP+ elongating spermatids/total tu-

bules containing elongating spermatids plotted/

donor culture condition (minus selection and G418

selected). Error bars indicate SD.

(E) Acrosome (PNA) and nuclear (Hoechst 33342)

labeling marking donor-derived elongating sper-

matids (EGFP+) in tubule cross-sections from

recipient R1659 and R1662. Left: 39 of 39 tubules

contained elongating spermatids (EGFP+ or

EGFP�). Five EGFP� tubules are marked with an

asterisk. Scale bar, 500 mm. Right: higher magni-

fication image of donor spermatogenesis at stages

VIII and XI in the rat seminiferous epithelial cycle

(Hess, 1990). Scale bar, 100 mm.

See also Figures S1 and S2 and Tables S1 and S2.
spermatogonial stem cells would avoid both the totipotent and

pluripotent states of embryogenesis (Brinster and Avarbock,

1994), thus eliminating production of mosaic/chimeric mutant

progeny. Here, we report efficient production of mutant rats by

spermatogonial gene editing with CRISPR/Cas9.

RESULTS

Spermatogonial gene editing at Epsti1 loci was conducted using

CRISPR/Cas9 as proof of concept for efficient gene targeting in

rats. Epsti1 encodes epithelial-stromal interaction, and Epsti1

variants in men are associated with alterations in sperm function

and family size (Kosova et al., 2012). Guide RNAs demonstrating

highest specificity to exon 2 of rat Epsti1 in silico were first tested
Cell Reports 10, 1828–1835
for activity in rat fibroblast cultures (Fig-

ure 1A). A plasmid encoding an effective

Epsti1 gRNA and Cas9 (pgEpsti1-330)

was transfected (neon electroporation)

into rat spermatogonia hemizygous for a
germline-specific Egfp marker (Cronkhite et al., 2005), with and

without a second plasmid encoding a selectable marker

(pNeoDtk) (Hamra et al., 2005). Spermatogonia from each trans-

fection, with and without pNeoDtk, were plated onto fibroblast

feeder layers and selected with and without G418 in growth me-

dium (days 3–9). Spermatogonia were then sub-cultured for two

passages (days 11 and 23) (Chapman et al., 2011) and trans-

planted into rat seminiferous tubules (day 34) (Figure 1B). Pre-

dicted cleavage of targeted Epsti1 alleles in donor germlines

by the Surveyor assay was similar in spermatogonial cultures

harvested at day 11 post-transfection (�9% insertions or dele-

tions [indels]) and in the total population of flow-sorted EGFP+

spermatogenic cells produced in recipient R1661 by day 56

post-transplantation (�10% indels) (Figure 1A). This provided
, March 24, 2015 ª2015 The Authors 1829



evidence that CRISPR/Cas9-dependent modifications to Epsti1

were maintained in stem cells during sub-culture and persisted

during spermatogenesis in recipient rats.

Based on robust colonization by stably modified donor

spermatogonia in R1661 (Figures 1A and 1B), four remaining

recipient rats (n = 2 transplanted with G418 selected cells

and 2 transplanted with unselected cells) were paired with

wild-type females at �65 days post-transplantation until

each pair produced two litters (n = 8 total litters) (Figure 1C).

F1 progeny harbored �10% total Epsti1 mutants (n = 9/87

F1 pups) within an estimated 87% donor-derived progeny

(38 EGFP+/87 F1 pups = 43.6% 3 2; hemizygous marker)

(Figure 1C). Spermatogonia selected in G418-containing me-

dium yielded �33 more mutant progeny than spermatogonia

from unselected cultures (5% mutants, minus selection; 15%

mutants, G418 selected) (Figure 1C). Fifty-six percent of

Epsti1 mutations in progeny were frame shifts (five of nine)

(Figures 1C and S1A). The remaining Epsti1 variants (four of

nine) were in-frame deletions (Figures 1C and S1A). Thus, cul-

tures of CRISPR/Cas9-mutagenized spermatogonial stem

cells were successfully applied to produce pure Epsti1 mutant

rats �100 days post-transplantation (101.5 ± 2.1 days; n = 4

recipients) (Figure 1C).

Histological analysis of recipient testes at day 178 post-trans-

plantation revealed robust spermatogenic potential of donor

stem cells under each culture condition tested (Figures 1D and

1E). Most seminiferous tubules in recipients contained EGFP+

elongating spermatids (65.5 ± 14%, minus selection; 79 ±

17%, G418 selected; n = 4 testes from two rats per culture con-

dition, 117–176 tubules scored per testis) (Figure 1D; Table S1).

