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The present paper is concerned with the first boundary value problem for a certain
class of quasilinear non-uniformly parabolic equations. New a priori estimates of
the solution and of its gradient are obtained. These are independent of the smoothness
of the coefficients. Existence and uniqueness theorems are proved. � 1998 Academic

Press

INTRODUCTION

The primary question for quasilinear uniformly and non-uniformly para-
bolic equations consists in obtaining an a priori estimate for the gradient
of the solution |{u|. In the case of one space variable this estimate have
been obtained without any restriction on the smoothness of the coefficients
(see [1]). In the higher dimensional case the main idea, that goes back
to S. N. Bernstein, involves the preliminary boundary estimate of |{u|,
differentiation of the equation and application of the maximum principle
(see [2]).

In the present paper (Section 3) we consider the first boundary value
problem for a certain class of quasilinear non-uniformly parabolic equations
for cylinders with a strictly convex base. We obtain an estimate for |{u| in
the whole domain without differentiation of the equation. The estimate is
independent of the ellipticity coefficient, of the smoothness of the coef-
ficients of the equation and is found explicitly. Based on this a priori
estimate and known results [1, 3, 4] the existence theorem is proved. In
deriving an a priori estimate for |{u| the idea of introducing an additional
spatial variable [1] is used (see also [5�8]).

In Section 1 and 2 we consider the first boundary value problem for the
general quasilinear non-uniformly parabolic equations in arbitrary domains.
A new sufficient condition for the boundedness of a classical solution is
obtained. The generalization of the uniqueness theorem (Theorem 2.8 from
[2]) is given.

article no. DE973352

263
0022-0396�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82188644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


File: DISTIL 335202 . By:DS . Date:19:01:98 . Time:07:11 LOP8M. V8.B. Page 01:01
Codes: 2532 Signs: 1230 . Length: 45 pic 0 pts, 190 mm

1. ESTIMATE OF THE SOLUTION

Consider the following problem

aij (t, x, u, {u) uxi xj
&ut=f (t, x, u, {u) in QT=0_(0, T ), (1.1)

(we assume the summation convention)

u(0, x)=,(x) on 0 and u=/(s) on S=�0_[0, T], (1.2)

where 0/Rn is bounded domain, x=(x1 , x2 , ..., xn), {u=(ux1
, ..., uxn

),
aij=aji , i, j=1, 2, ..., n. Assume that the functions aij , f are defined on the
set Q� T_R_R2, are bounded for (t, x) # QT and for finite u, {u and

aij !i!j�0, \! # Rn. (1.3)

Suppose that there exist an index i0 , without loss of generality set i0=1,
such that f satisfies, for (t, x) # QT and any u, p1 the structure condition

| f (t, x, u, p1 , 0, ..., 0)|�a11(t, x, u, p1 , 0, ..., 0) �( | p1 | ) (1.4)

where �(\) is a continuously differentiable function such that �(\)�1 for
\�0 and

|
+� d\

�(\)
=+�. (1.5)

Lemma 1.1. Let u(t, x) be a classical solution (u(t, x) # C 0(Q� T ) &
C1, 2

t, x(Q� T"(S _ 0))) of the problem (1.1), (1.2) and assume that conditions
(1.3), (1.4), (1.5) hold. Then

sup
QT

|u|�M,

where the constant M depends only on �, m=max[sup |,|, sup |/|] and d,
d is the size of the domain 0 in the direction of the variable x1 .

Proof. Without loss of generality assume that 0 is lying in the slab
0<x1<d. Let

L(u)#a11(ux1x1
+�( |ux1

| ))+ :
2n

i+ j=3

aijuxi xj
&ut .

Introduce the function h(x1) such that

h"+�( |h$| )=0, h(0)=m, h(d)=H,
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where H is a constant to be specified below. Represent the solution in
parametrical form (which is an easy matter when using the substitution
h$=q)

h(q)=|
q1

q

\ d\
�(\)

+m, x1(q)=|
q1

q

d\
�(\)

,

where q # [q0 , q1] and q0 , q1 are chosen so as to have q1>q0>0 and

x1(q)=|
q1

q0

d\
�(\)

=d,

which is possible due to (1.5). We put

H=|
q1

q0

\ d\
�(\)

+m.

