Whitney Numbers of the Second Kind for the Star Poset

Frederick J. Portier and Theresa P. Vaughan

Abstract

The integers W_{0}, \ldots, W_{t} are called Whitney numbers of the second kind for a ranked poset if W_{k} is the number of elements of rank k. The set of transpositions $T=\{(1, n)$, $(2, n), \ldots,(n-1, n)\}$ generates S_{n}, the symmetric group. We define the star poset, a ranked poset the elements of which are those of S_{n} and the partial order of which is obtained from the Cayley graph using T. We characterize minimal factorizations of elements of S_{n} as products of generators in T and provide recurrences, generating functions and explicit formulae for the Whitney numbers of the second kind for the star poset.

1. Introduction

Let (P, \leqslant) be a finite poset. By $a \leqslant{ }^{*} b$ we mean if $a \leqslant c \leqslant b$ then $a=c$ or $b=c$. A partial order is completely defined if all pairs (a, b) for which $a \leqslant^{*} b$ are given. A poset P is said to be ranked if each element $a \in P$ can be assigned a non-negative integer $\operatorname{rank}(a)$ so that if $a \leqslant^{*} b$ then $\operatorname{rank}(b)=\operatorname{rank}(a)+1$.
Let n be a positive integer and let T be the set of transpositions $\{(1, n)$, $(2, n), \ldots,(n-1, n)\}$. We know that T is a minimal generating set for S_{n}, the symmetric group [2]. Let $G(n)$ be a graph the vertex set $V(n)$ of which is S_{n} and the edge set of which is given by $E(n)=\left\{e=\left(p_{1}, p_{2}\right) \mid p_{1}, p_{2} \in S_{n}\right.$ and $p_{1} \pi=p_{2}$ for some $\pi \in T\}$. $G(n)$ is called the Cayley graph [1] for S_{n} using the generating set $T . G(n)$ is an undirected, connected graph on $n!$ vertices.
We define a partial order \leqslant on $V(n)$ as follows: for $p_{1}, p_{2} \in V(n)$ we say that $p_{1} \leqslant^{*} p_{2}$ if there is an edge $e \in E(n)$ where $e=\left(p_{1}, p_{2}\right)$ and $d\left(p_{1}, I\right)<d\left(p_{2}, I\right)$, where I is the identity in S_{n} and d is the usual graph distance. This defines a ranked poset where the rank is given by the distance from I in $G(n)$. We denote this poset by $\left(S_{n}, \leqslant\right)$ and call it the star poset (the graph with vertex set $\{1,2, \ldots, n\}$ and edge set T, forms a tree called the star graph on n vertices [1]).

The non-negative integers $W_{0}, W_{1}, \ldots, W_{t}$ are called the Whitney numbers of the second kind for a ranked poset if W_{k} is the number of elements in the poset of rank k [4]. We are primarily interested in determining the Whitney numbers of the second kind for the star poset. In particular, we will first characterize minimal factorizations of elements of S_{n} in terms of the generators in T. We will then find recurrences, generating functions and closed-form formulae for these Whitney numbers.

2. The Star Poset

Let us denote a permutation $\pi \in S_{n}$ in the usual manner by listing its image $[\pi(1), \pi(2), \ldots, \pi(n)]$ so that $I=[1,2, \ldots, n]$. We adopt the convention that composition of permutations is to be done from right to left. Thus, $[1,3,2][2,1,3]=$ $[3,1,2]$. We will adopt the usual notation for cycles. For example, if π is the cycle [$3,4,2,1]$ we write $\pi=(1,3,2,4)$. In the representation of a permutation as a product of disjoint cycles we will not include cycles of the form (j) for $\pi(j)=j$.

Before beginning a discussion of properties of the star poset, let us consider an example. The star graph for $T=\{(1,4),(2,4),(3,4)\}$ is shown in Figure 1. The Cayley graph for S_{4} is shown in Figure 2. Note that there are $4!=24$ elements, I is the

Figure 1. Star graph for $\{(1,4),(2,4),(3,4)\}$.
minimal element, and the corresponding Whitney numbers of the second kind are $W_{0}=1, W_{1}=3, W_{2}=6, W_{3}=9$ and $W_{4}=5$.
We begin with a few simple lemmas concerning products of generators from T.
Lemma 2.1. If $\sigma=\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{k}, n\right)$ and if $a_{1}, a_{2}, \ldots, a_{k}$ are all distinct, then σ is the cycle $\left(n, a_{k}, \ldots, a_{1}\right)$ and $\sigma(n) \neq n$.

Lemma 2.2. If $\sigma=\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{k}, n\right)$ and if $a_{1}, a_{2}, \ldots, a_{k-1}$ are all distinct and $a_{k}=a_{1}$ then σ is the single cycle $\left(a_{1}, a_{k-1}, a_{k-2}, \ldots, a_{2}\right)$ and $\sigma(n)=n$.

Lemma 2.3. If $\sigma\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{k}, n\right)$, where $a_{1}, a_{2}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{k}$ are all distinct, $a_{i}=a_{j}(i \neq j)$, and $1<j<k$, then σ is the product of two disjoint cycles, $\sigma=\lambda \beta$, where $\beta(n)=n, \lambda(n) \neq n$, and thus $\sigma(n) \neq n$.

Proof. Set $\sigma=\alpha \beta \varepsilon$, where $\alpha=\left(a_{1}, n\right) \cdots\left(a_{i-1}, n\right), \quad \beta=\left(a_{i}, n\right) \cdots\left(a_{j}, n\right)$, and $\varepsilon=\left(a_{j+1}, n\right) \cdots\left(a_{k}, n\right)$. By Lemma 1.2, $\beta(n)=n$. By the assumption of distinctness, β fixes what α moves and α fixes what β moves, so that $\alpha \beta=\beta \alpha$. Setting $\lambda=\alpha \varepsilon$ we have $\sigma=\beta \alpha \varepsilon=\beta \lambda$, where β is a cycle (Lemma 2.2), λ is a cycle, where $\lambda(n) \neq n$ (Lemma 2.1), and β and λ are disjoint. Thus, $\sigma=\lambda \beta$.