Crosses between recipient male and wild-type female rats pro-

duced normal-sized litters (10.9 ± 3.4 pups per litter, n = 8)

(http://www.harlan.com), with testes at approximately half the

normal weight (Table S2) but approximately three times heavier

than reported for non-transplanted, busulfan-treated testes

(Hamra et al., 2002). EGFP+ germ cells flow-sorted from recipient

rat testes (Figure S2) revealed 5% (1/20 amplicons) and 36%

(8/22 amplicons) distinct mutant Epsti1 alleles derived from un-

selected and G418-selected spermatogonia, respectively (Fig-

ure S1B). Thus, intra-recipient donor haplotype frequencies

were consistent with germline transmission rates for Epsti1 mu-

tations (Figure 1C; Table S1).

Although non-mosaic mutant rat strains were efficiently

generated by spermatogonial gene editing with CRISPR/

Cas9, the targeted Epsti1 alleles varied considerably between

strains (Figure S1). This appeared as random repair of

cleaved template in distinct donor stem cells. Monoclonal

enrichment of donor spermatogonial stem cells in culture

following genome editing with CRISPR/Cas9 would, theoreti-

cally, reduce variation of targeted alleles transmitted to

progeny by recipients. Clonal enrichment of CRISPR/Cas9-

modified stem spermatogonia in culture prior to transplanta-

tion would also facilitate studying the effects of recessive

mutations on spermatogenesis (particularly, in cases of

embryonic lethality). As an example, Erbb3 is critical for

embryogenesis in mice (Erickson et al., 1997) and encodes a

receptor tyrosine kinase activated by the polypeptide ligand

NRG1 (Carraway et al., 1994). Furthermore, NRG1, GDNF,
1830 Cell Reports 10, 1828–1835, March 24, 2015 ª2015 The Author
and serum were required for the clonal development of differ-

entiating spermatogenic cells in vitro on laminin (Hamra et al.,

2007). To define a germline receptor for NRG1 in rats,

we analyzed CRISPR/Cas9-targeted Erbb3 mutations in sper-

matogonial stem cell lines derived from individually picked col-

onies (Figure 2A).

Six of 26 picked colonies analyzed (�23%) were enriched

with targeted Erbb3 mutations after clonal expansion on fibro-

blast feeder layers (Figure 2A and Figure S3A). It is interesting

that all six mutant colonies were classified as harboring iso-

genic (three of six colonies) or heterogeneous (three of six col-

onies) biallelic targeted mutations (Figure S3A). Mutant colonies

with isogenic targeted alleles (i.e., B9, C7, D3) were, initially,

falsely classified as wild-type germlines by the Surveyor assay

(Figure S3B) but subsequently defined as biallelic Erbb3

mutant germlines by sequencing (Figures S3A and S3B). This

is consistent with the Surveyor assay becoming less accurate

at estimating percent modified alleles as target allele variation

decreases (Guschin et al., 2010).

Biallelic mutant spermatogonial lines derived from picked

colonies were deficient in ERBB3 (Figure 2B) and proliferated

at similar rates over multiple passages in culture compared to

clonally expanded wild-type lines (Figure 2C). Unlike wild-

type lines, six of six clonally enriched Erbb3-deficient germ-

lines were severely compromised in their ability to support

development of ZBTB16� spermatogenic colonies in culture

on laminin in a serum-free, spermatogonial differentiation

medium (SD medium) supplemented with NRG1, GDNF,

FGF2, and all-trans-retinoic acid (Figures 2D and 2E). All

wild-type germlines picked from the same transfection effec-

tively developed into syncytia containing 8–32 differentiating

spermatogenic cells negative for ZBTB16 labeling (tgGCS-

EGFP+, ZBTB16�; n = 5 lines) (Figures 2D and 2E). ZBTB16

(or PLZF) is a marker for type A spermatogonia in mammalian

testes and is critical for spermatogonial stem cell self-renewal

in mice (Buaas et al., 2004; Costoya et al., 2004). In contrast

to their in vitro phenotypes, Erbb3-deficient spermatogonial

lines (B9 and C7) robustly regenerated spermatogenesis in

recipient rats when analyzed 2.5–3.5 months post-transplan-

tation (Figure 3A; Figure S4A). Thus, the ability of Erbb3-defi-

cient germlines to regenerate spermatogenesis in recipient

testes did not reflect NRG1’s requirement for clonal develop-

ment of differentiating spermatogenic cells in culture (Figures

2D and 2E).