Obviously, h$(x1)=q>0 and hence u&h�0 on 0 _ S. Besides L(h)=0
and thus for w=u&h we have

L(u)&L(h)#L0(w)#a11(wx1x1
+;wx1

)+ :
2n

i+ j=3

aijwxixj
&wt

= f (t, x, u, {u)+a11(t, x, u, {u) �( |ux1
| ).

In view of the fact that u(t, x) is a classical solution and that the function
�(\) is a C1 function we obtain that |;|<+� in Q� T "(S _ 0).

Consider the function w~ =we&t. We have that

L0(w)=a11(w~ x1x1
+;w~ x1

)+ :
2n

i+ j=3

aijw~ xi xj
&w~ &w~ t

=e&t( f (t, x, u, {u)+a11(t, x, u, {u) �( |ux1
| )).

If the function w~ attains its positive maximum at the point N # Q� T"(S _ 0)
then at this point {w~ =0 i.e. ux1

=h$, uxi
=0 for i=2, 3, ...n. By virtue of

(1.4) we obtain

a11(w~ x1x1
+;w~ x1

)+ :
2n

i+ j=3

aijw~ xi xj
&w~ &w~ t |N

=e&t( f (t, x, u, ux1
, 0, ..., 0)+a11(t, x, u, ux1

, 0, ..., 0) �( |ux1
| ))| N�0.

This contradicts the fact that w~ attains its positive maximum in Q� T"(S _ 0).
In view of the non-positivity of w~ on the S _ 0 we conclude that w~ �0 on
Q� T and consequently w=u&h�0 on Q� T .
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Since h$>0, the function v#u+h is not less than zero on S _ 0.
Obviously

L1(u)#aijuxi xj
&ut=f (t, x, u, {u) and L1(h)=&a11(t, x, u, {u) �( |h$| ).

It is clear that for v~ =ve&t we have

aij v~ xi xj
&v~ &v~ t=e&t( f (t, x, u, {u)&a11(t, x, u, {u) �( |h$| )).

If the function v~ attains its negative minimum at the point N # Q� T"(S _ 0)
then at this point {v~ =0 i.e. ux1

=&h$, uxi
=0 for i=2, 3, ...n. By virtue of

(1.4)

aij v~ xi xj
&v~ &v~ t |N=e&t( f (t, x, u, &h$, 0, ..., 0)

&a11(t, x, u, &h$, 0, ..., 0) �( |h$| ))|N�0.

This contradicts the fact that v~ attains a negative minimum at N. Taking
into account that v~ =(u+h) e&t�0 on S _ 0 we conclude that v~ �0 on
Q� T and hence v�0 on Q� T . This completes the proof of the lemma.

Remark 1.1. Instead of (1.5) it is sufficient to require the existence of :1

and :2 (:2>:1>0) such that

|
:2

:1

d\
�(\)

=d.

Remark 1.2. If the condition (1.5) is fulfilled for �(\) such that �(0)=0
(instead of �(\)�1), then (1.5) can be replaced by the following condition

|
+�

0

d\
�(\)

=+�.

For example we can take �( |ux1
| )=|ux1

|k for any non-negative constant
k # R.

We will now prove the estimates of the solution near the boundary in
a special case. These will be used in Section 3 for the estimation of the
gradient of the solution.

Definition. We will say that the domain 0 satisfies the condition (a) if
0 is strictly convex, 0/[x : Ai�xi�Bi , i=1, ...n], where Ai<0, Bi>0,
�0 # C2 and (A1 , 0, 0, ..., , 0, 0), (0, A2 , 0, ..., 0, 0), ..., (0, 0, 0, ..., 0, An),
(B1 , 0, 0, ..., , 0, 0), (0, B2 , 0, ..., 0, 0), ..., (0, 0, 0, ..., 0, Bn) # �0.