Lemma 2.4. If $\sigma=\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{k}, n\right), 1<r<j<k, a_{1}=a_{j}$ and $a_{r}=a_{k}$ and $\left\{a_{2}, \ldots, a_{k-1}\right\}$ are all distinct, then $\sigma(n) \neq n, \sigma$ is a single cycle, and σ can be rewritten as a product of the $k-2$ transpositions $\left\{\left(a_{2}, n\right), \ldots,\left(a_{k-1}, n\right)\right\}$.

Figure 2. The star poset $\left(S_{4}, \leqslant\right)$.

Proof. Set $\sigma=\rho \delta\left(a_{k}, n\right)$, where $\rho=\left(a_{1}, n\right) \cdots\left(a_{j}, n\right)$ and $\delta=\left(a_{j+1}, n\right) \cdots$ $\left(a_{k-1}, n\right)$. Then $\rho \delta=\delta \rho$ and $\sigma=\left(a_{j+1}, n\right) \cdots\left(a_{k-1}, n\right)\left(a_{1}, n\right) \cdots\left(a_{j}, n\right)\left(a_{k}, n\right)$. Then $\sigma=\delta\left(a_{1}, n\right) \alpha \varepsilon$, where $\alpha=\left(a_{2}, n\right) \cdots\left(a_{r-1}, n\right)$ and $\varepsilon=\left(a_{r}, n\right) \cdots\left(a_{j}, n\right)\left(a_{k}, n\right)=$ $\left(a_{k}, n\right) \cdots\left(a_{j}, n\right)\left(a_{k}, n\right)$.

Then $\alpha \varepsilon=\varepsilon \alpha$ and

$$
\begin{aligned}
\sigma & =\delta\left(a_{1}, n\right)\left(a_{k}, n\right)\left(a_{r+1}, n\right) \cdots\left(a_{j-1}, n\right)\left(a_{j}, n\right)\left(a_{k}, n\right) \alpha \\
& =\delta\left(a_{1}, n\right)\left(a_{k}, n\right)\left(a_{r+1}, n\right) \cdots\left(a_{j-1}, n\right)\left(a_{1}, n\right)\left(a_{k}, n\right) \alpha \\
& =\delta\left(a_{1}, n\right)\left(a_{k}, n\right)\left(b_{1}, n\right) \cdots\left(b_{t}, n\right)\left(a_{1}, n\right)\left(a_{k}, n\right) \alpha
\end{aligned}
$$

where $b_{1}=a_{r+1}, \ldots, b_{t}=a_{j-1}$, and $t=j-1-r$. Then

$$
\begin{aligned}
\sigma & =\delta\left(n, a_{k}, a_{1}\right)\left(n, b_{t}, \ldots, b_{1}\right)\left(n, a_{k}, a_{1}\right) \alpha \\
& =\delta\left(n, a_{1}, b_{t}, \ldots, b_{1}, a_{k}\right) \alpha \\
& =\delta\left(a_{k}, n\right)\left(b_{1}, n\right)\left(b_{2}, n\right) \cdots\left(b_{t}, n\right)\left(a_{1}, n\right) \alpha
\end{aligned}
$$

Finally, by Lemma 2.1, $\sigma(n) \neq n$.
Definition 2.5. σ is in canonical form if σ is written in the following way: $\sigma=C_{1} C_{2} \cdots C_{k}$, where the $C_{i}(i=1, \ldots, k)$ are the non-trivial disjoint cycles of σ, and:
(1) if $\sigma(n) \neq n$, then $C_{1}(n) \neq n$ and $C_{i}(n)=n(i=2, \ldots, k)$;
(2) if $C_{1}(n) \neq n$ then $C_{1}=\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{j}, n\right)$, where $a_{1}, a_{2}, \ldots, a_{j}$ are all distinct-thus $C_{1}=\left(n, a_{j}, a_{j-1}, \ldots, a_{1}\right)$;
(3) for $i>1$ when $\sigma(n) \neq n$ and for all i when $\sigma(n)=n, C_{i}$ has the form $\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{j}, n\right)\left(a_{1}, n\right)$ where $a_{1}, a_{2}, \ldots, a_{j}$ are distinct-thus $C_{i}=$ $\left(a_{j}, a_{j-1}, \ldots, a_{1}\right)$.

Defintion 2.6. $\quad M_{\sigma}=\mid\{i \mid 1 \leqslant i \leqslant n$ and $\sigma(i) \neq i\} \mid$.
Definition 2.7. $\quad C_{\sigma}$ is the number of non-trivial disjoint cycles of σ.
Definition 2.8. $\quad \delta_{\sigma}=\left\{\begin{array}{rll}0 & \text { if } & \sigma(n)=n, \\ -2 & \text { if } & \sigma(n) \neq n .\end{array}\right.$
Lemma 2.9. If $\sigma=t_{1} t_{2} \cdots t_{j}\left(t_{i} \in T, 1 \leqslant i \leqslant j\right)$ is in canonical form, then $j=M_{\sigma}+$
$C_{\sigma}+\delta_{\sigma}$. $C_{\sigma}+\delta_{\sigma}$.

Proof. If $\sigma(n) \neq n, C_{\sigma}=k$, and C_{1} is a product of s transpositions, then C_{1} moves $s+1$ elements. The remaining cycles $C_{2}, C_{3}, \ldots, C_{k}$ are disjoint and are of the form $\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{1}, n\right)$, and there are $k-1=C_{\sigma}-1$ repetitions of transpositions. Thus, $C_{2} \cdots C_{k}$ moves $j-s-C_{\sigma}+1$ elements and, therefore, $M_{\sigma}=s+1+j-s-$ $C_{\sigma}+1=j-\delta_{\sigma}-C_{\sigma}$. If $\sigma(n)=n$, then $C_{1} \cdots C_{k}$ moves $j-C_{\sigma}$ elements and $M_{\sigma}=$
$j-C_{\sigma}-\delta_{\sigma} . \quad \square$

Theorem 2.10. Let $\sigma=t_{1} t_{2} \cdots t_{m}\left(t_{i} \in T, 1 \leqslant i \leqslant m\right)$ be any expression for σ as a product of generators from T. Then σ can be rewritten in the canonical form as $\sigma=t_{i_{1}} t_{i_{2}} \cdots t_{i_{k}} \quad\left(t_{i_{j}} \in T, \quad 1 \leqslant j \leqslant k\right)$, where $k \leqslant m, i_{1}, i_{2}, \ldots, i_{k}$ are distinct and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a subset of $\{1, \ldots, m\}$.

