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Whitney Numbers of the Second Kind for the Star Poset 

FREDERICK J. PORTIER AND THERESA P. VAUGHAN 

The integers W0 , ••• , W, are called Whitney numbers of the second kind for a ranked poset 
if Wk is the number of elements of rank k. The set of transpositions T = {(1, n), 
(2, n), ... , (n- 1, n)} generates Sn, the symmetric group. We define the star poset, a ranked 
poset the elements of which are those of Sn and the partial order of which is obtained from the 
Cayley graph using T. We characterize minimal factorizations of elements of Sn as products of 
generators in T and provide recurrences, generating functions and explicit formulae for the 
Whitney numbers of the second kind for the star poset. 

1. INTRODUCTION 

Let (P, ~) be a finite poset. By a~* b we mean if a~ c ~ b then a = c or b =c. A 
partial order is completely defined if all pairs (a, b) for which a~* bare given. A poset 
P is said to be ranked if each element a E P can be assigned a non-negative integer 
rank( a) so that if a~* b then rank(b) =rank( a)+ 1. 

Let n be a positive integer and let T be the set of transpositions {(1, n), 
(2, n), ... , (n -1, n)}. We know that T is a minimal generating set for Sn, the 
symmetric group [2]. Let G(n) be a graph the vertex set V(n) of which is Sn and the 
edge set of which is given by E(n) = { e = (P~> pz) I P~> Pz E Sn and P1:rt = p 2 for some 
1r E T}. G(n) is called the Cayley graph [1] for Sn using the generating set T. G(n) is an 
undirected, connected graph on n! vertices. 

We define a partial order ~ on V(n) as follows: for p 11 p 2 E V(n) we say that 
p 1 ~* p 2 if there is an edge e E E(n) where e = (p 11 p 2) and d(p 11 I)< d(p2 , I), where I 
is the identity in Sn and d is the usual graph distance. This defines a ranked poset where 
the rank is given by the distance from I in G(n ). We denote this poset by (Sm ~) and 
call it the star poset (the graph with vertex set {1, 2, ... , n} and edge set T, forms a 
tree called the star graph on n vertices [1]). 

The non-negative integers W0 , W1 , •.• , W, are called the Whitney numbers of the 
second kind for a ranked poset if Wk is the number of elements in the poset of rank k 
[4]. We are primarily interested in determining the Whitney numbers of the second 
kind for the star poset. In particular, we will first characterize minimal factorizations of 
elements of Sn in terms of the generators in T. We will then find recurrences, 
generating functions and closed-form formulae for these Whitney numbers. 

2. THE STAR PosET 

Let us denote a permutation :rt e Sn in the usual manner by listing its image 
[n(1), n(2), ... , :rc(n)] so that I= [1, 2, ... , n ]. We adopt the convention that 
composition of permutations is to be done from right to left. Thus, [1, 3, 2][2, 1, 3] = 
[3, 1, 2]. We will adopt the usual notation for cycles. For example, if :rt is the cycle 
[3, 4, 2, 1] we write :rt = (1, 3, 2, 4). In the representation of a permutation as a product 
of disjoint cycles we will not include cycles of the form (j) for :rc(j) = j. 

Before beginning a discussion of properties of the star poset, let us consider an 
example. The star graph for T = {(1, 4), (2, 4), (3, 4)} is shown in Figure 1. The 
Cayley graph for S4 is shown in Figure 2. Note that there are 4! = 24 elements, I is the 
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FIGURE 1. Star graph for {(1,4), (2,4), (3,4)}. 

minimal element, and the corresponding Whitney numbers of the second kind are 
W0 = 1, W1 =3, W2 =6, W3 =9 and ~=5. 

We begin with a few simple lemmas concerning products of generators from T. 

LEMMA 2.1. If a= (al> n )(a2 , n) · · · (ak, n) and if a11 a 2 , .•. , ak are all distinct, 
then a is the cycle (n, akt ... , a 1) and a(n) :f=.n. 

LEMMA 2.2. If a= (av n )(a2 , n) · · · (ak> n) and if a 1 , a 2 , ••• , ak-l are all distinct 
and ak = a1 then a is the single cycle (av ak_ 1, ak_2 , ••• , a2) and a(n) = n. 

