
Theoretical Computer Science 263 (2001) 173–189
www.elsevier.com/locate/tcs

E"cient recon#guration algorithms of de Bruijn and Kautz
networks into linear arrays

Rabah Harbane, Marie-Claude Heydemann ∗

LRI, UMR CNRS, bât 490, Universit�e Paris-Sud, 91405 Orsay, Cedex, France

Accepted April 2000

Abstract

In this paper, we prove the existence of ranking and unranking algorithms on d-ary de Bruijn
and Kautz graphs. A ranking algorithm takes as input the label of a node and returns the rank
r of that node in a hamiltonian path (06r6N − 1, where N is the order of the considered
graph). An unranking algorithm takes as input an integer r (06r6N − 1) and returns the label
of the rth ranked node in a hamiltonian path. Our results generalize results given by Annexstein
for binary de Bruijn graphs. The key of our framework is based on a recursive construction
of hamiltonian paths in de Bruijn and Kautz graphs. The construction uses suitable uniform
homomorphisms of de Bruijn and Kautz graphs of diameter D on de Bruijn graphs of diameter
D− 1. Our ranking and unranking algorithms have sequential time complexity in O(D2), where
D is the length of node labels. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: de Bruijn graph; Kautz graph; Uniform homomorphism; Hamiltonian path; Ranking=
unranking algorithms

1. Introduction

In implementation of parallel algorithms in parallel machine, we often need to emu-
late the physical topology by another one because certain parallel algorithms are very
e"cient when they are implemented in a suitable parallel machine. This emulation can
be done by generating the software that recon#gures the physical architecture to the
logical one.

A popular approach to model this problem is to consider graph embeddings which
embed the underlying logical topology into the physical one. Unfortunately, the results
obtained by this method may induce algorithms that run in time linear in the size of
the topologies, which is not useful in practice.

∗ Corresponding author.
E-mail address: mch@lri.fr (Marie-Claude Heydemann).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00240 -1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82188519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

174 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

In [1], the author introduced the notion of parallel implementation of graph em-
beddings and gave results concerning parallel embeddings of trees, X-trees on the
hypercube. These results demonstrate the way in which graph embeddings can be im-
plemented e"ciently by using parallel algorithms.

In this paper, we will focus on the problem of recon#guration involving the use of
hamiltonian paths in de Bruijn and Kautz graphs. The existence of hamiltonian paths
in these graphs is well known. However, the existence of such paths does not imply
that they may be used eDectively in parallel computations on networks. Paths can be
embedded e"ciently in parallel by developing fast algorithms.

Speci#cally, the problem we consider is the following: given an N -node labelled
graph, #nd a hamiltonian path along with associated ranking and unranking algo-
rithms. The ranking algorithm takes as input the label of a node and returns the rank
r (06r6N−1) of that node in the hamiltonian path. The unranking algorithm takes
as input an integer r (06r6N−1) and returns the label of the rth ranked node in the
hamiltonian path.

In a previous paper, Annexstein proved the existence of such algorithms in the
hypercube, the binary de Bruijn graphs and the butterEy graphs [2]. In this paper, we
prove the existence of ranking and unranking algorithms in d-ary de Bruijn and Kautz
graphs and generalize the results given by Annexstein for binary de Bruijn graphs.

The key of our framework is based on a recursive construction of hamiltonian paths
in de Bruijn and Kautz graphs. The construction uses suitable uniform homomorphisms
of de Bruijn and Kautz graphs of diameter D on de Bruijn graphs of diameter D−1.

Our ranking and unranking algorithms have sequential time complexity in O(D2),
where D is the length of node labels. Thus, when such algorithms are applied to
recon#gure de Bruijn or Kautz networks into linear arrays, they run as SIMD-style
programs in parallel time poly-logarithmic in the size of the networks. This time bound
is exponentially faster than any implementation that relies on listing all the nodes in
the path.

2. De�nitions and notation

Let G and H be undirected graphs. An embedding of G into H is a one-to-one
mapping ’ :V (G)→V (H) of the nodes of G to the nodes of H . If G and H are
node-labeled graphs, we say that there is a parallel embedding of G into H (realizing
’) if there is a pair of algorithms that eDect the mapping ’, speci#ed as follows:
• a labelling algorithm A which inputs a node-label g of V (G) and outputs the node-

label of ’(g) of V (H).
• an unlabelling algorithm A′ which inputs a node-label h of V (H) and outputs the

node-label of ’−1(h) of V (G).
The quality of parallel embedding depends on two cost measures: the dilation and the
run-time.

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 175

The dilation of parallel embedding ’ is equal to max(x;y)∈ E(G) d(’(x); ’(y)) (where
d(x′; y′) denotes the distance between the two vertices x′; y′, i.e. the minimum number
of edges of a path with end vertices x′; y′).