Proof. Let $\sigma=\left(a_{1}, n\right)\left(a_{2}, n\right) \cdots\left(a_{k}, n\right)$. If $k=1$ then σ is a single transposition and thus in canonical form. Now suppose $\sigma=\tau(b, n)$, where $b \in\{1, \ldots, n-1\}$. It
suffices to show that if τ is in canonical form then σ can be rewritten in the canonical form. The proof then follows by induction on k.

Therefore, suppose $\sigma=\tau(b, n)$, where $\tau=C_{1} C_{2} \cdots C_{t}$ is the canonical form of τ. Let $M(\tau)=\{x \mid \tau(x) \neq x\}$. If b is not in $M(\tau)$ then (b, n) commutes with C_{2}, \ldots, C_{t} and $\sigma=C_{1}(b, n) C_{2} \cdots C_{t}$. If $C_{1}(n)=n \quad$ then $\quad C_{1}(b, n)=(b, n) C_{1} \quad$ and $\sigma=$ ($b, n) C_{1} C_{2} \cdots C_{t}$ is in canonical form. If $C_{1}(n) \neq n$ then $C_{1}^{\prime}=C_{1}(n, b)$ is a cycle, where $C_{1}^{\prime}(n) \neq n$ (Lemma 2.1) and $\sigma=C_{1}^{\prime} C_{2} \cdots C_{t}$ is again in canonical form.

Now suppose that $b \in M(\tau)$ and, in particular, $b \in M\left(C_{i}\right)$ for $i \geqslant 2$, or that $b \in M\left(C_{1}\right)$ and $C_{1}(n)=n$. Then b is not in $M\left(C_{j}\right)$ for $j \neq i$ so that (b, n) commutes with C_{j}. Thus $\sigma=C_{1} \cdots C_{i}(b, n) C_{i+1} \cdots C_{t}$, where $C_{i}=\left(b_{1}, n\right) \cdots\left(b_{s}, n\right)\left(b_{1}, n\right)$.

Case 1. If $C_{1}(n) \neq n$ and $b=b_{1}$, set $C_{1}^{\prime}=C_{1}\left(b_{1}, n\right) \cdots\left(b_{s}, n\right)$. Then $\sigma=$ $C_{1}^{\prime} C_{2} \cdots C_{i-1} C_{i+1} \cdots C_{t}$ and is in canonical form.

Case 2. If $C_{1}(n)=n$ and $b \neq b_{1}$ then, by Lemma $2.4, C_{i}(b, n)$ can be rewritten as a single cycle C_{i}^{\prime}, where $C_{i}^{\prime}(n) \neq n$. Then $\sigma=C_{i}^{\prime} C_{1} C_{2} \cdots C_{i-1} C_{i+1} \cdots C_{t}$ is in canonical form (or for $i=1, \sigma=C_{1}^{\prime} C_{2} \cdots C_{t}$ is in canonical form).

Case 3. If $C_{1}(n) \neq n$ and $b \neq b_{1}$ then, by Lemma $2.4, C_{i}(b, n)$ can be rewritten as a single cycle C_{i}^{\prime}, where $C_{i}^{\prime}(n) \neq n$. Set $C_{1}^{\prime}=C_{1} C_{i}^{\prime}$. Then C_{1}^{\prime} is a single cycle, where $C_{1}^{\prime}(n) \neq n$ and $\sigma=C_{1}^{\prime} C_{2} \cdots C_{i-1} C_{i+1} \cdots C_{t}$ is in canonical form.

Finally, suppose that $b \in M\left(C_{1}\right)$ and $C_{1}(n) \neq n$. Then $\sigma=C_{1}(b, n) C_{2} \cdots C_{t}$, where $C_{1}=\left(b_{1}, n\right) \cdots\left(b_{s}, n\right)$.

Case 1. If $b=b_{s}$ and $s>1$, write $C_{1}^{\prime}=\left(b_{1}, n\right) \cdots\left(b_{s-1}, n\right)$; then $\sigma=C_{1}^{\prime} C_{2} \cdots C_{t}$ is in canonical form. If $b=b_{s}$ and $s=1$ we have that $\sigma=C_{2} \cdots C_{t}$ is in canonical form.

Case 2. If $b \neq b_{1} \neq b_{s}$ then, by Lemma $2.2, C_{1}$ can be written as a product of two cycles $C_{0} C_{1}^{\prime}$, where $C_{0}(n) \neq n$. Then $\sigma=C_{0} C_{1}^{\prime} C_{2} \cdots C_{t}$ is in canonical form.

Case 3. If $b=b_{1} \neq b_{s}$ and $s>1$, set $C_{1}^{\prime}=C_{1}(b, n)$. Then $C_{1}^{\prime}(n)=n$ and $C_{1}^{\prime} C_{2} \cdots C_{t}$ is in canonical form. If $b=b_{1} \neq b_{s}$ and $s=1$, then $C_{1}=(b, n), C_{1}(n, b)=I$, and $\sigma=C_{2} \cdots C_{t}$ is in canonical form.

The rank of an element π in the star poset is the distance from I in $G(n)$ where each edge in $G(n)$ corresponds to a generator from T. Theorem 2.10 states that every $\pi \in S_{n}$ can be written in the canonical form of Definition 2.5. The canonical form provides a path from I to π; we will show that this is a shortest path.

Corollary 2.11. $\sigma \in S_{n}$ is of rank k in the star poset iff $k=M_{\sigma}+C_{\sigma}+\delta_{\sigma}$.
Proof. From Lemma 2.9, we know that since σ can be written in the canonical form, $\operatorname{rank}(\sigma) \leqslant M_{\sigma}+C_{\sigma}+\delta_{\sigma}$. But from Theorem 2.10 we have $\operatorname{rank}(\sigma) \geqslant M_{\sigma}+C_{\sigma}+$ δ_{σ}.

