]. Differential Equations 249 (2010) 2796-2821

Contents lists available at ScienceDirect

Journal of Differential Equations PR

www.elsevier.com/locate/jde

Lower dimensional invariant tori with prescribed frequency
for nonlinear wave equation ™

Jiansheng Geng *, Xiufang Ren

Department of Mathematics and Institute of Mathematical Science, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO ABSTRACT
Article history: In this paper, one-dimensional (1D) nonlinear wave equation u; —
Received 27 January 2010 Uxy +mu +u3 = 0, subject to Dirichlet boundary conditions is con-

Revised 1 April 2010

. . . sidered. We show that for each given m > 0, and each prescribed
Available online 18 April 2010

integer b > 1, the above equation admits a Whitney smooth fam-
ily of small-amplitude quasi-periodic solutions with b-dimensional

Keywords: d . . X . . X
Wave equation Diophantine frequencies, which correspond to b-dimensional in-
Hamiltonian system variant tori of an associated infinite-dimensional dynamical system.
Birkhoff normal form In particular, these Diophantine frequencies are the small dilation
KAM theory of a prescribed Diophantine vector. The proof is based on a partial
Invariant tori Birkhoff normal form reduction and an improved KAM method.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and main result

The main conclusion we obtain in this paper is that there exist some quasi-periodic solutions,
whose frequencies are the small dilation of a fixed Diophantine frequency w*, with the dilation fac-
tor A, i.e.,

w=0* IeR, Ax1, (11)

of the one-dimensional (1D) nonlinear wave equation
U — Uy +mu+u>=0, xel0,7], teR, meR,, (1.2)
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subject to Dirichlet boundary conditions

u(t,0)=0=u(t,m). (1.3)

Based on Eliasson [4], Melnikov [13] and Pdschel [14], the KAM method has been extensively
developed in finite dimensions concerning the persistence of lower dimensional invariant tori in
Hamiltonian systems (see also Bourgain [1], Li and Yi [11], Xu and You [17], You [18]). In recent
years, the KAM method has been extended to infinite dimensions in works of [9,15], in studying
quasi-periodic solutions for 1D nonlinear beam, wave and Schrodinger equations with constant poten-
tials or parameterized potentials under Dirichlet boundary conditions or periodic boundary conditions
(see also [3,5,10,12,16]), as to higher dimensional case, see Bourgain [2], Geng and You [7,8].

As we know, in [1], Bourgain combined the KAM method with the Nash-Moser type methods to
obtain the persistence of the invariant torus TP x {0} x {0} in R?® x R¥'-phase space, with perturbed
frequency vector w of the form (1.1) under the first Melnikov’s non-resonance condition. In [4], Elias-
son proved this result under the first, the second and the third Melnikov’s non-resonance conditions
and the non-degenerate conditions

det(Dw(») #0, (L2 — 0@ (Do) ' DR(y)#0, (14)

forall yeR™", 1eZ™\O0, |l] <3.

Nonetheless, so far, such results have not yet been extended to infinite dimensions, i.e., the per-
sistence of lower invariant tori, whose perturbed frequency vectors are of the form (1.1) in some
infinite-dimensional phase space. The aim of this paper is to show that there exist many quasi-
periodic solutions with the frequencies having the form (1.1) for Eq. (1.2), under conditions (1.3) and
certain non-degenerate conditions similar to (1.4), we thus will give a positive answer to a question
posed by J. Bourgain in [1] that the form (1.1) for finite-dimensional case can really be generalized to
an infinite-dimensional phase space setting.

In [4], Eliasson imposed the third Melnikov’s non-resonance condition in order that the frequencies
keep the form (1.1). However in our case, because the normal frequencies have the form of u, =
n+ O(%), n € Z4, we can only assume the first and the second Melnikov’s non-resonance conditions,
since

mitpjtur—0, asitjtk=0 and min{i,j, k} - oo.