The run-time of the parallel embedding is the number of parallel bit-operations
necessary to implement the algorithms A and A′. In the case where H is a path, we
call algorithms A and A′, ranking and unranking algorithms.

Let G1 = (V1; A1) and G2 = (V2; A2) be two digraphs and f :V1→V2 be a vertex
mapping. f is a homomorphism of G1 into G2 if it is arc-preserving (∀ (x1; y1)∈A1;
(f(x1); f(y1))∈A2). Notice that such a homomorphism f induces an arc mapping f′

from A1 into A2 de#ned by f′(a1) = a2, where a1 = (x1; y1) and a2 = (f(x1); f(y1)).
The load of vertex x2 ∈V2 under f, loadf(x2), is equal to |f−1(x2)|. The vertex load

of f is the maximum load over all vertices in V2. Homomorphism f is vertex-uniform
iD

∀x2 ∈ V2;
⌊ |V1|
|V2|

⌋
6loadf(x2)6

⌈ |V1|
|V2|

⌉
:

The load of arc a2 ∈A2 under f, loadf(a2), is equal to |f′−1(a2)|. The arc load of
f is the maximum load over all arcs in A2. Homomorphism f is arc-uniform iD

∀a2 ∈ A2;
⌊ |A1|
|A2|

⌋
6loadf(a2)6

⌈ |A1|
|A2|

⌉
:

Let G be a digraph (directed graph). We denote by �+(u) (respectively, �−(u)) the
out-degree (respectively, in-degree) of a vertex u of G, i.e. the number of arcs (u; v)
(respectively (v; u)) of G.

The (di)graphs we will consider here are labelled by strings which are d-ary words.
For simplicity, we often confuse a vertex and its label. For convenience of notation,
strings will be indexed here from right to left, for example a D-letter string will be
written x= xD−1xD−2 : : : x0.

Throughout this paper, the word of length D containing the letter a D times will be
denoted by aD.

Let Zd = {0; 1; : : : ; d−1} and Zn
d = {xnxn−1 : : : x2x1|xi ∈Zd} the set of all d-ary words

of length n on Zd. Let B(d;D) and K(d;D) denote the de Bruijn and Kautz digraphs
respectively, with in- and out-degree d and diameter D [4, 5, 7], de#ned as follows:

V (B(d;D)) =ZD
d ;

A(B(d;D)) = {(xD+1xD : : : x2; xD : : : x2x1) | xi ∈Zd; 16i6D + 1};
V (K(d;D)) = {xDxD−1 : : : x1 | ∀ i : xi ∈Zd+1;∀ i; 16i6D − 1 : xi 	= xi+1},
A(K(d;D)) = {(xD+1xD : : : x2; xD : : : x2x1) | xi ∈Zd+1; 16i6D+1; xi 	= xi+1; 16i6D}.
Arcs (xD+1xD : : : x2; xD : : : x2x1) of B(d;D) or K(d;D) represent operation called left

shifting. Figs. 1 and 2 show de Bruijn digraph B(2; 4) and Kautz digraph K(2; 4),
respectively.

176 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

Fig. 1. De Bruijn digraph B(2; 4).

Fig. 2. Kautz digraph K(2; 4).

We will call de Bruijn and Kautz digraphs jointly B=K-digraphs. B=K-digraphs form
a family of digraphs that have been extensively studied as they have many useful pro-
perties for designing interconnection networks (see [3]). The B=K-graphs are obtained,
respectively, from the B=K-digraphs by deleting the orientation of the edges, loops and
parallel edges.

Let us recall that B(d;D), K(d;D) and their associated graphs have all diameter D.
Let G be a digraph and P be a (non-directed) path in G. Let u and v be the end

vertices of P. Consider the directed path P∗ obtained from P which begins at vertex u,
ends at vertex v and is oriented from u to v. The arc (i; j) of G will be said a positive
arc (of P∗) if (i; j) is also an arc of P∗ (in other words, its orientation coincides with
that chosen for traversing P). Otherwise, it will be said a negative arc. For any vertex
y in P, we denote by S(y) the diDerence between the number of positive arcs and
the number of negative ones, needed to reach the node y on P from the #rst node x.
For example, if P is the path in B(2; 4): 0001; 0011; 1001; 0010, then (0001; 0011) and
(1001; 0010) are positive arcs and (0011; 1001) is a negative arc, thus, S(0001) = 0,
S(0011) = 1, S(1001) = 0, S(0010) = 1.

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 177

We will often use the following property of B=K-digraphs (which is just a generali-
zation of the property used in the binary case in [2]).

Lemma 1. Let P be a path in a B=K-digraph of diameter D; beginning at vertex
x= xD−1xD−2 : : : x0. If for any vertex z on P; 06S(z)6D − 1; then, for any vertex
y=yD−1yD−2 : : : y0 on P; yS(y) = x0.