LEMMA 2.3. If a(at. n)(az, n)· · ·(ak, n), where a 1, a2 , .•. , ai_ 1, ai+l> ... , ak are 
all distinct, a;=ai(i=Fj), and 1<j<k, then a is the product of two disjoint cycles, 
a= A.fJ, where fJ(n) = n, A.(n) :f=.n, and thus a(n) =Fn. 

PROOF. Set a=a{Je, where a=(avn) .. ·(a;_,n), f3=(a;,n) .. ·(ai,n), and 
e = (ai+l> n)· · · (ak, n). By Lemma 1.2, f3(n) = n. By the assumption of distinctness, fJ 
fixes what a moves and a fixes what f3 moves, so that a/3 = f3a. Setting ). == ae we have 
a==f3ae=f3A., where f3 is a cycle (Lemma 2.2),). is a cycle, where A.(n)=Fn (Lemma 
2.1), and f3 and ). are disjoint. Thus, a= A./3. 0 

LEMMA 2.4. If a=(altn)(a2 ,n) .. ·(aktn), 1<r<j<k, a1 =ai and ar=ak and 
{a2 , •.• , ak_1 } are all distinct, then a(n) =¥= n, a is a single cycle, and a can be rewritten 
as a product of the k- 2 transpositions {(a2 , n), ... , (ak_ 1, n)}. 

FIGURE 2. The star poset (S4 , ,.;;). 



Star poset 279 

PROOF. Set a=p~(ak,n), where p=(a1,n)···(ai,n) and ~=(ai+~>n)··· 
(ak-I>n). Then p~=~p and a=(ai+~>n)···(ak-vn)(avn)···(ai,n)(ak>n). Then 
a= ~(a 1 , n )ae, where a= (a2, n) · · · (a,_1, n) and e =(a, n) · · · (ai, n )(ak> n) = 
(ak, n)· · ·(ai, n)(ak, n). 

Then ae = ea and 

a= ~(av n)(ak, n)(ar+l> n)· ··(ai-l> n)(ai, n)(ak, n)a 
= ~(a 1 , n )(ak> n )(ar+l> n) · · ·(ai-l> n )(a 1, n )(ak, n )a 
= ~(av n)(ak> n)(bv n)· · ·(b, n)(av n)(ak> n)a 

where b1 =a,+ I> ••• , b, =ai-l> and t = j- 1- r. Then 

a= ~(n, ak> a1)(n, b,, ... , b1)(n, ak> a1)a 
= ~(n, av b, ... , bv ak)a 
= ~(ak> n)(bv n)(b2 , n)· · ·(b, n)(a1, n)a. 

Finally, by Lemma 2.1, a(n)=#=n. 0 

DEFINmON 2.5. a is in canonical form if a is written in the following way: 
a= C1 C2 • • • Ck, where the C; (i = 1, ... , k) are the non-trivial disjoint cycles of a, 
and: 
(1) if a(n) =#=n, then C1(n) =#=nand C;(n) = n (i = 2, ... , k); 
(2) if C1(n) =#= n then C1 = (a1, n )(a2, n) · · · (ai, n ), where au a2, ... , ai are all 
distinct-thus c1 = (n, aj, aj-1, 0 0 0 ' a1); 
(3) for i > 1 when a(n) =#= n and for all i when a(n) = n, C; has the form 
(aun)(a2 ,n)···(ai,n)(a1,n), where ava2 , ••• ,ai are distinct-thus C;= 
(ai, ai_1, ... , a 1). 

DEFINmON 2.6. Ma = l{i 11,;;;; i,;;;; n and a(i) =#= i} 1. 

DEFINmON 2.7. Ca is the number of non-trivial disjoint cycles of a. 

DEFINmON 2.8. ~a= { -~ if a(n) = n, 
if a(n)=#=n. 