Obviously if 0 satisfies the condition (a) then it is possible to represent
the parts of �0 which are lying in the half-spaces xi�0 and xi�0,
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i=1, ..., n in the form of the functions xi=Fi (x1 , ..., xi&1 , xi+1 , ..., xn),
xi=Gi (x1 , ..., xi&1 , xi+1 , ..., xn) respectively, where Fi , Gi i=1, ..., n are
C2 functions. Introduce the functions h1i (xi), h2i (xi), i=1, 2, ..., n by the
following

h"1i+�( |h$1i | )=0, h1i (Ai)=0, h1i (Ai+{0)=2M,
(1.6)

h"2i+�( |h$2i | )=0, h2i (Bi&{0)=2M, h2i (Bi)=0,

where � now satisfies the following condition

|
+� \ d\

�(\)
=+� (1.7)

and M=supQT
|u|. To define {0 represent h1i in parametrical form

h1i (q)=|
q1

q

\ d\
�(\)

, xi (q)=|
q1

q

d\
�(\)

,

where q # [q0 , q1] and q0 , q1 are chosen so as to have q1>q0�mi�0,
i=1, ..., n and

h1i (q)=|
q1

q0

\ d\
�(\)

=2M

which is possible due to (1.7). The constants mi will be specified in
Section 3. We put

{0=|
q1

q0

d\
�(\)

.

Suppose that instead of (1.4) the following condition is fulfilled

| f (t, x, u, p)|�a11(t, x, u, p) �( | p1 | ) (1.8)

for (t, x) # QT , |u|<M and any p, where p=( p1 , ..., pn).

Lemma 1.2. Suppose that 0 satisfies the condition (a). In addition
suppose that /#0, aij#0 for i{ j and

|,(x)|�hk1(!k1) in Dk1 , k=1, 2.

where !11=x1&F1(x$)+A1 , !21=x1&G1(x$)+B1 , x$=(x2 , ..., xn),

D11=0 & [x : F1(x$)<x1<F1(x$)+{0 ; Ai<xi<Bi , i=2, ..., n],

D21=0 & [x : G1(x$)&{0<x1<G1(x$); Ai<xi<Bi , i=2, ..., n].
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If the conditions (1.3), (1.7), (1.8) are fulfilled then for any classical solution
u(t, x) of the problem (1.1), (1.2) we have the estimates

|u(t, x)|�hk1(!k1) in D� k1
T =D� k1_[0, T], k=1, 2.

Proof. Obviously, |u(t, x)|�hk1(!k1) on Dk1 _ (�Dk1_[0, T]), k=1, 2.
Let

L0(u)#a11(ux1x1
+�|ux1

| )+ :
n

j=2

ajjuxjxj
&ut .

We have L0(u)�0 and

L0(h11(!11))= :
n

j=2

ajj (h"11 F 2
1xj

&h$11F1xj xj
)�0,

L0(h21(!21))= :
n

j=2

ajj (h"21 G2
1xj

&h$21G1xj xj
)�0,

since 0 is convex domain, h$11>0, h$21<0 and h"11<0, h"21<0. Arguing in
the same manner as in Lemma 1.1 we obtain that u(t, x)�hk1(!k1), k=1, 2
on D� k1T .

Now let L(u)#ajjuxj xj
&ut= f (t, x, u, {u). Obviously L(hk1(!k1))�

&a11(t, x, {u) �( |h$k1(!k1)| ). Again arguing in the same manner as in
Lemma 1.1 we obtain that u(t, x)�&hk1(!k1), k=1, 2 on D� k1

T . The lemma
is proved.

Let us state a lemma whose proof is similar to the proof of Lemma 1.2.