As a result, we cannot eliminate all terms involving three normal variables in the perturbation. To
overcome this difficulty, we make use of the idea in [11], to treat the tangential variable y and the
normal variable w in the same scale rather than the traditional way of treating y as much smaller
variable than w (see details in (2.4)). Therefore, the normal form of the Hamiltonian becomes more
complicated, since there is a twist term (yA, y) in it, however, this twist term plays an essential
role in ensuring the form (1.1) of the tangential frequencies. In fact, at each KAM step, we make a
translation to extract a frequencies’ rectification term from (yA, y) to eliminate the frequencies’ drift.
Consequently, after infinitely many KAM steps, we will have infinitely many parameters, however, they
can be transformed into the same one-dimensional parameter, i.e., dilation factor A. Although it is just
one-dimensional, it will add to the hardship of the measure estimates (see details in Remark 3.3).

For any prescribed integer b > 1, and any ordered b-index integer set J, = {{i1,...,ip} €Z4: 0 <
i1 <+ <lp, Minjgjcpijpr —ij <b—1}, it is clear that the linearized equation associated with (1.2)
with the same boundary conditions (1.3) has some small-amplitude quasi-periodic solutions of the
form

b

u(t,x) = Z\/gjcos(uijt)sinijx, Wi =,/i? +m, 0<& <1,

j=1



2798 J. Geng, X. Ren / ]. Differential Equations 249 (2010) 2796-2821

taking & = (&1,...,&) €O C R{’._ as parameters, in addition, we call J, as an admissible tangential set
with respect to b, and denote by Ny =Z, \ {i1, ..., ip}.
Our main result states as follows:

Main Theorem. Consider one-dimensional nonlinear wave equation

un—uu+mu+u3=Q xel[0, 7], teR, meRy,

subject to Dirichlet boundary conditions

ut,0)=0=u(t,m).

For any prescribed integer b > 1, choose {i1, ...,ip} € Jp, then linearized equation has solutions
b
u(t,x) = Z\/gjcos(u,-jt) sinijx, i = 1/i? +m, 0<&i k1,
j=1

taking € = (&1,...,&) € O C IR’i as parameters, there exists a positive-measure Cantor subset O c O, such
that for any & € O, the above nonlinear wave equation has a real analytic quasi-periodic solution

b

ut.x) =Y /& cos(w;t)sinijx+ 0(1€]3),

j=1

with

b
6 i 4
a)j:)\a)j, reR, Ax1, w}‘:,u,-j-l- —E—J+ j, 1<j<b.
Mij l:]/’Lil

Remark 1.1. The assumption of the set J, is consistent with that of [16], which is made to ensure
the existence of the small-amplitude quasi-periodic solutions for all positive m. Otherwise, one might
have to exclude some set of m-values, which is discrete in every compact interval in (0, co).

Remark 1.2. The result remains true if the nonlinearities u> is replaced by an odd function of the
form f(x,u) =au’+ Z,(>5 fe(x)uk, a0, where the coefficients fj are real analytic in x, or in some

Sobolev space HS([0, 7]), s > % with norms growing at most exponentially to ensure analyticity in u.

We may also add a general odd perturbation term eg(x,u) = ¢ 2,90 gk(x)u to the above nonlinearity
f(x,u), with coefficients g of the same type as the fi.

Remark 1.3. The frequency vector * = (7, ..., w}) is a Diophantine vector, i.e, there exist T > 0
and y > 0 such that the frequency vector w* satisfies the following Diophantine conditions,

Y forallkezb\ {0}.
k|*

[k, )| >

The rest of the paper is devoted to the proof of the Main Theorem. In Section 2, we define the
weighted norms and study the basic properties, then we derive a partial Birkhoff normal form of order
four for the lattice Hamiltonian (2.2), and then we extract the parameters from amplitude-frequency
modulation. In Section 3, we give details for one step of KAM iteration. In Section 4, we show an
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iteration lemma and convergence. Proof of the theorem is completed in Section 5 by conducting
measure estimates.