LEMMA 2.9. If a= t 1t2 • • ·ti (t; E T, 1,;;;; i ,;;;;j) is in canonical form, then j = Ma + 
Ca +~a· 

PROOF. If a(n) * n, Ca = k, and c1 is a product of s transpositions, then c1 moves 
s + 1 elements. The remaining cycles C2 , C3 , .•• , Ck are disjoint and are of the form 
(avn)(a2 ,n)···(aun), and there are k-1=Ca-1 repetitions of transpositions. 
Thus, C2 • • • Ck moves j- s - Ca + 1 elements and, therefore, Ma = s + 1 + j- s -
Ca + 1 = j- ~a- Ca. If a(n) = n, then C1 • • • Ck moves j- Ca elements and Ma = 
j- Ca- ~a• 0 

THEOREM 2.10. Let a= t 1t2 • • • tm (t; E T, 1,;;;; i,;;;; m) be any expression for a as a 
product of generators from T. Then a can be rewritten in the canonical form as 
a=t;

1
t;2 · ·t;. (t;jE T, 1,;;;;j,;;;;k), where k,;;;;m, iu i2 , ••• , ik are distinct and 

{i1 , i2 , ••• , ik} is a subset of {1, ... , m }. 

PROOF. Let a=(avn)(a2 ,n)···(ak,n). If k=1 then a is a single transposition 
and thus in canonical form. Now suppose a= t:(b, n ), where b E {1, ... , n - 1 }. It 
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suffices to show that if T is in canonical form then a can be rewritten in the canonical 
form. The proof then follows by induction on k. 

Therefore, suppose a= -r(b, n), where -r = C1 C2 • • • C, is the canonical form of -r. 
Let M(-r) ={xI -r(x) :;i::x}. If b is not in M(-r) then (b, n) commutes with C2 , ••• , C, 
and a=Ct(b,n)Cz···C,. If C1(n)=n then C1(b,n)=(b,n)C1 and a= 
(b, n)C1C2 • • • C, is in canonical form. If C1(n) :;i=n then C~ = C1(n, b) is a cycle, where 
C~(n):;i=n (Lemma 2.1) and a= C~C2 • • ·C, is again in canonical form. 

Now suppose that be M(-r) and, in particular, be M(C;) fori ;;.2, or that be M(C1) 

and C1(n) = n. Then b is not in M(Ci) for j * i so that (b, n) commutes with Ci. Thus 
a= C1 • • ·C;(b, n)C;+1 • • ·C,, where C; = (b 1 , n)· · ·(bs, n)(b1 , n). 

Case 1. If C1(n):;i::n and b=bv set C~=C1(bt>n)···(bs,n). Then a= 
C~C2 • • • C;_1Ci+1 • • • C, and is in canonical form. 

Case 2. If C1(n) =nand b :;i=b1 then, by Lemma 2.4, C;(b, n) can be rewritten as a 
single cycle c;, where C;(n):;i::n. Then a=C;C1C2 •• ·C;_1Ci+1 • ··C, is in canonical 
form (or fori= 1, a= C~C2 • • • C, is in canonical form). 

Case 3. If C1(n) * n and b * b1 then, by Lemma 2.4, C;(b, n) can be rewritten as a 
single cycle c;, where c; (n) * n. Set C~ = C 1 c;. Then C~ is a single cycle, where 
C~(n)=Fn and a= C~C2 • • ·Ci-lCi+t" · ·C, is in canonical form. 

Finally, suppose that b eM(C1) and C1(n):;i::n. Then a= C1(b, n)C2 • • ·C,, where 
C1 = (bt> n)· · ·(bs, n). 

Case 1. If b = bs and s > 1, write C~ = (b~> n) · · · (bs-~> n); then a= C~C2 • • • C, is 
in canonical form. If b = bs and s = 1 we have that a= C2 • • • C, is in canonical form. 

Case 2. If b * b 1 * bs then, by Lemma 2.2, C1 can be written as a product of two 
cycles C0C~, where C0(n) * n. Then a= C0C~ C2 • • • C, is in canonical form. 

Case 3. If b = b 1 :;i=bs and s > 1, set C~ = C 1(b, n). Then C~(n) =nand C~C2 • • ·C, 
is in canonical form. If b = b1 * bs and s = 1, then C1 = (b, n), C 1(n, b)= I, and 
a = C2 • • • C, is in canonical form. D 

The rank of an element 1r in the star poset is the distance from I in G(n) where each 
edge in G(n) corresponds to a generator from T. Theorem 2.10 states that every 1r e S,. 
can be written in the canonical form of Definition 2.5. The canonical form provides a 
path from I to 1r; we will show that this is a shortest path. 