To assess the sperm-forming potential of Erbb3-deficient

spermatogonial lines longer term, recipients of clonally expanded

lines C7 (R1697) and C8 (R1699) were paired with wild-type

females at day 207 post-transplantation (�6.8 months; both

testes transplanted per recipient). The recipient of line C8 was

highly enriched with +C and DC frame shift mutations (Figures

S3A and S3B) and fathered progeny inheriting each Erbb3 germ-

linemutation (�46%of progenywere +CorDC targeted alleles; 6

of 13 pups) (Figure 3B; Figure S3C). All Egfp+ pups (five of five)

harbored one of the two targeted alleles (Figure 3B; Figures

S3C and S3D), consistent with colony C8 representing a homo-

geneous biallelic mutant germline (Figures S3A and S3B). Simi-

larly, the recipient of isogenic lineC7 (enrichedwith+C frameshift

mutations; FiguresS3A andS3B) fathered a litter of ten pups, four
s

http://www.harlan.com
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Figure 2. Monoclonal Enrichment of Erbb3-

Deficient Stem Spermatogonia

(A) CRISPR/Cas9-targeted Erbb3mutations (exon

2) in clonally expanded rat spermatogonial lines.

(B) Relative abundance of ERBB3 (upper arrow-

head) and TUBA1a (lower arrowhead) in wild-type

(colony D4; WT) and Erbb3-deficient (colony B9;

KO) spermatogonial lines.

(C) Left: cultures of clonally expanded wild-type

(colony D4) and Erbb3 knockout (colony B9)

spermatogonia expressing tgGCS-EGFP. Right:

Growth rates of clonally expanded wild-type (WT)

and Erbb3 knockout (KO) spermatogonial lines.

Scale bars, 50 mm.

(D) NRG1-dependent development of differenti-

ating spermatogenic cells from wild-type and

Erbb3 knockout spermatogonial lines. Error bars

indicate SD.

(E) Spermatogenic cells from colonies D4 (wild-

type) and B9 (Erbb3 knockout) analyzed in (D).

tgGCS-EGFP is indicated in green, and ZBTB16

antibody is indicated in red. IgG, immunoglobulin

G. Scale bars, 40 mm.

See also Figure S3.
of which inherited the +C mutation in Erbb3 (Figure S3C). Again,

all Egfp+ pups (three of three) harbored the targeted Erbb3 allele

(Figures S3C and S3D), which would be expected in progeny

derived from a monoclonal donor germline harboring two tar-

geted Erbb3 alleles.

Analysis of recipient testes at day 239 post-transplantation

(7.8 months) revealed donor-derived spermatogenesis from

lines C7 and C8 (Figure S4B) but at visibly reduced levels of

colonization compared to wild-type germlines (Figure 3C).

Neither recipient testis weights (Figure 3D) nor the percent

seminiferous tubules containing both EGFP+ type A spermato-

gonia (ZBTB16+) and spermatids (PNA+) were significantly

different between recipients of wild-type and Erbb3 mutant

germlines (Figure S4B). Donor-derived spermatids were pre-

sent in >90% of seminiferous tubule sections colonized by

EGFP+ spermatogenic cells, independent of the clonal line

transplanted (n = 3 wild-type lines and 3 biallelic mutant lines)

(Figure S4B).
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DISCUSSION

Here, we demonstrate how CRISPR/

Cas9-mediated germline editing in donor

spermatogonia can be used to produce

‘‘pure,’’ non-mosaic mutant animals and

to study the effects of gene mutations

on spermatogenesis. In doing so, we

provide proof of concept for targeted

mutagenesis directly in fully functional

rat donor germlines. This included poly-

clonal and monoclonal enrichment of

rat spermatogonial lines harboring herita-

ble, CRISPR/Cas9-targeted alleles. High

colonization efficiency (Hamra et al.,

2005; Wu et al., 2009), transfection effi-

ciency, and sperm-forming potential of donor germlines trans-

lated into robust mutant rat production by spermatogonial

gene editing with CRISPR/Cas9.