2. Normal form

First, we introduce some notations. Let £%# be the Hilbert space of all real-valued sequences q =
(q1, 92, . ..), endowed with the finite weighted norm

lqlla,p = Z |gn|n%e™” < co.
n>1

Introduce v = u; and B = —dxx + m, then (1.2) reads

oH
ut:—z s
av
oH
Vi=—— =—Bu—u’, (2.1)
ou
where
T
H—l(v v)+1(Bu u)+1f|u|4dx
T2 20 4 ’
0
Let

u(t,x) = Z T IO ). V(t,%) =) /HnPa(O¢n(x),

n>] n>1

where ¢, (x) = \/gsinnx, for n=1,2,... are the Dirichlet eigenfunctions of the operator B with

eigenvalues A, = n?+m, setting t, = +/A,. Then, associated with the symplectic structure Zn>1 dgn A
dpn on £%P x (%P we get the following Hamiltonian equations

oH . oH

n= — =

) DPn=—7—,
dPn " aqn

H=A+G,

1
=5 D tn(pi +d5),

n>1

b
1 4 1
4_1/ u)| dx= 2 > Gijudid - (2.2)
0

ikl

where

Gijki = /qbl(p]qbkqﬁl dx, Gijtt =0 wheneveri+ j+k£I[#0.

MGk
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Lemma 2.1. Leta > 0 and p > 0. If a curve [ — £%P x £%P, t > (q(t), p(t)) is a real analytic solution of
(2.2), then

1
u(t,x)= Z \/M_Qn ()Pn (%)

n>1
is a real analytic solution of (1.2)on I x [0, 7r].

Let K; and L', respectively, be the Hilbert spaces of all bi-infinite, absolute summable sequences
with complex coefficients and all absolute-integrable complex-valued functions on [—, 7 ]. Let

1 .
Gty —>L', qr>0q=—=) gne™
b «/271% !

be the inverse discrete Fourier transform, which defines an isometry between the two spaces. For
a>0and p > 0, define

6 = {q € £): Iqllap = g0l + Y Igalne™ < oo},
n=#0

through G they define subspaces W of L! that are normed by setting 1Gqlla,p = llqlla, p-

Lemma 2.2. Fora > 0 and p > O, the space Eg’p is a Banach algebra with respect to convolution of sequences,
and

g plla,p < cllqlla,pllPlla.ps

with a constant ¢ depending only on a. Consequently, W7 is a Banach algebra with respect to multiplication
of functions.

Lemma 2.3. For a > 0 and p > 0, the gradient G is a real analytic map from a neighborhood of the origin of
€% into £9+1-P with

1Gqllat1.o = O(llgliz )-

By introducing the complex coordinates

1 1
Zn = —(qn +ipn), Zn=— —ipn),
n ﬁ(Qn Pn) n ﬁ(Qn Dn)

we obtain a real analytic Hamiltonian H = Z@] Hnlzn|? + - -+ on the now complex Hilbert space £%7
with the symplectic structure iZ@] dz, A dz,.

Lemma 2.4. For each finite b > 1 and each m > 0, there exists a real analytic symplectic change of coordinates
I" in some neighborhood of the origin in £%° that takes the Hamiltonian H = A + G into its partial Birkhoff
normal form up to order four, that is

HoI'=A+G+G+K,
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such that Xg, Xg, Xk are real analytic maps from some neighborhood of the origin in £%* to £8+1.P where

— 1 _ 5 9 = 6 4-—4j
G=3 Z Gyjlail*lzjl® Gij= - Y
JpN{i, j}#90
Gl=0(lzl3,). KI=0(IzIS,). 2= (znnen,-

Moreover, the neighborhood can be chosen uniformly for every compact m-interval in (0, co), and the depen-
dence of I on m is real analytic.