CoROLLARY 2.11. a e S,. is of rank k in the star poset iff k = Ma + Ca + ~a· 

PROOF. From Lemma 2.9, we know that since a can be written in the canonical 
form, rank( a) ::5; Ma + Ca + ~a· But from Theorem 2.10 we have rank( a) ;a. Ma + Co + 
~a· D 

DEFINmoN 2.12. W,,k is the number of permutations of rank kin (Sn, ::5;). 

Corollary 2.11 provides a characterization of these Whitney numbers; namely 

Wn,k = I {a E S,. I k = Ma + Ca + ~o} I • 

REMARK. It is not difficult to determine the largest value of Ma + Co + ~a· This 
number is the largest value of rank( a) and is the height of the poset (Sno ::;;;;). This value 
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is also the diameter of the Cayley graph G(n ), since there is a color-preserving graph 
automorphism mapping any v e V(n) to I [1). 

CoROLLARY 2.13. The height of (Sn, ::s:) is given by (3n - 4)/2 for n even and 
(3n - 3)/2 for n odd. 

PROOF. We note that 0 ::s: Ma ::s: n, 0 ::s: Ca ::s: n/2 and (ja is either 0 or -2. Also, Ma, 
Ca and (ja cannot be chosen independently. For example, if Ma = n then l3a = -2 and 
also Ca can equal n/2 only if n is even, at which point Ma = n. 

For n even, Ma + Ca + l3a has the maximum value (3n - 4)/2 at Ma = n, (ja = -2, 
and Ca = n/2. This can occur if a is a product on n/2 -1 disjoint cycles of length 2 that 
each fix n, and a single cycle of length 2 that moves n. Ma + Ca + l3a also has the 
maximum value at Ma = n - 1, l3a = 0, and Ca = n/2- 1. This can occur if a is a 
product of n/2- 2 disjoint cycles of length 2 where n is fixed and a single cycle of 
length 3 where n is fixed. 

For n odd, Ma + Ca + l3a has the maximum value of (3n - 3)/2 at Ma = n - 1, 
(ja = 0, and Ca = (n -1)/2. This can occur if a is a product of (n -1)/2 disjoint cycles 
of length 2 that each fix n. D 

3. RECURRENCE RELATIONS 

We now turn our attention to establishing a recurrence relation for the numbers 
{Wn,k}· Our approach is to define an ordinary generating function on k for {Wn,k} and 
then establish the recurrence relation, on n, among these generating functions. 

DEFINITION 3.1. Let Wn(X) be the ordinary generating function for the Whitney 
numbers of the second kind for the poset (Sn, ::s:). Then 

00 

W,.(X) = ~ Wn,kXk. 
k=O 

We will establish the recurrence relation on {W,.(X)}. Since we will have need to 
express W,.(X) as a sum of other generating functions, it is convenient to make the 
following definition. 

DEFINmON 3.2. Let Q be a subset of Sn. Define TQ(X) to be the generating 
function 

00 

TQ(X) = ~ Yn,kXk, 
k=O 

where Yn,k is the number of elements in Q of rank kin (Sm ::s:). Thus Ts,.(X) = Wn(X) 
and if Hand L partition Sn, we have TH(X) + TL(X) = Wn(X). 

DEFINmON 3.3. Let F; = { .1r e Sn I n(n) = i} for i = 1, ... , n. 

Then Fj_, Fz, ... , F, partition Sn and F, is a subgroup. Let us denote F, by Hn and 
define Hn_ 1 as the subgroup of Sn_ 1 that fixes n- 1. With these definitions, the first 
lemma is clear. 

LEMMA 3.4. Wn(X) = TFj(X) + ... + TF,_I(X) + TH.(X). 

The next lemma is the first in a series of lemmas that will allow us to work with 
Lemma 3.4 and eventually result in our recurrence relation. 
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PROOF. Let K; (1 ~ i ~ n- 1) be the subgroup generated by T- {(i, n)}. It is not 
difficult to verify algebraically that K; is the subgroup that fixes i and that F; = K;(i, n) 
is a right coset of K;. Since I is the only element of Sn with rank 0, and I is not in F;, 
then TFi(X) has no constant term. We then write TFi(X) = XP(X) for some polynomial 
P(X). 