Proof. Let us recall that in B=K-digraphs a positive (negative) arc corresponds to a
left (right) shifting of the letters in the word labelling the vertex. Since, for any vertex
z on P, 06S(z)6D − 1, the cyclic shifting never moves the original least signi#cant
letter x0 past the most signi#cant letter position, nor past the least signi#cant letter
position, and it is therefore left unaltered. Furthermore, the position of x0 in the word
y is given by S(y), thus yS(y) = x0.

3. Background on uniform homomorphisms of de Bruijn and Kautz digraphs

We recall here some results related to uniform homomorphisms of de Bruijn and
Kautz digraphs that we need in next sections and which can be found in [8].

Proposition 1. Let � be a binary operation on Zd. Then the mapping fD
(�) de;ned by

fD
(�)(x1x2 : : : xD) = (x1 � x2)(x2 � x3) : : : (xD−1 � xD)

is a homomorphism of B(d;D) onto B(d;D − 1).

Proposition 2. If operation � satis;es at least one of the following two properties
(B) and (B′):
∀ !∈Zd; mapping x �→ ! � x is a bijection on Zd (B)
∀ !∈Zd; mapping x �→ x � ! is a bijection on Zd (B′).

Then for any D¿1; fD
(�) is a vertex- and arc-uniform surjective homomorphism.

Obviously, any operation � such that (Zd; �) is a group, induces a vertex- and arc-
uniform homomorphism of B(d;D) onto B(d;D − 1). By applying Proposition 2, we
get homomorphisms already known in the literature.

Example 1. The following four mappings fi : V (B(d;D))→V (B(d;D − 1)), i = 1; 2;
3; 4, are vertex- and arc-uniform homomorphisms of B(d;D) onto B(d;D − 1):
• f1(xD−1xD−2 : : : x0) = xD−2xD−3 : : : x0,
• f2(xD−1xD−2 : : : x0) = xD−1xD−2 : : : x1,
• f3(xD−1xD−2 : : : x0) = (xD−1⊕d xD−2)(xD−2⊕d xD−3) : : : (x1⊕d x0),
• f4(xD−1xD−2 : : : x0) = (xD−1�d xD−2)(xD−2�d xD−3) : : : (x1�d x0),
where ⊕d and �d are operations + and − modulo d, respectively.

178 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

In fact, it is proved in [8] that every surjective homomorphism of B(d;D) onto
B(d;D − 1) is of the form fD

(�), but we do not need here such a characterization. The
same results are true for Kautz digraphs as follows.

Proposition 3. Let � be a binary operation on Zd+1 such that
• ∀i 	= j∈Zd+1; i � j∈Zd;
• ∀i∈Zd+1; i � i =d;
then the mapping fD

(�) de;ned by

fD
(�)(x1x2 : : : xD) = (x1 � x2)(x2 � x3) : : : (xD−1 � xD)

is a homomorphism f of K(d;D) onto B(d;D − 1).

Proposition 4. If operation � satis;es at least one of the following two properties
(KB) and (KB′):
∀ !∈Zd;mapping x �→ ! � x is a bijection on Zd+1 (KB);
∀ !∈Zd;mapping x �→ x � ! is a bijection on Zd+1 (KB′).

Then for any D¿1; fD
(�) from K(d;D) onto B(d;D− 1) is a vertex- and arc-uniform

surjective homomorphism.

We de#ne a d × d matrix M�= (mi; j)
d−1; d−1
i; j = 0;0 , with mi; j = i � j, representing the

multiplication table of �. By Proposition 1, each table of this kind represents a homo-
morphism associated to the operation �. Notice that an operation � satis#es properties
(B), (B′), iD all rows, all columns, respectively, of M� are permutations of Zd. Sim-
ilarly, we can consider a (d + 1) × (d + 1) matrix for de#ning homomorphisms of
K(d;D) into B(d;D − 1).

4. Recon�guration algorithms for de Bruijn graphs

In this section, we will explicitly give a parallel embedding of the path of order dD

in the de Bruijn graph UB(d;D), by specifying the ranking and unranking algorithms.
We #rst give an idea of the construction which generalizes the one given by Annexstein
[2].

4.1. Sketch of construction

It is based on the use of uniform homomorphisms fD
(�) of the de Bruijn digraphs

B(d;D) into B(d;D− 1) which satisfy the properties (B) and (B′) as they are de#ned
in Proposition 2. In [8], the existence of such homomorphisms which are d vertex-
and arc-uniform from B(d;D) into B(d;D − 1) is proved. Let us consider such a
homomorphism fD

(�), we write f for short. Each arc of B(d;D− 1) is the image under
f of d node disjoint arcs of B(d;D). It follows by induction that any path P of the
undirected graph U B(d;D − 1) is the image of d node disjoint paths of UB(d;D),
which are isomorphic to P as directed graphs.