Definition 2.12. $W_{n, k}$ is the number of permutations of rank k in $\left(S_{n}, \leqslant\right)$.
Corollary 2.11 provides a characterization of these Whitney numbers; namely

$$
W_{n, k}=\left|\left\{\sigma \in S_{n} \mid k=M_{\sigma}+C_{\sigma}+\delta_{\sigma}\right\}\right| .
$$

Remark. It is not difficult to determine the largest value of $M_{\sigma}+C_{\sigma}+\delta_{g}$. This number is the largest value of $\operatorname{rank}(\sigma)$ and is the height of the poset $\left(S_{n}, \leqslant\right)$. This value
is also the diameter of the Cayley graph $G(n)$, since there is a color-preserving graph automorphism mapping any $v \in V(n)$ to $I[1]$.

Corollary 2.13. The height of $\left(S_{n}, \leqslant\right)$ is given by $(3 n-4) / 2$ for n even and ($3 n-3$)/2 for n odd.

Proof. We note that $0 \leqslant M_{\sigma} \leqslant n, 0 \leqslant C_{\sigma} \leqslant n / 2$ and δ_{σ} is either 0 or -2 . Also, M_{σ}, C_{σ} and δ_{σ} cannot be chosen independently. For example, if $\boldsymbol{M}_{\sigma}=n$ then $\delta_{\sigma}=-2$ and also C_{σ} can equal $n / 2$ only if n is even, at which point $M_{\sigma}=n$.

For n even, $M_{\sigma}+C_{\sigma}+\delta_{\sigma}$ has the maximum value $(3 n-4) / 2$ at $M_{\sigma}=n, \delta_{\sigma}=-2$, and $C_{\sigma}=n / 2$. This can occur if σ is a product on $n / 2-1$ disjoint cycles of length 2 that each fix n, and a single cycle of length 2 that moves $n . M_{\sigma}+C_{\sigma}+\delta_{\sigma}$ also has the maximum value at $M_{\sigma}=n-1, \delta_{\sigma}=0$, and $C_{\sigma}=n / 2-1$. This can occur if σ is a product of $n / 2-2$ disjoint cycles of length 2 where n is fixed and a single cycle of length 3 where n is fixed.

For n odd, $M_{\sigma}+C_{\sigma}+\delta_{\sigma}$ has the maximum value of $(3 n-3) / 2$ at $M_{\sigma}=n-1$, $\delta_{\sigma}=0$, and $C_{\sigma}=(n-1) / 2$. This can occur if σ is a product of $(n-1) / 2$ disjoint cycles of length 2 that each fix n.

3. Recurrence Relations

We now turn our attention to establishing a recurrence relation for the numbers $\left\{W_{n, k}\right\}$. Our approach is to define an ordinary generating function on k for $\left\{W_{n, k}\right\}$ and then establish the recurrence relation, on n, among these generating functions.

Definition 3.1. Let $W_{n}(X)$ be the ordinary generating function for the Whitney numbers of the second kind for the poset (S_{n}, \leqslant). Then

$$
W_{n}(X)=\sum_{k=0}^{\infty} W_{n, k} X^{k}
$$

We will establish the recurrence relation on $\left\{W_{n}(X)\right\}$. Since we will have need to express $W_{n}(X)$ as a sum of other generating functions, it is convenient to make the following definition.

Definition 3.2. Let Q be a subset of S_{n}. Define $T_{Q}(X)$ to be the generating function

$$
T_{Q}(X)=\sum_{k=0}^{\infty} Y_{n, k} X^{k}
$$

where $Y_{n, k}$ is the number of elements in Q of rank k in $\left(S_{n}, \leqslant\right)$. Thus $T_{S_{n}}(X)=W_{n}(X)$ and if H and L partition S_{n}, we have $T_{H}(X)+T_{L}(X)=W_{n}(X)$.

Definition 3.3. Let $F_{i}=\left\{\pi \in S_{n} \mid \pi(n)=i\right\}$ for $i=1, \ldots, n$.
Then $F_{1}, F_{2}, \ldots, F_{n}$ partition S_{n} and F_{n} is a subgroup. Let us denote F_{n} by H_{n} and define H_{n-1} as the subgroup of S_{n-1} that fixes $n-1$. With these definitions, the first lemma is clear.

Lemma 3.4. $\quad W_{n}(X)=T_{F_{1}}(X)+\cdots+T_{F_{n-1}}(X)+T_{H_{n}}(X)$.
The next lemma is the first in a series of lemmas that will allow us to work with Lemma 3.4 and eventually result in our recurrence relation.

Lemma 3.5. $\quad T_{F_{1}}(X)=T_{F_{2}}(X)=\cdots=T_{F_{n-1}}(X)=X W_{n-1}(X)$.

Proof. Let $K_{i}(1 \leqslant i \leqslant n-1)$ be the subgroup generated by $T-\{(i, n)\}$. It is not difficult to verify algebraically that K_{i} is the subgroup that fixes i and that $F_{i}=K_{i}(i, n)$ is a right coset of K_{i}. Since I is the only element of S_{n} with rank 0 , and I is not in F_{i}, then $T_{F_{i}}(X)$ has no constant term. We then write $T_{F_{i}}(X)=X P(X)$ for some polynomial $P(X)$.
It is clear that K_{i} is isomorphic to S_{n-1} and, from Theorem 2.10, elements of K_{i} form a connected subgraph of the Cayley graph, $G(n)$. Now let $\sigma \in F_{i}$, say $\sigma=\tau(i, n)$, and $\tau^{\prime} \in\left(S_{n-1}, \leqslant\right)$ where τ^{\prime} is the isomorphic image of τ. Then $\operatorname{rank}(\sigma)$ in $\left(S_{n}, \leqslant\right)$ is one more than $\operatorname{rank}\left(\tau^{\prime}\right)$ in $\left(S_{n-1}, \leqslant\right)$. From this we can conclude that $P(X)=W_{n-1}(X)$ and the lemma follows.