It is clear that K; is isomorphic to Sn_ 1 and, from Theorem 2.10, elements of K; form 
a connected subgraph of the Cayley graph, G(n). Now let aeF;, say a= -r(i, n), and 
-r' e (Sn-v ~) where -r' is the isomorphic image of T. Then rank( a) in (Sn, ~) is one 
more than rank(-r') in (Sn_1, ~). From this we can conclude that P(X) = Wn_ 1(X) and 
the lemma follows. D 

We now partition Hn into two subsets. As above, let K1 be the subgroup generated 
by T-{(1,n)}. It can be shown that (1,n)K1(1,n)=Hn and since K1(1,n)=Jil we 
have (1, n )Fi. = Hn. We can interpret this last identity in terms of the Cayley graph as 
follows: every f e Jil is adjacent to some h e Hn by way of a (1, n) edge. Let us then 
define 

H; ={hE Hn I h(1) = 1}, H;; ={hE Hn I h(1) =/= 1}. 

This partitions Hn. We use this to partition Fi as follows: 

Ft = (f e Fi I (1, n)f = h where hE H;}, 

F1 = (f E Fi I (1, n)f = h where hE H;;}. 

Since I e Hm it is clear that I fl Ft or F1 and T Ft(X) and T r,(X) have no constant 
terms. Let us then write TFt(X) = XU(X) and T r,(X) = XD(X) for polynomials U(X) 
and D(X). Lemma 3.5 has that Tfi(X) = xwn-l(X), but Tfi(X) = TFt(X) + TF!(X) = 
X(U(X) + D(X)). Thus, we have proved: 

LEMMA 3.6. U(X) + D(X) = wn-l(X). 

Next we have: 

LEMMA 3. 7. Tn.(X) = U(X) + X 2D(X). 

PROOF. Iff EFt, then there is some he H; such that (1, n)f =h. Now suppose 
rank(!)= r and consider rank(h ). We know r = M1 + C1 + l>1 = M1 + C1 - 2. But then 
(1, n)f fixes 1 and n, while f moves n and 1, which means Mh = M1 - 2. From the 
canonical form off, we know that since h = (1, n)f fixes 1, the canonical form of h 
contains no (1, n) generator. Since h(1) = 1 and h(n) = n, then (1, n) is one of the 
disjoint cycles off, and then Ch = C1 - 1. But then rank(h) = Mh + Ch + {)h = (M1 -
2) + (C1 -1) + 0 = M1 + C1 - 2-1 =rank(!) -1. Thus rank(!)= rank(h) + 1 for f e 
Ft with h e H;. The coefficient of Xi in the generating function U(X) is the number 
of elements in Ft of rankj + 1, which is the number of elements in H; of rankj. 
Thus U(X) = Tn;r(X). 

Iff E F!, then there is some hE H;; such that (1, n)f =h. As before, suppose 
rank(!) = r and consider rank(h ). We know r = M1 + C1 + 61 = M1 + C1 - 2. But then 
(1, n)fmoves 1 and fixes n, whereasfmoves nand 1, which means Mh = M1 -1. From 
the canonical form off, we know that since h = (1, n)fmoves 1 andfmoves 1, Ch = C1. 
But then rank(h) = Mh + Ch + {)h = (M1 -1) + C1 + 0 = M1 + C1 - 2 + 1 =rank(!)+ 1. 
The coefficient of Xi in the generating function D(X) is the number of elements in F! 
of rankj + 1, which is the number of elements in H;; of rankj + 2. Thus X 2D(X) = 
Tn;;(X). D 
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The final lemma before the main theorem in this section relates the generating 
funtions U(X) and TH.jX). Note that TH._,(X) is the generating function for the set 
of all permutations in (Sn-h ,;;;) in which n- 1 is fixed. 

LEMMA 3.8. U(X) = TH._,(X). 

PROOF. Let A= {n E Sn I n(n) = n, n(1) = 1} and Hn-1 = {n E sn-1 I n(n -1) = 
n-1}. Define a function Z:A~Hn_ 1 by Z(n1)=n2 , where if n 1 = 
[1, a2 , ••• , an-h n] then Jr2 = [a2 -1, ... , n -1]. A is a subgroup of Sn, Z is a group 
isomorphism and U(X) is a generating function for A. To complete the proof, we must 
show that rank is preserved under this isomorphism. Let a E A, and a= C1 C2 • • • C be 
its canonical form. Since a(1) = 1, 1 is not in any of these cycles and Z(a) = 
Z( C1)Z( C2) • • • Z( C1). But then Me,+ Cc, + be,= Mz(c,) + C z(c,) + bz(c,)· Thus 
rank( a)= rank(Z( a)) and we are done. 