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 179

Thus, the pre-image by f of any hamiltonian path PD−1 of UB(d;D − 1) consists
of d pairwise node disjoint paths, each one being a digraph isomorphic to PD−1. We
denote these paths of B(d;D) by Pi, 06i6d − 1 (omiting the subscript D for sake
of simplicity). Such a homomorphism f allows to construct recursively a hamiltonian
path PD in U B(d;D) by using the hamiltonian PD−1 of UB(d;D − 1) only if there
are suitable arcs of B(d;D) to join the paths Pi. Let pi be the beginning vertex of the
path Pi and ti its end vertex. We will assume that f is chosen such that it ful#ls the
following condition:

(C): (t2j; t2j+1); 06j6
⌊
d− 2

2

⌋
; and (p2j+2; p2j+1);

06j6
⌊
d− 3

2

⌋
; are arcs of B(d;D):

The choice of the homomorphism f is then determined by this condition (see Section
4.3).

Under this hypothesis, let us explain the recursive construction of the hamiltonian
path PD.

We construct the hamiltonian path PD by joining the paths Pi, with the arcs (t2j; t2j+1)
and (p2j+2; p2j+1). More precisely, the path P2j (j¿0) is joined to the path P2j+1 by
the positive arc (t2j; t2j+1), and the path P2j+1 is joined to the path P2j+2 by the
negative arc (p2j+2; p2j+1).

Then, if
←
Pi denotes the path Pi traversed from ti to pi,

PD = P0 +
←
P1 +P2 +

←
P3 + · · ·+ ←P

d−2
+ Pd−1

if d is odd and

PD =P0 +
←
P1 +P2 +

←
P3 + · · ·+ Pd−2 +

←
P

d−1

if d is even.
The idea of the ranking algorithm is then the following. Given a vertex x of B(d;D),

compute the vertex f(x) = y of B(d;D − 1) and recursively the rank r of y. By
construction of the path PD, if we know to which path Pi the vertex x belongs, we
can easily compute its rank r′:

r′ =

{
idD−1 + r if i is even;

(i + 1)dD−1 + 1− r if i is odd:

We now introduce tools which allow to determine Pi.

4.2. Tools based on total shifting

Let S(D; i) be the diDerence between the number of positive arcs and the number of
negative ones, needed to reach the node of rank i on PD from the #rst node 0D. The

180 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

following results indicate how to compute S(D; i). Notice that, if d is odd, the number
of positive arcs (t2j; t2j+1), and the number of negative arcs (p2j+2; p2j+1) are equal
and have the same value equal to �d=2�. On the contrary, if d is even, then there are
d=2 positive arcs (t2j; t2j+1) and d=2− 1 negative arcs (p2j+2; p2j+1).

Lemma 2. For any i = 0; 1; : : : ; d− 1;

S(1; i) =

{
0 if i is even;

1 if i is odd :

Proof. For D = 1, the hamiltonian P1 of UB(d; 1) is the alternate hamiltonian di-path
of B(d; 1) which begins at vertex 0 with a positive arc and ends at vertex d− 1:

P1 : 0→ 1← 2→ 3← · · · ← 2j → 2j + 1← · · ·d− 1

with �−(0) = 0; �+(d− 1) + �−(d− 1) = 1; �+(2j) = 2; �−(2j) = 0, for 16j6�(d−
2)=2�, and �+(2j + 1) = 0; �−(2j + 1) = 2 for 06j6�(d− 3)=2�.

Hence, the diDerence between the number of positive arcs and the negative ones
needed to reach the vertex i from 0 is equal to 0 if i is even and it is equal to 1 if i
is odd.

Furthermore, by construction of P1, we have

S(1; i) =

{
0 if i is even;

1 if i is odd

and, in particular

S(1; d− 1) =

{
0 if d is odd;

1 if d is even:

A recursive formula for computing S(D; i) is given by the following proposition.

Proposition 5. For any i = 0; 1; : : : ; d− 1;

S(1; i) =

{
0 if i is even;

1 if i is odd:

For any D¿1; if !i; 06i6dD − 1; is the vertex of rank i on PD;

S(D; i) =

{
S(D − 1; i mod dD−1) if !i ∈P2j; 06j6�d−2

2 �
S(D − 1; dD−1 − i mod dD−1 − 1) + 1 if!i ∈ P2j+1; 06j6�d−4

2 �:

Proof. By Lemma 2, the formula is true for D = 1. Assume D¿2. Recall that the
construction of the hamiltonian path PD of B(d;D) veri#es the following arguments:
(a) Each path Pi has the same orientation (of arcs) as PD−1.

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 181

(b) The construction of PD from PD−1 uses the paths Pi alternatively in the orientation
of PD−1 and the opposite direction.