We now partition H_{n} into two subsets. As above, let K_{1} be the subgroup generated by $T-\{(1, n)\}$. It can be shown that $(1, n) K_{1}(1, n)=H_{n}$ and since $K_{1}(1, n)=F_{1}$ we have $(1, n) F_{1}=H_{n}$. We can interpret this last identity in terms of the Cayley graph as follows: every $f \in F_{1}$ is adjacent to some $h \in H_{n}$ by way of a ($1, n$) edge. Let us then define

$$
H_{n}^{+}=\left\{h \in H_{n} \mid h(1)=1\right\}, \quad H_{n}^{-}=\left\{h \in H_{n} \mid h(1) \neq 1\right\} .
$$

This partitions H_{n}. We use this to partition F_{1} as follows:

$$
\begin{aligned}
& F_{1}^{+}=\left(f \in F_{1} \mid(1, n) f=h \text { where } h \in H_{n}^{+}\right\}, \\
& F_{1}^{-}=\left(f \in F_{1} \mid(1, n) f=h \text { where } h \in H_{n}^{-}\right\} .
\end{aligned}
$$

Since $I \in H_{n}$, it is clear that $I \notin F_{1}^{+}$or F_{1}^{-}and $T_{F_{1}^{+}}(X)$ and $T_{F_{1}}(X)$ have no constant terms. Let us then write $T_{F_{\mathrm{i}}}(X)=X U(X)$ and $T_{F_{1}}(X)=X D(X)$ for polynomials $U(X)$ and $D(X)$. Lemma 3.5 has that $T_{F_{1}}(X)=X W_{n-1}(X)$, but $T_{F_{1}}(X)=T_{F_{\mathrm{i}}}(X)+T_{F_{1}^{-1}}(X)=$ $X(U(X)+D(X))$. Thus, we have proved:

Lemma 3.6. $U(X)+D(X)=W_{n-1}(X)$.
Next we have:
Lemma 3.7. $\quad T_{H_{n}}(X)=U(X)+X^{2} D(X)$.
Proof. If $f \in F_{1}^{+}$, then there is some $h \in H_{n}^{+}$such that $(1, n) f=h$. Now suppose $\operatorname{rank}(f)=r$ and consider rank (h). We know $r=M_{f}+C_{f}+\delta_{f}=M_{f}+C_{f}-2$. But then $(1, n) f$ fixes 1 and n, while f moves n and 1 , which means $M_{h}=M_{f}-2$. From the canonical form of f, we know that since $h=(1, n) f$ fixes 1 , the canonical form of h contains no ($1, n$) generator. Since $h(1)=1$ and $h(n)=n$, then $(1, n)$ is one of the disjoint cycles of f, and then $C_{h}=C_{f}-1$. But then $\operatorname{rank}(h)=M_{h}+C_{h}+\delta_{h}=\left(M_{f}-\right.$ $2)+\left(C_{f}-1\right)+0=M_{f}+C_{f}-2-1=\operatorname{rank}(f)-1$. Thus $\operatorname{rank}(f)=\operatorname{rank}(h)+1$ for $f \in$ F_{1}^{+}with $h \in H_{n}^{+}$. The coefficient of X^{j} in the generating function $U(X)$ is the number of elements in F_{1}^{+}of rank $j+1$, which is the number of elements in H_{n}^{+}of rank j. Thus $U(X)=T_{H_{i}^{*}}(X)$.

If $f \in F_{1}^{-}$, then there is some $h \in H_{n}^{-}$such that $(1, n) f=h$. As before, suppose $\operatorname{rank}(f)=r$ and consider $\operatorname{rank}(h)$. We know $r=M_{f}+C_{f}+\delta_{f}=M_{f}+C_{f}-2$. But then $(1, n) f$ moves 1 and fixes n, whereas f moves n and 1 , which means $M_{h}=M_{f}-1$. From the canonical form of f, we know that since $h=(1, n) f$ moves 1 and f moves $1, C_{h}=C_{f}$. But then $\operatorname{rank}(h)=M_{h}+C_{h}+\delta_{h}=\left(M_{f}-1\right)+C_{f}+0=M_{f}+C_{f}-2+1=\operatorname{rank}(f)+1$. The coefficient of X^{j} in the generating function $D(X)$ is the number of elements in F_{1}^{-} of rank $j+1$, which is the number of elements in H_{n}^{-}of rank $j+2$. Thus $X^{2} D(X)=$ $T_{H_{n}}(X)$.

The final lemma before the main theorem in this section relates the generating funtions $U(X)$ and $T_{H_{n-1}}(X)$. Note that $T_{H_{n-1}}(X)$ is the generating function for the set of all permutations in $\left(S_{n-1}, \leqslant\right)$ in which $n-1$ is fixed.

Lemma 3.8. $\quad U(X)=T_{H_{n-1}}(X)$.
Proof. Let $A=\left\{\pi \in S_{n} \mid \pi(n)=n, \pi(1)=1\right\}$ and $H_{n-1}=\left\{\pi \in S_{n-1} \mid \pi(n-1)=\right.$ $n-1\}$. Define a function $Z: A \rightarrow H_{n-1}$ by $Z\left(\pi_{1}\right)=\pi_{2}$, where if $\pi_{1}=$ $\left[1, a_{2}, \ldots, a_{n-1}, n\right]$ then $\pi_{2}=\left[a_{2}-1, \ldots, n-1\right] . A$ is a subgroup of S_{n}, Z is a group isomorphism and $U(X)$ is a generating function for A. To complete the proof, we must show that rank is preserved under this isomorphism. Let $\sigma \in A$, and $\sigma=C_{1} C_{2} \cdots C_{t}$ be its canonical form. Since $\sigma(1)=1,1$ is not in any of these cycles and $Z(\sigma)=$ $Z\left(C_{1}\right) Z\left(C_{2}\right) \cdots Z\left(C_{t}\right)$. But then $M_{C_{i}}+C_{C_{i}}+\delta_{C_{i}}=M_{Z\left(C_{i}\right)}+C_{Z\left(C_{i}\right)}+\delta_{Z\left(C_{i}\right)}$. Thus $\operatorname{rank}(\sigma)=\operatorname{rank}(Z(\sigma))$ and we are done.