THEOREM 3.9. The polynomials Wn(X) are defined by the following recurrence: 

Wn(X) = [(n- 1)X + 1]Wn_1(X) + (X2
- 1)(n- 2)XWn_2(X) for n;;. 3, 

PROOF. Starting with Lemma 3.4 we have 

Wn(X) = TF,(X) + • • • + TF,.jX) + TH.(X) 

= (n- 1)XWn-1(X) + TH.(X) 

= (n- 1)XWn-1(X) + U(X) + X 2D(X) 

= (n- 1)XWn_1(X) + U(X) + X 2(Wn_ 2(X)- U(X)) 

= (n- 1)XWn_1(X) + X 2Wn_2(X) + U(X)(1- X 2
) 

(Lemma 3.5) 

(Lemma 3.7) 

(Lemma 3.6) 

= (n- 1)XWn-1(X) + X 2Wn-z(X) + TH.jX)(1- X 2
) (Lemma 3.8) 

= (n- 1)XWn-1(X) + X 2Wn- 2(X) + (Wn_ 1(X)- (n- 2)XWn_2(X))(1- X 2
) 

(Lemma 3.5) 

= [(n -1)X + 1]Wn_1(X) + (X2 -1)(n- 2)XWn_2(X). D 

4. GENERATING FUNCfiONS 

In this section we will solve the recurrence relation on {Wn(X)} given by Theorem 
3.9 and thus obtain a generating function for these Whitney numbers. We then 
examine the coefficients of Wn(X) and exhibit an explicit formula for Wn.k involving 
binomial coefficients and Stirling numbers of the first kind. 

Let G(Y) be the exponential generating funtion for {Wn(X)}; i.e. define 

G(Y) = f Wk(X)Yk-1 
k=1 (k- 1)! 

Using standard techniques, it is not difficult to derive the differential equation 

G'(Y)(1- XY) = (1 +X+ XY(X 2
- 1))G(Y). 

Integrating, we obtain our generating function. 

THEOREM 4.1. The exponential generating function for {Wn(X)} is given by 
G(Y) = (1- XY)-x-1eY-x2y. 
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THEOREM 4.2. The generating function for {Wn,k} is given by 

Wn(X) = ~~ (n-
1
)(1- X 2t-•-kxk fi (X+ j + 1) 

k=O k j=O 

where, fork= 0, we define Ilj=1o (X+ j + 1) = 1. 

PROOF. Note that (<5nG/<5Yn)IY=o= Wn(X). By induction, one can show that 

<5nG = ~· (n -1)(1- xzt-•-kxk fi (X+ j + 1)[eY-X'Y(1- XY)-X-1-k), 
<5Y k=O k i=O 

from which the result follows directly. 0 

Recall that the Stirling numbers of the first kind {s(n, k)} are the coefficients in the 
polynomial expansion of X(X -1) ···(X- n + 1) [3). In particular, 

n 

X(X- 1)(X- 2) ···(X- n + 1) = L s(n, k)Xk. 
k=O 

Thus 
k-1 k+l 

X ll (X+j+1)=(-1)k+t 2: s(k+1,j)(-1YXi, 
j=O j=O 

and using 

W,(X) can be rewritten as follows: 

FoRMULA 4.3. 

2: 2: .2: n - n - - s(k + 1, j)( -1)'+k+i+1 x2t+k-l+i. n-1 n-l-k k+l ( 1)( 1 k) 
k=O t=O j=O k t 

By examining coefficients, we arrive at a formula for Wn,u· 

THEOREM 4.4. The Whitney numbers of the second kind for the star poset are given 
as follows. Let 

L = min{n -1, u + 1}, 

. { r" + 1-klJ sk = mm n - 1 - u, 2 . 

Then 

Wn,u =to,~ G)(n ~ k)s(k + 1, t)(-1)'+", 

where r 1 is the greatest integer function. 