(c) The arcs needed for connecting the end vertex of P2j to the begin vertex of P2j+1

are positive arcs and that used for connecting P2j+1 to P2j+2 are negative arcs.
In the construction of the hamiltonian path PD, the cyclic shifting in the paths P2j,

06j6�(d−1)=2�, are the same as that accomplished in PD−1 and the cyclic shifting in
the paths P2j+1, 06j6�d=2−1�, are the reverse of that done in PD−1. Hence, knowing
the sense of the arcs joining the paths Pi, we get that the total cyclic shifting S(D; i)
required after i steps, i∈{2jdD−1; 2jdD−1+1; : : : ; (2j+1)dD−1−1} (06j6�(d−1)=2�)
is equal to the total cyclic shifting in PD−1, which is equal to S(D − 1; i mod dD−1).

The cyclic shiftings done in the paths P2j+1, 06j6d=2−1, are the reverse of
that done in PD−1. These cyclic shiftings undo the shiftings accomplished in the
even paths P2j, 06j6d=2−1. Thus, the total cyclic shifting S(D; i) required after i
steps, i∈{(2j+1)dD−1; : : : ; (2j+2)dD−1−1} (with 06j6�(d−2)=2�), is equal to the
value S(D − 1; dD − i mod dD−1−1) plus the amount of cyclic shifting due to the arc
(t2j; t2j+1) used to join the path P2j to the path P2j+1. This value is equal to +1 by
construction.

As a corollary of Proposition 5, we get:

Corollary 1. 06S(D; i)6D; for any D and any 06i6dD−1;

S(D; dD − 1) =

{
1 if d is even;

0 if d is odd :

Proof. If d is odd, by Proposition 5, S(D; dD − 1) = S(D − 1; dD−1 − 1) = · · · = S(1;
d− 1) = 0. If d is even, S(D; dD − 1) = S(D − 1; 0) + 1 = 1.

We are now able to prove the following result which will be used to verify condition
(C) in the next section.

Corollary 2. Let f be the homomorphism of B(d;D) onto B(d;D−1) associated with
a binary operation � which satis;es properties (B) and (B′) of Proposition 2. Then; in
the recursive construction of the hamiltonian path PD using the paths Pi; 06i6d−1;
we can compute the end vertex of Pi if we know the beginning vertex of Pi and the
end vertex of PD−1.

Proof. Let x= xD−1 : : : x1x0, y=yD−1 : : : y1y0, be the #rst, last vertex, respectively, of
Pi, and let z= zD−2 : : : z1z0 be the last vertex of PD−1. If d is odd, by Corollary 1,
S(D − 1; dD−1 − 1) = 0. Since Pi is a digraph isomorphic to PD−1, with the notation
of Lemma 1, S(D− 1; j) = S(z) if z is the vertex of rank j on Pi. By Corollary 1, for
any i, 06S(D− 1; i)6D− 1. Thus, using Lemma 1, we get x0 =y0. Similarly, if d is
even, S(D − 1; dD−1 − 1) = 1 and y1 = x0. On the other hand, by the homomorphism

182 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

f, the end vertex of Pi satis#es the following equations:

yi+1 � yi = zi; i = 0; 1; : : : ; D − 2:

Since y0 or y1 is known, using property (B) or property (B′), the computation of y is
immediate.

Thus, if we know PD−1 and the homomorphism f, we can compute the #rst and
the last vertex of the paths Pi and verify if the condition (C) is ful#lled.

4.3. Choice of the homomorphism f

Let us now precisely describe the suitable homomorphism which allows the recursive
construction of the hamiltonian path in UB(d;D). Following the parity of d, we distin-
guish two cases. In each case, we only have to prove that the chosen homomorphism
satis#es condition (C).

We use the following notation. Let : : : !(denote the string of length D which ends
by !(and continues by alternating (’s and !’s to the left. The word of length D
which begins with a letter a and is composed alternatively with letters a and b will
be denoted (ab)∗. Let us recall that we denote by aD the word of length D containing
the letter a D times. For example, if D = 3, then : : : 01 = 101, (01)∗= 010, 03 = 000.
Case 1: d is odd. In this case, we consider the homomorphism f3 :B(d;D)→

B(d;D − 1) given in Example 1 and de#ned by

f3(xD−1xD−2 : : : x0) = (xD−1 ⊕ xD−2)(xD−2 ⊕ xD−3) : : : (x1 ⊕ x0);

where ⊕ is the addition modulo d.

By using this homomorphism, we will construct by induction on D a hamiltonian
path in UB(d;D), which begins at vertex pD = 0D and ends at a vertex tD of the form
!D
D where !D ∈Zd is de#ned recursively as the solution in Zd of the equations:

!1 = d− 1; 2!D = !D−1:

Let us now prove by induction on D that we can construct a hamiltonian path in
UB(d;D) which begins at vertex 0D and terminates at vertex !D

D. An illustration of this
construction is given by Fig. 3.

The construction is true for D = 1. Assume that we have constructed a hamiltonian
path PD−1 of UB(d;D − 1) which begins at vertex pD−1 = 0D−1 and terminates at
vertex tD−1 = !D−1

D−1 . The pre-images by f of tD−1 are the vertices xD−1 : : : x1x0 such
that xi+1⊕ xi = !D−1. Thus,

f−1(tD−1) = {!D
D} ∪ {(ab)∗; (ba)∗; a⊕ b = !D−1}:

Furthermore,

f−1(pD−1) =
{

(i(d− i))∗; ((d− i)i)∗; 16i6
⌊
d
2

⌋}
∪ {0D}:

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 183

Fig. 3. Recursive construction of the hamiltonian path in UB(3; 3).