For the proof of the above four lemmata, see [16].
Letting I = (|z;,12,....12,|®), Z=(|za|?,...), n € Ny = Z \ {i1, ..., ip}, by Lemma 2.4, we have

A={a, )+ (B, 2Z), G= %(IA, 1)+ (IB, Z),

with vectors o = (Wi, , ..., 4i,), B = (Un,...), n € N1, and matrices

A—<6 4—5k1> B—( 24 )
T Wi K 1<k,l<b’ T iy Mn 1<k<b,neN1.

Next, we introduce the symplectic polar and complex coordinates by setting

z _{ Entyne”™, nefin, ... i}
n =
Wh, neNy,

depending on the parameter &£. We then get
iy dzandzp= ) dxandyn+i ) dwy Adwy,
n=>1 nefiy,...,ip} neNy
and the new Hamiltonian
_ 1 ~
H=(0E), )+ D 2@ wWaWn+ > (yA,y) +(yB, 2) + G + K,
neNy

with frequencies w(§) = o + £A, 2(§) = B+ £B, where

Z=(lwal*...), neNy,
IGl=0(Iwllg ;). W= (Wn,...), neN,
K| = 0(1&P) + 0 (1y?) + 0 (&171¥1) + O (I&l1y[?) + O (I&1Z 1 Wlla,p)
+0(EPIwIZ,) + 0 (EllyIwI2 ) + 0 (1yPIwl2 ,) + O (1E1Z w3 )
+0(lwWIE ) + O (yliwli ) + 0 (€1 Iwl3,) + 0 (Iwl ,).

2

Rescaling y, w, w, & by g%y, e2w, &2w, €3¢, we obtain
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Hx y,w, w,6) =e "H(x, ey, 2w, e?w, £3¢)
=(ea+EA, y)+(e B +EB, ww)+ %(yeA, )
+(yeB.Z)+ 0(g|wlg ,) + 0 (*[&1%) + 0 (£°1y]?)
+0(e216171y1) + 0 (e*€l1y1?) + O (e31€13 Iwlla,p)
+0(EPIwlZ ) + O (e*ENyIIwlZ ) + O (1P Iwliz )
+0(e3 g2 w2 ) + 0 (e ElIwIZ ) + O (3 ylIwlE )
+0(e3 g2 IwI3,) + O (e%IwIS ).

From now on, we consider a Hamiltonian

H=N+P,
o1,
N =(w@®), y)+(2E), ww)+ S(yA', y),
wE) =ea+EA,  QE =e3B+EB,  A=¢A,
P=H-N:=¢P®x,y,w,w,E¢). (2.3)

For simplicity, we substitute &, x;;, yi; by &;, xj, yj, j=1,...,b, respectively. To avoid confusion,
we rewrite the above € as ¢, in the following context. For given r,s > 0, let

D(r,s)={x, y,w, w): [Imx| <71, |y| <5, [Wlap <5, [Wlla,p <S5} (2.4)

be the complex neighborhood of T? x {y =0} x {w =0} x {Ww =0} in T? x RP x £¢:# x ¢9-° where ||
denotes the sup-norm of complex vectors. Let o = (@1, ..., Qn, .. JneNys B=(B1, ..., Bns - - IneNy» Un
and g, € N with finitely many nonzero components of positive integers. The product w*w# denotes

I, wan v_vf”. For any given real analytic function

F(x,y,w, w) :ZF‘X.H(X’ VYWewh,
a, B

where Fgg is a Cl, function depending on a parameter & € @ in the sense of Whitney (the precise
B w

form of the parameter space O will be specified at the end of this section), we define the weighted
norm of F by

IFlprs.o= sup Y lIFapl|w®|[w’|.

Wlla,p<s o
1Wlla,p<s
Fap= Y Fuap®)y'e®,
keZb, 1eNb
IFapll =) [Fuaplos'e™.  |Fugplo = sup | Friap (8)] (2.5)
€

k1

((-,-) being the standard inner product in C?). The weighted norm of the Hamiltonian vector field



J. Geng, X. Ren / J. Differential Equations 249 (2010) 2796-2821 2803

Xp = (Fy, —Fx, {iFw, }nen, . (—iF, Jnen, )

associated with F on D(r,s) x O is defined by!