PROOF. We consider the coefficients of X", using Formula 4.3, where u;;;.. 0 is fixed, 
and we let u = 2t + k- 1 + j. By Formula 4.3, we know that since Xk is a factor in X", 
we have k ~ u + 1. By the first summand in Formula 4.3, k ~ n - 1. Thus, k ~ L = 
min{u + 1, n- 1} and every coefficient of Xk with 0 ~ k ~ L will contribute to the 
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coefficient of X" (for appropriate values of j and t). For k fixed, we have 
2t+j=u-k+l. But j;~O so that 2t::;;;u-k-1 and t::;;; f(u+1-k)/21. From the 
second summand, t::;::; n -1- k, from which we have t::;::; Sk = min{n- 1- u, f(u + 1-
k)/21}. Again, for k fixed, j = u- k + 1- 2t and j::;::; k + 1 by the third summand. 
Thus, u + k + 1- 2t::;::; k + 1, (u- 2k)/2::;::; t and f(u- 2k + 1)/21::;::; t. From the second 
summand, we have 0::;::; t. Thus, t ;;::..7k = max{O, f(u- 2k + 1)/21 }. The theorem then 
follows by setting j = u - k + 1 - 2t. 0 

5. VERTICAL GENERATING FUNCTIONS 

In this section, we consider another generating function for these Whitney numbers. 
Here we examine the exponential generating function, on n, for {Wn,k} and use 
Theorem 3.9 to establish a recurrence, on k, among these generating funtions. 

From Theorem 3. 9, we have 

W,.(X) = [(n -1)X + 1]Wn-t(X) + (X2 -1)(n- 2)XWn-2(X) for n;:;:;.. 3, 

Equating coefficients on the left and right sides of the above recurrence, it is not 
difficult to show that, for all n ;:;:;.. 1, the following holds: 

RECURRENCE 5.1: 

and, for k ;:;:;.. 3, 

wn,o= 1, 

wn,l =n -1, 

wn,2 = (n - 1)(n - 2) 

Wn,k = Wn-l,k + (n -1)Wn-l,k-l- (n- 2)Wn-2,k-1 + (n- 2)Wn-2,k-3• 

DEFINITION 5.2. The vertical generating function for {Wn,k} is the exponential 
generating function defined by 

Hk(X) = i Wn+\~n. 
n=O n. 

Once again employing standard techniques, one can show that { Hk(X)} satisfies 
the differential equation of Lemma 5.3. 

LEMMA 5.3. The vertical generating functions {Hk(X)} satisfy the differential 
equation 

H~(X) = Hk(X) + XH~_1(X) + Hk_ 1(X)- XHk-t(X) + XHk_3(X), 

H0(X) = ex, H1(X) =X ex, H2(X) = X 2ex. 

Now let {Pk(X)} be a collection of functions that satisfy the following differential 
equation: 

EQUATION 5.4: 

P~(X) = Pk_1(X) + XP~-t(X) + XPk-J(X) 

where P0(X) = 1, P1(X) =X and P2(X) = X 2. 
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Setting Hk(X) = Pk(X)ex, the differential equation of Lemma 5.3 is satisfied. By the 
initial conditions and simple integration, one can see that { Pk(X)} are all polynomials 
and that Pk(X) is of degree k. 

DEFINmON 5.5. The forward difference of the sequence {ak} is the sequence 
{ak+ 1- ak} and is denoted {L1ad. The jth forward difference of {ak} is denoted as 
{L1jad and is recursively defined as {L1L1j-1ak}· 

THEOREM 5.6. The (k + 1)th forward difference of the sequence {Wn,d:=o is {0}. 

PROOF. For any sequence {a;} with exponential generating function G(X) = 
~r=o (a;X;/i!), the generating function for {L1a;} is G'(X)- G(X). Thus, the gener
ating function for {Nad is 

For our generating function Hk(X) = Pk(X)ex, we have H'(X)- H(X) = P~(X)ex 
where P~(X) is a polynomial of degree at most k - 1. After k + 1 such differences, 
dk+ 1Pk(X)/dX = 0 and the result follows. D 

We will now provide a formula for the coeffiients of {Pk(X)} and thus have a 
formula for the vertical generating functions. Let 

k 

Pk(X) = L dk,;X;. 
i=O 

By equating coefficients on the left and right hand sides of Equation 5.4, we obtain the 
following recurrence: 