The path PD−1 is the image under the homomorphism f of d node disjoint paths of
B(d;D), namely P0; P1; : : : ; Pd−1. We denote by P0 the path which begins at pD = 0D.
By Corollary 2, we know that P0 terminates at : : : !D−10. Let P1 be the path which
begins at : : : (d− !D−1)!D−1, then it terminates at : : : 0!D−1. Let P2 be the path which
begins at : : : !D−1(d− !D−1), then it terminates at : : : 2!D−1(d− !D−1).

More generally, for any j¿0, by Corollary 2,
• the path P2j which begins at vertex p2j = · · · (j!D−1)(d−j!D−1), terminates at vertex
t2j = · · · [(j + 1)!D−1](d− j!D−1),

• the path P2j+1 which begins at vertex p2j+1 = : : : [(d− (j + 1)!D−1)][(j + 1)!D−1],
terminates at vertex t2j+1 = · · · [(d− j!D−1)][(j + 1)!D−1].

Notice that the paths Pi can be connected since (t2j; t2j+1) and (p2j+2; p2j+1) are arcs
of B(d;D). Hence, condition (C) is ful#lled and the path PD de#ned by

PD = P0 +
←
p1 +P2 +

←
p3 + · · ·+←p

d−2
+ Pd−1

is a hamiltonian path in U B(d;D).
Case 2: d is even. In this case the previous homomorphism does not work since it

does not enable to construct recursively a hamiltonian path in U B(2m; D). For instance,
the previous homomorphism f3 fails in the construction of the hamiltonian path in
U B(4; 3) from the hamiltonian path of U B(4; 2) because the 4 paths, Pi, i = 0; : : : ; 3
are not pairwise adjacent since f−1

3 (22) = {111; 333; 020; 202} and there does not exist
two arcs induced by these vertices in B(4; 2) .

In this paragraph, we will de#ne a homomorphism fD
� of B(d;D) into B(d;D − 1)

using the binary operation � de#ned on Zd by the table M�= [mij]
j=0;:::; d−1
i = 0;:::; d−1 as follows:

m00 = md−1d−1 = 0;

m(2i−1) (2i) = m(2i) (2i−1) = 0 for any i = 1; : : : ; d−2
2 ;

m2i(2i+1) = m(2i+1)2i = d− 1 for any i = 0; 1; : : : ; d−2
2 ;

mii = d− 2 for any i = 1; 2; : : : ; d− 2;

m0j = d− 1− j for j = 2; : : : ; d− 2

m0(d−1) = d− 2

184 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

Fig. 4. Recursive construction of the hamiltonian path in UB(6; 2).

mij = d + i − j − 1 for 362 + i6j6d− 1;

mij = i − j − 1 for 26j + 26i6d− 1:

For example if d= 6, we use the homomorphism fD
� , induced by the following table:

� 0 1 2 3 4 5
0 0 5 3 2 1 4
1 5 4 0 3 2 1
2 1 0 4 5 3 2
3 2 1 5 4 0 3
4 3 2 1 0 4 5
5 4 3 2 1 5 0

Similarly as for the odd case, by using the homomorphism f�, we will construct
inductively a hamiltonian path in UB(d;D) which begins at vertex 0D and terminates
at vertex (d− 1)D (Fig 4).

The construction is true for D = 1. Assume that there exists a hamiltonian path of
UB(d;D − 1), denoted by PD−1, which begins at 0D−1 and terminates at (d− 1)D−1.
The path PD−1 is the image under the homomorphism fD

� of d node disjoint paths of
B(d;D), namely P0; P1; : : : ; Pd−1 such that
• the path P0 begins at vertex 0D and terminates at vertex : : : 01,
• the path P2j+1 begins at vertex p2j+1 = · · · (2j+2)(2j+1) and terminates at vertex
t2j+1 = · · · (2j + 1)2j, with j = 0; : : : ; (d− 4)=2,

• the path P2j begins at vertex p2j = · · · (2j− 1)2j and terminates at vertex t2j = · · ·
2j(2j + 1), with j = 1; : : : ; (d− 2)=2,
• the path Pd−1 begins at vertex pd−1 = · · · (d− 1)(d− 1) and terminates at vertex
td−1 = · · · (d− 1)(d− 2).