Lemma 1.3. Suppose that the conditions of Lemma 1.2 are fulfilled and
in addition we have that

| f (t, x, u, p)|�aii (t, x, u, p) �( | pi | ) (1.9)

and |,(x)|�hki (!ki) on Dki for i=2, ..., n, k=1, 2 where

D1i=0 & [x : Fi (x$)<xi<Fi (x$)+{0 ; Aj<xj<Bj ,

j=1, ..., i&1, i+1, ..., n],

D2i=0 & [x : Gi (x$)&{0<xi<Gi (x$); Aj<xj<Bj ,

j=1, ..., i&1, i+1, ..., n].

Then we have

|u(t, x)|�hki (!ki) on D� ki
T ,
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where !1i=xi&Fi+Ai , !2i=xi&Gi+Bi and D� ki
T =D� ki_[0, T] for

i=1, 2, ..., n, k=1, 2.

2. UNIQUENESS

Usually, the uniqueness is proved under the assumption of differentiability
of functions aij (t, x, u, p) and f (t, x, u, p) with respect to u and p (see for
example Theorem 2.8 from [2]). We will show that in a very simple manner
the assumption on differentiability with respect to p can be avoided.

Theorem 2.1. If the functions aij (t, x, u, p), f (t, x, u, p) satisfy the condi-
tion (1.3) and are bounded with their partial derivatives of first order with
respect to u for (t, x) # Q� T and finite u, {u then the problem (1.1), (1.2) has
no more than one solution in the class of functions belonging to C 2, 1

x, t (Q� T). If
in addition the functions aij and f are independent of u then the problem (1.1),
(1.2) has no more than one classical solution.

Proof. Suppose that there exist two solutions u, v # C 2, 1
x, t (Q� T). For the

function w#u&v we have

aij (t, x, u, {u) wxi xj
&wt= f (t, x, u, {u)& f (t, x, v, {u)+ f (t, x, v, {u)

& f (t, x, v, {v)+(aij (t, x, u, {v)

&aij (t, x, u, {u)) vxi xj
+(aij (t, x, v, {v)

&aij (t, x, u, {v)) vxi xj
.

Rewrite this relation in the following way

aij (t, x, u, {u) wxi xj
&( f� +a~ ij vxi xj

) w&wt=F, (2.1)

where

F= f (t, x, v, {u)& f (t, x, v, {v)+(aij (t, x, u, {v)&aij (t, x, u, {u)) vxi xj
.

The existence of bounded functions f� and a~ ij is guaranteed by the theorem
of the mean and the differentiability of the functions aij (t, x, u, p) and
f (t, x, u, p) with respect to the variable u. We have that | f� +a~ ij vxi xj

|<C0

<+� because ({u, {v, vxixj
) # C(Q� T). For the function w~ =e&C0 tw we

obtain

L(w~ )#aij (t, x, u, {u) w~ xi xj
&( f� +a~ ij vxi xj

+C0) w~ &w~ t=e&C0 tF. (2.2)

Suppose that the function w~ achieves its positive maximum or negative
minimum at the point N # Q� T"(S _ 0) where we have w~ xi

=0 \i i.e.
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{u(N )={v(N ) and hence F(N )=0. From (2.2) we have that L(w~ )=0 at
the point N which is impossible, so we have that in Q� T"(S _ 0) the
function w~ cannot achieve a positive maximum or a negative minimum.
Taking into account that w~ =e&C0 t(u&v)=0 on S _ 0 we obtain that
u#v on Q� T .

The second statement of the theorem follows from the fact that in this
case instead of (2.1) we have

aij (t, x, u, {u)wxixj
&wt=F.

Considering the function w1=e&tw we obtain the required result.

Remark 2.1. If the functions aij are independent of u and f =f (t, x, u, {u)
than the problem (1.1), (1.2) has no more then one solution in the class of
functions belonging to C 2, 1

x, t (QT ) & C 1, 0
x, t (Q� T ), because in this case instead

of (2.1) we have

aij (t, x, {u) wxi xj
& f� w&wt= f (t, x, v, {u)& f (t, x, v, {v),

and | f� |<C0<+�.