Theorem 3.9. The polynomials $W_{n}(X)$ are defined by the following recurrence:

$$
\begin{aligned}
W_{n}(X) & =[(n-1) X+1] W_{n-1}(X)+\left(X^{2}-1\right)(n-2) X W_{n-2}(X) \quad \text { for } n \geqslant 3, \\
W_{1} & =1, \quad W_{2}=1+X .
\end{aligned}
$$

Proof. Starting with Lemma 3.4 we have

$$
\begin{array}{rlrl}
W_{n}(X) & =T_{F_{1}}(X)+\cdots+T_{F_{n-1}}(X)+T_{H_{n}}(X) & & \\
& =(n-1) X W_{n-1}(X)+T_{H_{n}}(X) & & \text { (Lemma } \\
& =(n-1) X W_{n-1}(X)+U(X)+X^{2} D(X) & & \text { (Lemma : } \\
& =(n-1) X W_{n-1}(X)+U(X)+X^{2}\left(W_{n-2}(X)-U(X)\right) & \\
& =(n-1) X W_{n-1}(X)+X^{2} W_{n-2}(X)+U(X)\left(1-X^{2}\right) & \text { (Lemma ? } \\
& =(n-1) X W_{n-1}(X)+X^{2} W_{n-2}(X)+T_{H_{n-1}}(X)\left(1-X^{2}\right) & \tag{Lemma3.8}\\
& =(n-1) X W_{n-1}(X)+X^{2} W_{n-2}(X)+\left(W_{n-1}(X)-(n-2) X W_{n-2}(X)\right)\left(1-X^{2}\right)
\end{array}
$$

$$
=[(n-1) X+1] W_{n-1}(X)+\left(X^{2}-1\right)(n-2) X W_{n-2}(X) .
$$

(Lemma 3.5)

4. Generating Functions

In this section we will solve the recurrence relation on $\left\{W_{n}(X)\right\}$ given by Theorem 3.9 and thus obtain a generating function for these Whitney numbers. We then examine the coefficients of $W_{n}(X)$ and exhibit an explicit formula for $W_{n, k}$ involving binomial coefficients and Stirling numbers of the first kind.

Let $G(Y)$ be the exponential generating funtion for $\left\{W_{n}(X)\right\}$; i.e. define

$$
G(Y)=\sum_{k=1}^{\infty} \frac{W_{k}(X) Y^{k-1}}{(k-1)!} .
$$

Using standard techniques, it is not difficult to derive the differential equation

$$
G^{\prime}(Y)(1-X Y)=\left(1+X+X Y\left(X^{2}-1\right)\right) G(Y)
$$

Integrating, we obtain our generating function.
Theorem 4.1. The exponential generating function for $\left\{W_{n}(X)\right\}$ is given by

$$
G(Y)=(1-X Y)^{-X-1} \mathrm{e}^{Y-X^{2} Y}
$$

Theorem 4.2. The generating function for $\left\{W_{n, k}\right\}$ is given by

$$
W_{n}(X)=\sum_{k=0}^{n-1}\binom{n-1}{k}\left(1-X^{2}\right)^{n-1-k} X^{k} \prod_{j=0}^{k-1}(X+j+1)
$$

where, for $k=0$, we define $\prod_{j=0}^{-1}(X+j+1)=1$.
Proof. Note that $\left.\left(\delta^{n} G / \delta Y^{n}\right)\right|_{Y=0}=W_{n}(X)$. By induction, one can show that

$$
\frac{\delta^{n} G}{\delta Y}=\sum_{k=0}^{n-1}\binom{n-1}{k}\left(1-X^{2}\right)^{n-1-k} X^{k} \prod_{j=0}^{k-1}(X+j+1)\left[\mathrm{e}^{Y-X^{2} Y}(1-X Y)^{-X-1-k}\right]
$$

from which the result follows directly.
Recall that the Stirling numbers of the first kind $\{s(n, k)\}$ are the coefficients in the polynomial expansion of $X(X-1) \cdots(X-n+1)$ [3]. In particular,

$$
X(X-1)(X-2) \cdots(X-n+1)=\sum_{k=0}^{n} s(n, k) X^{k}
$$

Thus

$$
X \prod_{j=0}^{k-1}(X+j+1)=(-1)^{k+1} \sum_{j=0}^{k+1} s(k+1, j)(-1)^{j} X^{j}
$$

and using

$$
\left(1-X^{2}\right)^{n-1-k}=\sum_{t=0}^{n-1-k}\binom{n-1-k}{t}(-1)^{t} X^{2 t}
$$

$W_{n}(X)$ can be rewritten as follows:
Formula 4.3.

$$
\sum_{k=0}^{n-1} \sum_{i=0}^{n-1-k} \sum_{j=0}^{k+1}\binom{n-1}{k}\binom{n-1-k}{t} s(k+1, j)(-1)^{t+k+j+1} X^{2 t+k-1+j}
$$

By examining coefficients, we arrive at a formula for $W_{n, u}$.
Theorem 4.4. The Whitney numbers of the second kind for the star poset are given as follows. Let

$$
\begin{aligned}
& L=\min \{n-1, u+1\}, \quad T_{k}=\min \left\{0,\left\lceil\frac{u-2 k+1}{2}\right\rceil\right\}, \\
& S_{k}=\min \left\{n-1-u,\left\lceil\frac{u+1-k}{2}\right\rceil\right\} .
\end{aligned}
$$