An estimated 15%–30% of donor-cell-derived progeny was

obtained by breeding recipients transplanted with G418-sel-

ected donor spermatogonia (200,000 per testis) carrying tar-

geted Epsti1 alleles (Figure 1C). Similarly, �43% of pups (10/

23, n = 2 litters, 1 litter per donor strain) were derived frommono-

clonally enriched donor spermatogonial lines (60,000 per testis)

harboring Erbb3 null mutations (Figure 3B; Figure S3). Actual

transmission rates from targeted germlines would be contingent

on how mutated alleles affect sperm development or function

and on rates at which biallelic null mutations were generated

and maintained per transfected sperm-forming spermatogo-

nium. In the two examples reported here, even if Epsti1 or

Erbb3 was found essential for male fertility, the phenotypically

diploid nature of clonally derived spermatids imparted by ring

canals (Braun et al., 1989; Wilkie et al., 1991) would enable
, March 24, 2015 ª2015 The Authors 1831
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Figure 3. Transmission of Isogenic CRISPR/

Cas9-Targeted Alleles to Rat Progeny

(A) Top: spermatogenesis (green) derived from

wild-type (WT) colony D4 and Erbb3 knockout (KO)

colony B9 in testes from R1683 at �3.5 months

post-transplantation. Scale bar, 1 cm. Bottom:

seminiferous tubule cross-section from R1683

illustrating spermatogenesis derived from colony

B9 marked by EGFP (green). ZBTB16+ spermato-

gonia are indicated by red nuclei. Scale bar,

100 mm.

(B) Genotypes of rat progeny derived from clonally

expanded spermatogonial line C8. tgGCS-EGFP is

a hemizygous marker.

(C) Recipient rat testes �7.8 months post-trans-

plantation. Clonally expanded lines were trans-

planted into the right testes of R1686, R1702, and

R1700 (EGFP+), but contralateral left testes were

not transplanted. Note that the right and left testes

of R1697 were transplanted. Scale bar, 1 cm.

(D) Mean testis weights from recipient rats analyzed

�7.8 months after transplanting with wild-type

(WT) spermatogonial lines (D4, n = 2; B11, n = 3; A6,

n = 2) and Erbb3-deficient (KO) spermatogonial

lines (B9, n = 2; C7, n = 3; C8, n = 3). NT, un-

transplanted testes, n = 11 (error bars indicate SD;

p values are frommultiple t tests). The ns are shown

in parentheses above the bars.

See also Figures S3 and S4.
spermatogonial stem cells containing at least one functional

copy of the targeted allele (wild-type or in-framemutant) to verti-

cally transmit recessive loss-of-function donor haplotypes.

Here, monoclonally enriched spermatogonial lines harboring

biallelic, CRISPR/Cas9-targeted Erbb3 null mutations were also

applied to study spermatogenesis during culture in vitro and in

recipient rat testes (Figures 2 and 3). Notably, the Erbb3-deficient

germlines were analyzed in vitro using highly simplified, serum-

free culture media that effectively promoted spermatogonial

stem cell renewal (SG medium) or differentiation (SD medium)

(Figure 2). Unknown factors in recipient testes, whichwere appar-

ently absent or inactive in vitro, were sufficient to support sper-

matogonial differentiation on the Erbb3-deficient background.

Looking ahead, the ability to ‘‘multiplex’’ with CRISPR/Cas9 holds

the potential to study such redundant or polygenic processes

contributing to the genetic robustness of spermatogenesis (Arch-

ambeault and Matzuk, 2014). Thus, recessive genetic assays in

fully functional rat spermatogonial stem cells were established

by these studies, providing an experimental platform to biochem-

ically and genetically define in vitro spermatogenesis-stimulating

factors, such as NRG1 and ERBB3.

Based on the germline transmission rates of targetedEpsti1 al-

leles that we obtained by breeding recipient rats (Figure 1), trans-

planting spermatogonial stem cells into seminiferous tubules
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more directly after delivering CRISPR/

Cas9 constructs than in the current study

holds a clear potential to expedite produc-

tion of pure mutant rat strains by up to an

additional month (Figure 4). Spermatogo-

nial geneediting usingCRISPR/Cas9 tech-

nology can readily be adopted in rodents on a scalable level

(Izsvák et al., 2010; Kanatsu-Shinohara et al., 2005; Nagano

et al., 2001a) and could be established to streamline puremutant

animal production in other applied species important for science,

industry, conservation, and medicine (Arregui et al., 2013; Her-

mann et al., 2012; Nagano et al., 2001b; Zeng et al., 2013).

Indeed, proof of concept for correcting genetic disease in mice

by spermatogonial gene editingwithCRISPR/Cas9was reported

during the revision of this article (Wu et al., 2015).