Remark 2.2. If the function f can be written in the following form f (t, x,
u, {u)= gi (t, x, {u) uxi

+G(t, x, u) where Gu is bounded for (t, x) # Q� T and
finite u and the coefficients aij are independent of u then the problem (1.1),
(1.2) has no more then one classical solution. In this case instead of (2.1)
we have

aij (t, x, {u) wxi xj
&G� w&wt=F 1,

where |G� |<C0<+�, and F 1#gi (t, x, {u) uxi
& gi (t, x, {v) vxi

. Obviously
at the point N corresponding to the extremum of the function w~ =e&tw we
have F 1(N )=0.

Remark 2.3. It is not difficult to see that it is sufficient to require the
boundedness of the derivative fu(Gu) from below. This restriction cannot be
weakened (this follows from the linear case).

3. GRADIENT ESTIMATE AND EXISTENCE THEOREM

Consider the following problem

a11(t, x, u, {u) ux1x1
+ :

n

i=2

aii (t, x$, {u) uxi xi
&ut

= f (t, x, u, {u) in QT , (3.1)

u=0 on S, and u(0, x)=,(x) for x # 0, (3.2)
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where x$=(x2 , ..., xn), u=u(t, x). Assume that

0�aii for (t, x) # QT and \u, {u. (3.3)

Lemma 3.1. Suppose that 0 satisfies the condition (a) and that conditions
(1.7), (1.8), (3.3) are fulfilled. Moreover suppose that |,x1

|�m1 . Then, for
any classical solution of the problem (3.1), (3.2) we have the estimate

sup
Q� T

|ux1
|�C1 ,

where the constant C1 depends only on M, �, m1 , d1 (M=supQT
|u|, d1 is the

size of the domain 0 in x1 direction).

Proof. Consider the equation (3.1) at a point (t, `, x$), `{x1

a11(t, `, x$, u, {u) u``+ :
n

i=2

aii (t, x$, {u) uxixi
&ut

=f (t, `, x$, u, {u) in QT ,

u=u(t, `, x$), {u(t, `, x$)=(u` , ux2
, ..., uxn

).

Subtracting this equation from equation (3.1) we obtain for the function
v(t, `, x)#u(t, x)&u(t, `, x$)

a (x)
11 vx1 x1

+a (`)
11 v``&vt+8= f (x)& f (`),

where a (z)
11 #a11(t, z, x$, u(t, z, x$), {u(t, z, x$)), {u(t, z, x$)=(uz , ux2

, ..., uxn
),

f (z)#f (t, z, x$, u(t, z, x$), {u(t, z, x$)) and

8# :
n

i=2

[aii (t, x$, {u(t, x)) uxi xi
(t, x)&aii (t, x$, {u(t, `, x$) uxixi

(t, `, x$)].

(3.4)

From (1.8) we have

L(v)#a (x)
11 [vx1x1

+�( |vx1
| )]+a (`)

11 [v``+�( |v` | )]&vt�&8. (3.5)

Let h(') be a solution of the problem

h"(')+�( |h$(')| )=0, h(0)=0, h({0)=2M, (3.6)

where {0 is the same as in (1.6) (in particular h$�m1). Consider (3.5) and
(3.6) in the domain PT=P_(0, T ) where

P=[(`, x) : ` # (F1(x$), G1(x$)), x1 # (F1(x$), G1(x$)),

x$ # 00 , 0<x1&`<{0]
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here 00 is the projection of the domain 0 on the plane x1=0. Functions
F1 , G1 are defined in Section 1. For w#v&h(x1&`) we have

L(v)&L(h)=a (x)
11 [wx1x1

+;1wx1
]+a (`)

11 [w``+;2w`]&wt�&8.