The reader can verify that condition (C) is ful#lled.

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 185

4.4. Algorithms

The discussion and the results given above allow us to introduce the following
ranking and unranking algorithms in UB(d;D). Notice that these algorithms are written
for both cases of parity of d since this parity is only needed to specify the suitable
homomorphism.

Algorithm 1 (Ranking in UB(d;D)).
Input: x= xD−1xD−2 : : : x0 ∈V (UB(d;D)).
Output: rank(x)∈{0; 1; : : : ; dD − 1}.
Begin
Initialization: For i = 0; 1; : : : ; d− 1 do rank(i) = i.
1. Compute f(x) = y.
2. Compute recursively rank(y) = r.
3. Compute S(D − 1; r) = k, by using Proposition 5.
4. Compute i such that x∈Pi, using the fact that the #rst vertex of Pi, say
zD−1 : : : z0, satis#es xk = z0.
5.

rank(x) =
{

idD−1 + r if i is even;
(i + 1)dD−1 − 1− r otherwise:

End.

Proof. By construction of the hamiltonian path PD of UB(d;D), it was shown that if
the path Pi begins at vertex zD−1 : : : z1z0, if x∈Pi and S(D − 1; r) = k, then xk = z0.
Thus, we can compute the position of the node x on the path PD since it is the rth
node on the path Pi. This fact justi#es the steps 4 and 5 of Algorithm 1. To get the
rank of x on PD, it is just su"cient to test the value of xk .

If d is odd, then we compare the value of xk to
• 0 if x∈P0,
• (d− j!D−1) if x∈P2j+1, with j = 0; 1; : : : ; (d− 3)=2,
• (j + 1)!D−1 if x∈P2j, with j = 0; 1; : : : ; (d− 1)=2.
If d is even, then we compare the value of xk to
• 0 if x∈P0,
• 2j if x∈P2j (i.e. xk = i is even),
• 2j + 1 if x∈P2j+1 (i.e. xk = i is odd).

We can invert Algorithm 1 in order to obtain the unranking algorithm as follows.

Algorithm 2 (Unranking in UB(d;D)).
Input: an integer r such that 06r6dD − 1.
Output: a word x= xD−1xD−2 : : : x0 ∈UB(d;D).

186 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

Begin
1. Compute the quotient and the rest of euclidian division of r to dD−1, i.e.
r = qdD−1 + r0, with 06r0¡dD−1.
2. Compute recursively the label of the node y=yD−2yD−3 : : : y0 of PD−1 with
rank r′ equal to r0 if q is even and dD−1 − 1− r0 if q is odd.
3. Compute S(D − 1; r′) =m by using Proposition 5.
4. Compute all the nodes x= xD−1 : : : x1x0 such that f(x) = y.
5. Let z= zD−1 : : : z1z0 be the #rst node of the path Pq.
The node x is the word which ful#ls xm = z0.
End.

5. Recon�guration algorithms for Kautz graphs

Using the preceding study and a vertex- and arc-uniform homomorphism of K(d;D)
into B(d;D − 1), we will now obtain ranking and unranking algorithms for Kautz
graphs.

We consider the binary operation � de#ned by the table M�= [mij]
j=0;:::; d
i = 0; :::; d such that

mij =

{
i − j − 1 if j¡i

d− (j − i) if j¿i:

Note that each row and each column of the table M� is a permutation of Zd+1 and
that mii =d for any i∈Zd+1. By Proposition 3, we can de#ne a homomorphism fD

(�)
from K(d;D) into B(d;D − 1) which satis#es fD

(�)(xD−1xD−2 : : : x1x0) =yD−2 : : : y1y0,
with yi = xi � xi+1 = (xi� xi+1) − 1, where � is the substraction modulo d + 1. By
Proposition 4, fD

(�) is a surjective, vertex- and arc-uniform homomorphism. Therefore
the preimage by fD

(�) of the hamiltonian path PD−1 in B(d;D − 1) constructed in the
preceding section is composed of d + 1 vertex disjoint paths which are all isomorphic
to PD−1. We leave it to the reader to verify that the analogue of condition (C) is
ful#lled so that the construction of a hamiltonian path in UK(d;D) is possible in the
same way as we have constructed PD in UB(d;D). Fig. 5 gives an illustration of this
construction in UK(4; 2).

Ranking and unranking algorithms for Kautz graphs are therefore very similar to
Algorithms 1 and 2. So we give them without comments (details can be found in [6]).

Algorithm 3 (Ranking in UK(d;D)).
Input: u= uD−1uD−2 : : : u0 ∈V (UK(d;D)).
Output: rank(u)∈{0; 1; : : : ; dD + dD−1 − 1}.
Begin
Initialization: For i = 0 to d, rank(i) = i.
1. Compute fD

(�)(u) = vD−2vD−3 : : : v0 = v∈V (UB(d;D − 1)),

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 187

Fig. 5. Recursive construction of the hamiltonian path in UK(4; 2).