RECURRENCE 5. 7: 

(i) 

(ii) 

(iii) 

with 

dk,1 = dk-1,0 

d - d dk-3,i-1 
k,i+1- k-l,i + i + 1 

dk,k = dk-l,k-1 

(i = 0); 

(1 o:::; i o:::; k- 2); 

(i = k -1); 

do,o= 1, do,n =0 forn ~ 1; 

d1,o=O, d1,1 = 1, d1,n = 0 forn ~2; 
and 

d2,o=O, d2,1 = 0, d2,2 = 1, d2,n = 0 forn ~3. 

Since d0,0 = 1, it is clear from (iii) that dk,k = 1. Setting i = k - 2 in (ii) we have 
dk,k-1 = dk-1,k-2 + dk-3,k-3/(k- 1) = dk-1,k-2 + 1/(k- 1) and 

k-3 1 
dkk =~-

' -1 LJ + 2 
r=O r 

fork ~3. 

Note that fork= 2 and k = 1 we have dk.k_ 1 = 0. In a similar manner, setting i = k- 3 
in (ii) again, we obtain 

fork ~6. 
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Note that for 2,;; k .:;; 5, we have dk,k- 2 = 0 (for k = 2 we have d2,0 = 0 by the initial 
conditions and for 3,;; k,;; 5 we have dk,k-2 = dk-t,k- 2 + dk- 3,k-4/(k- 2), d1,0 = 0, and 
dk-3,k-4 = 0). Continuing in this manner, we have the following: 

THEOREM 5.8. The coefficients of the polynomials {Pk(X)}, {dk), are given by the 
following: 

dk,k= 1, 
k-3 1 -.,-3 1 '-i_,-3 1 

dk.k-j = L , . 3 L , . 4 · · · L , . . 2 ._,=3(j-1) II.J-} + '-2=3(j-2) 11.2-} + '-i=3(j-j) ll.j-} +} + 
fork ;;:.3j 

and 
dk,k-j = 0 fork <3j. 

REMARK. The formula for the coeffiients of { Pk(X)} can be expressed by the 
recursive formula below: 

{

1 

0 
dk,k-j = k-3 d L r.r-j+1 

r=3(j-1)r-j+3' 

j=O, 

k<3j, 

6. TABLES AND FORMULAE 

We conclude this paper by providing a table of values for {Wn,d, examples of 
vertical generating functions and explicit formulae for Wn,k for small values of k. 

REMARK. Table 1 is the motivation for calling the {Hk(X)} 'vertical generating 
functions', since each column defines a generating function. 

TABLE 1 
Whitney numbers {Wn,k} 

~ 0 2 3 4 5 7 8 9 10 

1 
2 
3 2 2 1 
4 1 3 6 9 5 
5 1 4 12 30 44 26 3 
6 1 5 20 70 170 250 169 35 
7 1 6 30 135 460 1110 1689 1254 340 15 
8 7 42 231 1015 3430 8379 13083 10408 3409 315 

TABLE 2 
Vertical generating functions {Hk(X)} 

H0(X) =ex 
H1(X) =Xex 
H2(X)=X2ex 
H3(X) = (X3 + ~X2)ex 
H4(X) = (X4 + ~X3)ex 
H5(X) = (X5 + ~X4)ex 
H6(X) = (X6 + ~~X5 + f4X4)ex 
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TABLE 3 
Explicit formulae 

W,., 0 = C(n - 1, 0) 
w ... J = C(n- 1, 1) 
w,.,2 = C(n - 1, 2) 
w,.,3 = C(n- 1, 2) + 3! C(n - 1, 3) 
W,.,4 = 5C(n- 1, 3) + 4! C(n - 1, 4) 
W,., 5 = 26C(n- 1, 4) + 5! C(n - 1, 5) 
w,.,6 = 3C(n- 1, 4) + 154C(n- 1, 5) + 6! C(n- 1, 6) 

REMARK. By examining coefficients, each vertical generating function provides a 
formula for an infinite collection of {Wn,k}, where k is fixed (Table 3). A small shift in 
notation allows one to express these formulae in a convenient form: 

Let C(n, k) = t=) provided that n ;a. k, 

otherwise. 
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