In view of the fact that u(t, x) is a classical solution and that the function
�(\) is a C 1 function we obtain that |;i |<+� in P� T"(P _ 1 ) for i=1, 2
where 1=�P_[0, T]. Using the substitution w=w~ et, we obtain

L� (w~ )#a (x)
11 [w~ x1x1

+;1w~ x1
]+a (`)

11 [w~ ``+;2w~ `]&w~ &w~ t�&8e&t. (3.7)

Suppose that w~ achieves its maximum positive value at the point N # P� T"
(P _ 1) then at this point we have that w~ x1

=w~ x2
= } } } =w~ xn

=w~ `=0
or uxi

(t, x)=uxi
(t, `, x$), for i=1, ..., n. Hence at this point {u(t, x)=

{u(t, `, x$) and by virtue of (3.4) e&t8 |N�0. From (3.7) we see that this
contradicts the fact that w~ attains its positive maximal value at N # P� T"
(P _ 1).

Now let us show that w~ =(v&h(x1&`)) e&t�0 on P _ 1. For x1=` we
have that v&h=0, for t=0 we have that v�h because |,x1

|�m1�h$. For
`=F1(x$), x1 # [F1(x$), F1(x$)+{0], x$ # 00 , 0<t<T we have that

v&h=u(t, x)&h(x1&F1(x$)).

We show now that u(t, x)�h(x1&F1(x$)). For this it is sufficient to show
first that h(x1&F1(x$))=h11(x1&F1(x$)+A1) and then apply Lemma 1.2.
The previous equality follows directly from the fact that

h"(')+�( |h$(')| )=0, h(0)=0, h({0)=2M, '=x1&F1(x$),

h"11 (!11)+�( |h$11 (!11)| )=0, h11(A1)=0, h11(A1+{0)=2M,

where !11=x1&F1(x$)+A1 .
For x1=G1(x$), ` # [G1(x$)&{0 , G1(x$)], x$ # 00 , 0<t<T we have that

v&h=&u(t, `, x$)&h(G1(x$)&`).

From

h"(')+�( |h$(')| )=0, h(0)=0, h({0)=2M, '=G1(x$)&`,

and

h"21 (!21)+�( |h$21 (!21)| )=0, h21(B1&{0)=2M,

h21(B1)=0, !21=`&G1(x$)+B1 ,

follows that h(G1(x$)&`)=h21(`&G1(x$)+B1)�&u(t, `, x$).
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Thus we have proved that w~ �0 on P _ 1. Hence (due to the fact that
w~ cannot achieve a positive maximum in P� T"(P _ 1)) we obtain that

u(t, x)&u(t, `, x$)�h(x1&`) in P� T .

By analogy, taking the function v~ #u(t, `, x$)&u(t, x) we obtain v�&h(x1&`)
in P� T .

In view of the symmetry of the variables x1 and ` in the same way we
examine the case `>x1 in P1T=P1_(0, T ) where

P1=[(`, x) : ` # (F1(x$), G1(x$)), x1 # (F1(x$),

G1(x$)), x$ # 00 , 0<`&x1<{0].

As a result we have that in

[(`, x) : ` # [F1(x$), G1(x$)], x1 # [F1(x$), G1(x$)],

x$ # 0� 0 , |x1&`|�{0]"[x1=`]

the inequality

|u(t, x)&u(t, `, x$)|
|x1&`|

�
h( |x1&`| )&h(0)

|x1&`|

holds, implying that |ux1
(t, x)|�h$(0) and the lemma is proved.

Now let us formulate the conditions guaranteeing a priori estimates of
the gradient. Consider the following equation

aii (t, xi , {u) uxixi
&ut= f (t, x, u, {u) in QT . (3.8)

Lemma 3.2. Suppose that 0 satisfies condition (a) and conditions (1.7),
(1.8), (1.9), (3.3) are fulfilled. Moreover suppose that sup0 |,xi

|�mi ,
i=1, ..., n. Then for any classical solution of the problem (3.8), (3.2) we have

sup
QT

|uxi
|�Ci , i=1, ..., n,

where the constant Ci depends only on �, mi and di (di is the size of the
domain 0 in the xi direction).

The proof of this lemma is similar to the proof of Lemma 3.1.