Then

$$
W_{n, u}=\sum_{k=0}^{L} \sum_{t=T_{k}}^{S_{k}}\binom{n}{k}\binom{n-k}{t} s(k+1, t)(-1)^{t+u}
$$

where \rceil is the greatest integer function.
Proof. We consider the coefficients of \boldsymbol{X}^{u}, using Formula 4.3, where $u \geqslant 0$ is fixed, and we let $u=2 t+k-1+j$. By Formula 4.3, we know that since X^{k} is a factor in X^{u}, we have $k \leqslant u+1$. By the first summand in Formula 4.3, $k \leqslant n-1$. Thus, $k \leqslant L=$ $\min \{u+1, n-1\}$ and every coefficient of X^{k} with $0 \leqslant k \leqslant L$ will contribute to the
coefficient of X^{u} (for appropriate values of j and t). For k fixed, we have $2 t+j=u-k+1$. But $j \geqslant 0$ so that $2 t \leqslant u-k-1$ and $t \leqslant\lceil(u+1-k) / 2\rceil$. From the second summand, $t \leqslant n-1-k$, from which we have $t \leqslant S_{k}=\min \{n-1-u,\lceil(u+1-$ $k) / 2\rceil\}$. Again, for k fixed, $j=u-k+1-2 t$ and $j \leqslant k+1$ by the third summand. Thus, $u+k+1-2 t \leqslant k+1,(u-2 k) / 2 \leqslant t$ and $\lceil(u-2 k+1) / 2\rceil \leqslant t$. From the second summand, we have $0 \leqslant t$. Thus, $t \geqslant T_{k}=\max \{0,\lceil(u-2 k+1) / 2\rceil\}$. The theorem then follows by setting $j=u-k+1-2 t$.

5. Vertical Generating Functions

In this section, we consider another generating function for these Whitney numbers. Here we examine the exponential generating function, on n, for $\left\{W_{n, k}\right\}$ and use Theorem 3.9 to establish a recurrence, on k, among these generating funtions.

From Theorem 3.9, we have

$$
\begin{aligned}
W_{n}(X) & =[(n-1) X+1] W_{n-1}(X)+\left(X^{2}-1\right)(n-2) X W_{n-2}(X) \quad \text { for } n \geqslant 3, \\
W_{1} & =1, \quad W_{2}=1+X .
\end{aligned}
$$

Equating coefficients on the left and right sides of the above recurrence, it is not difficult to show that, for all $n \geqslant 1$, the following holds:

Recurrence 5.1:

$$
\begin{aligned}
& W_{n, 0}=1, \\
& W_{n, 1}=n-1, \\
& W_{n, 2}=(n-1)(n-2)
\end{aligned}
$$

and, for $k \geqslant 3$,

$$
W_{n, k}=W_{n-1, k}+(n-1) W_{n-1, k-1}-(n-2) W_{n-2, k-1}+(n-2) W_{n-2, k-3} .
$$

Defintion 5.2. The vertical generating function for $\left\{W_{n, k}\right\}$ is the exponential generating function defined by

$$
H_{k}(X)=\sum_{n=0}^{\infty} \frac{W_{n+1, k} X^{n}}{n!}
$$

Once again employing standard techniques, one can show that $\left\{H_{k}(X)\right\}$ satisfies the differential equation of Lemma 5.3.

Lemma 5.3. The vertical generating functions $\left\{H_{k}(X)\right\}$ satisfy the differential equation

$$
\begin{aligned}
H_{k}^{\prime}(X) & =H_{k}(X)+X H_{k-1}^{\prime}(X)+H_{k-1}(X)-X H_{k-1}(X)+X H_{k-3}(X), \\
H_{0}(X) & =\mathrm{e}^{X}, \quad H_{1}(X)=X \mathrm{e}^{X}, \quad H_{2}(X)=X^{2} \mathrm{e}^{X} .
\end{aligned}
$$

Now let $\left\{P_{k}(X)\right\}$ be a collection of functions that satisfy the following differential equation:

Equation 5.4:

$$
P_{k}^{\prime}(X)=P_{k-1}(X)+X P_{k-1}^{\prime}(X)+X P_{k-3}(X)
$$

where $P_{0}(X)=1, P_{1}(X)=X$ and $P_{2}(X)=X^{2}$.

Setting $H_{k}(X)=P_{k}(X) \mathrm{e}^{X}$, the differential equation of Lemma 5.3 is satisfied. By the initial conditions and simple integration, one can see that $\left\{P_{k}(X)\right\}$ are all polynomials and that $P_{k}(X)$ is of degree k.

Defintion 5.5. The forward difference of the sequence $\left\{a_{k}\right\}$ is the sequence $\left\{a_{k+1}-a_{k}\right\}$ and is denoted $\left\{\Delta a_{k}\right\}$. The j th forward difference of $\left\{a_{k}\right\}$ is denoted as $\left\{\Delta^{j} a_{k}\right\}$ and is recursively defined as $\left\{\Delta \Delta^{j-1} a_{k}\right\}$.

Theorem 5.6. The $(k+1)$ th forward difference of the sequence $\left\{W_{n, k}\right\}_{n=0}^{\infty}$ is $\{0\}$.
Proof. For any sequence $\left\{a_{i}\right\}$ with exponential generating function $G(X)=$ $\sum_{i=0}^{\infty}\left(a_{i} X^{i} / i!\right)$, the generating function for $\left\{\Delta a_{i}\right\}$ is $G^{\prime}(X)-G(X)$. Thus, the generating function for $\left\{\Delta^{j} a_{k}\right\}$ is

$$
\frac{d^{j} G(X)}{d X}-\frac{d^{j-1} G(X)}{d X} .
$$

For our generating function $H_{k}(X)=P_{k}(X) \mathrm{e}^{X}$, we have $H^{\prime}(X)-H(X)=P_{k}^{\prime}(X) \mathrm{e}^{X}$ where $P_{k}^{\prime}(X)$ is a polynomial of degree at most $k-1$. After $k+1$ such differences, $d^{k+1} P_{k}(X) / d X=0$ and the result follows.