2. Compute, by using Algorithm 1, rank(v) = r,
3. Compute, by using Proposition 5, S(D − 1; r) = k,
4. Let i = uk (u∈Pi),
5.

rank(u) =

{
idD−1 + r if i is even;

(i + 1)dD−1 − r − 1 otherwise:

End.

We can invert Algorithm 3 in order to obtain the following unranking algorithm.

Algorithm 4 (Unranking in UK(d;D)).
Input: an integer r such that 06r6dD + dD−1 − 1.
Output: a word x= xD−1xD−2 : : : x0 ∈V (UK(d;D)).
Begin
1. Compute the quotient and the rest of euclidian division of r to dD−1, i.e.
r = qdD−1 + r0, with 06r0¡dD−1 (x is the label of the vertex of rank r0 on
Pq).
2. Compute recursively the label of the node y=yD−2yD−3 : : : y0 of PD−1 with
rank r′ equal to{

r0 if q is even;

dD−1 − 1− r0 if q is odd:

3. Compute S(D − 1; r′) =m, by using Proposition 5.
4. Compute the nodes x such that fD

(�)(x) = y.
5. Let z= zD−1 : : : z1z0 be the #rst node of Pq.
Then x satis#es xm = z0.
End.

188 R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189

6. Complexity of the algorithms

Let us analyze the serial complexity of Algorithm 1.
Let Tb(D) be the number of elementary operations required for computing the rank

of the node x= xD−1xD−2 : : : x0 of UB(d;D). Step 1 of the algorithm 1 needs the
computation of f(x), which takes D − 1 elementary operations. Step 3 needs the
computation of S(D; r), which needs at most 2D − 1 operations. Finally, Step 2 is a
recursive computation on the rank of f(x). This step requires Tb(D − 1) operations.
Note that the initialization step needs d operations. The global complexity of Algorithm
1 is bounded by the solution of the following recurrence relation:

Tb(1) = d;

T b(D) = Tb(D − 1) + 3D + O(1) if D ¿ 1;

T b(D) = d + 3
D∑

i=2

i + O(D) = O(D2): (1)

Similarly, we can prove that the complexity of Algorithms 2–4 is O(D2).

7. Conclusion and further work

In this article, we have given ranking and unranking algorithms of e"cient parallel
embeddings of hamiltonian paths into d-ary de Bruijn and Kautz graphs. Our proofs are
based on recursive constructions of hamiltonian paths in de Bruijn and Kautz graphs
using suitable uniform homomorphisms of de Bruijn and Kautz graphs of diameter D
on de Bruijn graphs of diameter D − 1.

One can ask whether the method used here can be extended to other embedded
graphs into de Bruijn and Kautz graphs, for example to cycles instead of paths. On
the other hand, we can also ask for which classes of host graphs can the method give
e"cient ranking and unranking algorithms for hamiltonian paths.

References

[1] F.S. Annexstein, Parallel implementation of graph embeddings, in: Parallel Architectures and their
E"cient Use, Lecture Notes in Computer Science, Vol. 678, Springer, Berlin, 1993, pp. 207–217.

[2] F.S. Annexstein, Ranking algorithms for Hamiltonian paths in hypercubic networks, in: DIMACS
Workshop, Interconnection Networks and Mapping and Scheduling Parallel Computations, 1994 D.F.
Hsu, A.L. Rosenberg, D. Sotteau (Eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, AMS, Vol. 21, 1995, pp. 1–7.

[3] J.-C. Bermond, C. Peyrat, De Bruijn and Kautz networks: a competitor for the hypercube?, in: F. AndrQe,
J.P. Verjus (Eds.), Hypercube and Distributed Computers, Elsevier, North-Holland, 1989,, pp. 279–493.

[4] N.G. de Bruijn, A combinatorical problem, Koninklijke Nederlandsche Akademie van Wetenschappen
Proc. A 49 (1946) 758–764.

R. Harbane, M.-C. Heydemann / Theoretical Computer Science 263 (2001) 173–189 189

[5] M.A. Fiol, J.L.A. Yebra, I. Alegre, Line digraph iterations and the (d; k) digraph problem, IEEE Trans.
Comput. C-33 (5) (1984) 400–403.

[6] R. Harbane, Emulation et tolQerance aux pannes dans certains rQeseaux d’interconnexion, ThSese, UniversitQe
Paris-Sud, 1996.

[7] W.H. Kautz, Bounds on directed (d,k) graphs, Theory of cellular logic networks and machines,
AFCRL-68-0668 Final Report, 1968, pp. 20–28.

[8] P. TvrdQTk, R. Harbane, M.-C. Heydemann, Uniform homomorphisms and Divide & Conquer Emulations
on de Bruijn and Kautz networks, Discrete Appl. Math. 83 (1998) 279–301.