Remark 3.1. The fulfilment of the condition

| f (t, x, u, p)|�a11(t, x1 , p) �( | p1 | )
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for (t, x) # QT , |u|<M and any p implies the a priori estimate |ux1
|<C1 .

In order to obtain the a priori estimate |ux2
|<C2 it is sufficient to require

that

| f (t, x, u, p)|�a22(t, x2 , p) �( | p2 | )

for (t, x) # QT , |u|<M, | p1 |<C1 and any p2 , ..., pn . To obtain the estimate
|ux3

|<C3 we require the fulfilment of | f (t, x, u, p)|�a33(t, x3 , p) �( | p3 | )
for (t, x) # QT , |u|<M, | p1 |<C1 , | p2 |<C2 and any p3 , ..., pn and so on.

Remark 3.2. The estimates in Lemmas 1.2, 1.3 give us in fact the
boundary gradient estimates. In the more general case the boundary
gradient estimates where obtained in [9, 10] (see also [4, 11]).

We are now in position to prove the existence theorem.

Theorem 3.1. Suppose that all conditions except (3.3) of Lemma 3.2 are
fulfilled and assume that

aii>0 for (t, x) # Q� T and \{u, (3.9)

, # C 1+;(0� ), ,=0 on �0.

Suppose that some condition which quarantees the a priori estimate of u is
fulfilled (see [2] or Lemma 1.1). Suppose in addition that for (t, x) # Q� T ,
|u|�M, | pi |�Ci , i=1, ..., n, functions aii (t, xi , p) are continuously differen-
tiable with respect to xi , p and Ho� lder continuous in t with exponent ;,
; # (0, 1) and function f (t, x, u, p) is Ho� lder continuous in t, x, u, p with
exponent ;.

Then there exist a solution of the problem (3.8), (3.2) belonging to
C 2+;, 1+;�2

x, t (QT) & C 1+;, (1+;)�2
x, t (Q� T).

If the derivative fu(t, x, u, p) is bounded then the solution is unique.

Proof. The boundedness of |{u| implies the Ho� lder continuity of the
solution with respect to t with Ho� lder exponent 1�2 and Ho� lder constant
depending only on sup |{u| and on the maximum of the functions aii (t, xi , p),
| f (t, x, u, p)| on the set D#Q� T_[&M, M]_[&C1 , C1]_ } } } _[&Cn , Cn]
(see [1]). The Ho� lder estimate for {u follows from [3, 4, 12] with Ho� lder
constant and Ho� lder exponent depending only on M, C1 , ..., Cn , n, on the
minimum of aii and on the maximum of aii , |aiip | , |aiixi

|, | f | on D
see [4]).

These a priori estimates and Leray�Schauder theorem imply the existence
of the solution (see for example [2] or [4]).

The uniqueness follows from Theorem 2.1.
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Theorem 3.2. Suppose that all conditions except (3.9) of Theorem 3.1
are fulfilled. Assume that

aii>0 for (t, x) # QT and \{u

and

aii�0 for (t, x) # S _ 0 and \{u.

Then there exist a solution of the problem (3.8), (3.2) belonging to
C2+;, 1+;�2

x, t (QT) & C :, 1�2
x, t (Q� T), \: # (0, 1).

If the derivative fu(t, x, u, p) is bounded then the solution is unique.

Proof. The existence can be easily proved by adding to the left part of
the equation (3.8) the term = 2u and then passing to the limit using the
estimates of Lemma (3.2) and the above mentioned property of Ho� lder
continuity of the solution with respect to t.

The uniqueness follows from Theorem 2.1.

Remark 3.3. The above mentioned result on Ho� lder continuity with
respect to t was proved first for quasilinear equations in many dimensions
[5], with not optimal Ho� lder exponent (less than 1�2), then for linear
equations this result was proved with Ho� lder exponent 1�2 [13] and finally
in [1] this result was proved for quasilinear equations with optimal Ho� lder
exponent 1�2. In [1] the case of one space variable is considered but the
proof can be applied to the higher dimensional case almost without change.
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