We will now provide a formula for the coeffients of $\left\{P_{k}(X)\right\}$ and thus have a formula for the vertical generating functions. Let

$$
P_{k}(X)=\sum_{i=0}^{k} d_{k, i} X^{i}
$$

By equating coefficients on the left and right hand sides of Equation 5.4, we obtain the following recurrence:

Recurrence 5.7:

$$
\begin{equation*}
d_{k, 1}=d_{k-1,0} \quad(i=0) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
d_{k, i+1}=d_{k-1, i}+\frac{d_{k-3, i-1}}{i+1} \quad(1 \leqslant i \leqslant k-2) \tag{ii}
\end{equation*}
$$

(iii)

$$
d_{k, k}=d_{k-1, k-1} \quad(i=k-1)
$$

with

$$
\begin{array}{ll}
d_{0,0}=1, & d_{0, n}=0 \quad \text { for } n \geqslant 1 ; \\
d_{1,0}=0, & d_{1,1}=1, \quad d_{1, n}=0 \quad \text { for } n \geqslant 2
\end{array}
$$

and

$$
d_{2,0}=0, \quad d_{2,1}=0, \quad d_{2,2}=1, \quad d_{2, n}=0 \quad \text { for } n \geqslant 3 .
$$

Since $d_{0,0}=1$, it is clear from (iii) that $d_{k, k}=1$. Setting $i=k-2$ in (ii) we have $d_{k, k-1}=d_{k-1, k-2}+d_{k-3, k-3} /(k-1)=d_{k-1, k-2}+1 /(k-1)$ and

$$
d_{k, k-1}=\sum_{r=0}^{k-3} \frac{1}{r+2} \quad \text { for } k \geqslant 3
$$

Note that for $k=2$ and $k=1$ we have $d_{k, k-1}=0$. In a similar manner, setting $i=k-3$ in (ii) again, we obtain

$$
d_{k, k-2}=\sum_{r=3}^{k-3} \frac{1}{r+1} \sum_{s=0}^{r-3} \frac{1}{s+2} \quad \text { for } k \geqslant 6 .
$$

Note that for $2 \leqslant k \leqslant 5$, we have $d_{k, k-2}=0$ (for $k=2$ we have $d_{2,0}=0$ by the initial conditions and for $3 \leqslant k \leqslant 5$ we have $d_{k, k-2}=d_{k-1, k-2}+d_{k-3, k-4} /(k-2), d_{1,0}=0$, and $d_{k-3, k-4}=0$). Continuing in this manner, we have the following:

Theorem 5.8. The coefficients of the polynomials $\left\{P_{k}(X)\right\},\left\{d_{k, j}\right\}$, are given by the following:

$$
d_{k, k-j}=\sum_{\lambda_{1}=3(j-1)}^{k-3} \frac{1}{\lambda_{1}-j+3} \sum_{\lambda_{2}=3(j-2)}^{\lambda_{1}-3} \frac{1}{d_{k, k}=1}, \quad \text { for } k \geqslant 3 j
$$

and

$$
d_{k, k-j}=0 \quad \text { for } k<3 j .
$$

Remark. The formula for the coeffiients of $\left\{P_{k}(X)\right\}$ can be expressed by the recursive formula below:

$$
d_{k, k-j}= \begin{cases}1 & j=0 \\ 0 & k<3 j \\ \sum_{r=3(j-1)}^{k-3} \frac{d_{r, r-j+1}}{r-j+3}, & 0 \leqslant 3 j \leqslant k\end{cases}
$$

6. Tables and Formulae

We conclude this paper by providing a table of values for $\left\{W_{n, k}\right\}$, examples of vertical generating functions and explicit formulae for $W_{n, k}$ for small values of \boldsymbol{k}.

Remark. Table 1 is the motivation for calling the $\left\{H_{k}(X)\right\}$ 'vertical generating functions', since each column defines a generating function.

Table 1
Whitney numbers $\left\{W_{n, k}\right\}$

Table 2
Vertical generating functions $\left\{\boldsymbol{H}_{\boldsymbol{k}}(\boldsymbol{X})\right\}$

$$
\begin{aligned}
& H_{0}(X)=\mathrm{e}^{X} \\
& H_{1}(X)=X \mathrm{e}^{X} \\
& H_{2}(X)=X^{2} \mathrm{e}^{X} \\
& H_{3}(X)=\left(X^{3}+\frac{1}{2} X^{2}\right) \mathrm{e}^{X} \\
& H_{4}(X)=\left(X^{4}+\frac{5}{6} X^{3}\right) \mathrm{e}^{X} \\
& H_{5}(X)=\left(X^{5}+\frac{26}{24} X^{4}\right) \mathrm{e}^{X} \\
& H_{6}(X)=\left(X^{6}+\frac{154}{120} X^{5}+\frac{3}{24} X^{4}\right) \mathrm{e}^{X}
\end{aligned}
$$

Table 3
Explicit formulae

```
\(W_{n, 0}=C(n-1,0)\)
\(W_{n, 1}=C(n-1,1)\)
\(W_{n, 2}=C(n-1,2)\)
\(W_{n, 3}=C(n-1,2)+3!C(n-1,3)\)
\(W_{n, 4}=5 C(n-1,3)+4!C(n-1,4)\)
\(W_{n, 5}=26 C(n-1,4)+5!C(n-1,5)\)
\(W_{n, 6}=3 C(n-1,4)+154 C(n-1,5)+6!C(n-1,6)\)
```

Remark. By examining coefficients, each vertical generating function provides a formula for an infinite collection of $\left\{W_{n, k}\right\}$, where k is fixed (Table 3). A small shift in notation allows one to express these formulae in a convenient form:

$$
\text { Let } C(n, k)= \begin{cases}\binom{n}{k} & \text { provided that } n \geqslant k \\ 0 & \text { otherwise }\end{cases}
$$

References

1. M. Behzad, G. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs, Prindle, Weber \& Schmidt, Boston, 1979.
2. C. Berge, Principles of Combinatorics, Academic Press, New York, 1959.
3. J. Riordan, An Introduction to Combinatorial Analysis. John Wiley, New York and London, 1958.
4. G. Rota, Studies in Combinatorics, Studies in Mathematics, Vol. 17, The Mathematical Association of America, 1978.

Received 26 August 1988 and accepted 19 October 1989
Frederick J. Portiert and Theresa P. Vaughan
Department of Mathematics,
University of North Carolina at Greensboro, Greensboro, NC 27412, U.S.A.
\dagger Present address:
Department of Mathematics and Computer Science
Mount St. Mary's College,
Emmitsburg, MD 21727 U.S.A.