EXPERIMENTAL PROCEDURES

Spermatogonial Gene Editing with CRISPR/Cas9

Spermatogonial lines were derived from freshly isolated laminin-binding

spermatogonia using individual heterozygous SD-Tg(ROSA-EGFP)2-4Reh rats

(Hamra et al., 2005). SD-Tg(ROSA-EGFP)2-4Reh Sprague-Dawley rats are

referred to as tgGCS-EGFP rats because they exhibit germ-cell-specific expres-

sion of EGFP (Cronkhite et al., 2005). Spermatogonial lines were propagated on

feeder layers of irradiated mouse embryonic fibroblasts (MEFs) as previously

detailed using SG medium containing 6 ng/ml basic fibroblast growth factor

(bFGF) (PGF0023, Life Technologies) and 6 ng/ml GDNF (512-GF, R&D Sys-

tems) (Chapman et al., 2011;Wu et al., 2009). To generate Epsti1mutants, sper-

matogonia were harvested at passage 8 and co-transfected in suspension with

plasmids pNeoDtk and/or pX330 (Cong et al., 2013) using theNeonTransfection

System (Life Technologies) set for two pulses at 1,100 V, 20 ms. pX330 co-ex-

pressed Cas9 and gRNAs 50-tgatagcaccgaacgagacc-30 (pgEpsti1-330; cloned
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Figure 4. CRISPR/Cas9 Gene Targeting in

Early Embryos and Spermatogonia

Left: zygotes are injected with CRISPR/Cas9

constructs and transferred into surrogate female

oviducts to support donor embryo development

into mutant progeny. Mosaic mutant progeny born

�19–22 days (d) post-transfer (depending on

cleavage stage transferred) (superscript 1) display

variation in targeted alleles in various tissues and

must be crossed to wild-type stock to generate

pure heterozygous mutants isogenic at respective

targeted alleles in all cells of their body.

Center: rat pluripotent stem cell cultures could

prospectively be genetically modified using

CRISPR/Cas9. Rat embryonic stem cells with

targeted mutations have been selected in culture

prior to blastocyst injection (Tong et al., 2011).

Injected blastocysts are transferred into uteri of

surrogate females to produce mosaic/chimeric

mutant animals �19 days post-transfer (super-

script 1). Mosaic/chimeric animals are crossed to

wild-type stock to establish pure heterozygous

mutants.

Right: spermatogonial stem cells can be geneti-

cally modified in culture using CRISPR/Cas9.

Modified spermatogonia are injected into recipient

rat testes to produce mutant spermatozoa that

transmit targeted genomic modifications to het-

erozygous mutant progeny. Timelines for each

approach listed above must consider�75 days for

rat breeder pairs to reach reproductive age, 21–

23 days for rat gestation time, plus a 4- to 5-day

estrus cycle in rats (Lohmiller and Swing, 2006)

(superscript 2).

*Includes additional 4 days to establish pseudo-pregnant female recipients by paring with vasectomized males; does not include time needed to prepare

vasectomized male rats. **Remains to be determined (t.b.d) using CRISPR/Cas9; estimate based on rat embryonic stem cell lines selected following transfection

with classical DNA targeting constructs (Tong et al., 2011); includes an additional 4 days to establish pseudo-pregnant female recipients. ***Present study;

minimum time required following delivery of CRISPR/CAS9 constructs to spermatogonia (with or without genetic selection) prior to transplantation was not

studied and remains to be determined (t.b.d); includes 12 days to prepare recipient males.
intoBbsI sites). pNeoDtkwas generated from parental plasmid, pKO1904 (Stra-

tagene), by excising its thymidine kinase cassette and retaining the neomycin

phosphotransferase open reading frame under control of the PGK1 promoter.

Cultures not undergoing G418 selection were transfected using 10 mg pgEp-

sti1-330/106 spermatogonia; cultures undergoing G418 selection were co-

transfected using3 mg pgEpsti1-330+7 mg pNeoDtk/106 spermatogonia. Trans-

fected spermatogonia for each respective condition were plated onto fresh

MEFs for 3 days (day 3) and selected in SG medium containing 0 or 65 mg/ml

G418 for 6 days (day 9) prior to harvesting and plating on fresh MEFs in SGme-

dium on day 11 (Chapman et al., 2011). To generate clonally enriched Erbb3-

deficient germlines, spermatogonial stem cells from passage 6 were similarly

transfected with pgErbb3-330 (gRNA 50-ggggaacccaggtctacgat-30) and diluted

post-transfection by plating an equivalent of �7.5 3 104 to 1.5 3 105 cells/

9.5 cm2 in SG medium to promote picking individual colonies for derivation of

clonally enriched spermatogonial lines, as described elsewhere in detail

(Chapman et al., 2011; Ivics et al., 2011; Izsvák et al., 2010). Individually picked

colonies required a mean (± SD) of 81 ± 20 and 89 ± 21 days to expand wild-

type (n = 5) and Erbb3-deficient (n = 6) spermatogonial lines to �2 3 105 cells,

respectively.
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