Identification of drought tolerance candidate proteins and genes in reproductive stage of wheat

Reza Fotovat*.

*Department of Agronomy and Plant Breeding, University of Zanjan, Zanjan, IRAN

Abstract

Reproductive development is the most water-stress-sensitive phase in the life of a cereal crop. We applied a proteomic approach to analyze the effects of drought stress on anther proteome and identification of candidate proteins and genes in drought tolerant, Dezful-10 and susceptible, Shiraz, wheat genotypes. Our results showed that short-term stresses at meiosis and mitosis stages declined plant seed setting and the meiosis stage is more sensitive to drought stress. Mass spectrometry analysis of responsive proteins revealed that several important protein in plant adaptation to drought stress are up-regulated only in tolerant plant including rafin, vacuolar invertase, putative PrMC3, Esterase/lipase, reversibly glycosylated polypeptide and subtilisin like serine protease. The expression of the selected proteins which were the representatives of the down-regulated proteins and of the up-regulated proteins in wheat genotypes were further assessed at the transcription level using real-time PCR.

* Corresponding author. Tel.: +98-912-141-4803; fax: +98-243283302.
E-mail address: r_fotovat@znu.ac.ir

© 2015 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the organizing committee of the Agriculture and Climate Change - Adapting Crops to Increased Uncertainty (AGRI 2015).

Keywords: Drought stress; anther proteome; reproductive phase; meiosis stage; wheat pollen grain

References


1878-0296 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of the Agriculture and Climate Change - Adapting Crops to Increased Uncertainty (AGRI 2015) doi:10.1016/j.proenv.2015.07.206