1 1
||XF||D(r,S),O = ; ||Fy||D(r,s),O + S_2||Fx||D(r,s),(9

1 B} B}
* E( > I Fwallpes.on®e™ + > || F, ||D(r,s),(9naenp>v (2.6)

neN; neN;

where a > a.

Remark 2.1. From Lemma 2.3, we know that a =a+1, i.e., the weight of vector fields is a little heavier
than that of w, w. The boundedness of || Xf||p( ), means that Xr sends a decaying w-sequence to
a faster decaying sequence.

For any real analytic functions F and G, define the Poisson bracket by

oF 0G JdF 090G . oF 0G oF 0G
{(F,G}l={—, —)—{—. — +IZ — Y )
ax dy ady ox ~ own oW,  Owp dwy,

Lemma 2.5. There exists a constant ¢ > 0, such that if

IXFllpes).o <€'. I1Xclpas.o <&’
forsome &', &” > 0, then forany 0 <o <rand 0 < n « 1, we have

1,2
I X(F,6)ID(r—o.ns),0 <co ™ 'n~ee".

The proof is omitted, since it is just a copy of that in [6].

It is clear that TP x {y = 0} x {w =0} x {# = 0} is an invariant torus of the integrable Hamiltonian
N in the phase space T? x RP x ¢%# x ¢%#. Our purpose is to prove that the Hamiltonian system
determined by Hamiltonian H = N + P still admits invariant tori provided that || Xp|/p¢s) 0 is suffi-
ciently small. Moreover, we point out that the tangential frequencies of these invariant tori lie in a
fixed direction, they are just a multiple of a given Diophantine vector, and the multiple is around 1.
However, this calls for imposing some conditions on the frequencies mapping & — (w(&), £2(¢)) and
the perturbation P in O. We state them as follows.

(A1) Regularity of the perturbation: The perturbation P is regular in the sense that || Xp|p«,s),0 < 00,
witha=a+ 1.

(A2) Non-degeneracy: The tangential frequencies mapping & > w(§) is a C\1/v diffeomorphism between
O and its image.

(A3) Asymptotics of normal frequencies:

D#0, @ =Cn+2n,  Gu=n+0m"),  [2u®|,=0(n""),

@n—Qm=n-m+0(m™"'), m<n,

for all n,m € Ny, where §2,, are real and independent of &.

1 The norm |- | p.s).0 for scalar functions is defined in (2.5). The vector function G : D(r,s) x © — C™ (m < oo) is similarly
defined as [|Gllp¢s),0 = Y jeq IGillpers),0-
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(A4) Non-resonance conditions: For a given y > 0 small enough, choose 2 < ag < 48, and a function
I(ap), satisfying 4‘;8_"30 <l(ag) < oo, let T >2b+ (3 + %)l(ao) be fixed, we assume that for all

Ee O, the frequencies of the obtained invariant tori satisfy the Diophantine conditions:

|{k, (&) + (I 2&))| > % forall (k,1) e Z° x >\ 0, || <2, (2.7)

~ 1
ie, (w, 2) € DC(y, 1), where O is some subset of O, and y = y, = & before the first KAM
step.

Remark 2.2. We say that w € DCo(y, 1), if (2.7) holds for k € 7P\ 0, 1= 0. Note that w* in Remark 1.3
belongs to DCo(y, 7).

Definition. We say that H € NF(r, s,d1,d>,d3), if H is defined on D(r,s) x O, and the lower order
terms are of the form

1
Ho=[Hol,  Hi={w(),y) Hz=[Hz]Z(Q(é),WW)+§<J/M(€),Y),

in addition, the tangential frequencies mapping & — (&) and the matrix-valued mapping & — M (&),
defined on O satisfy

Ci.  |wlo =sup|w(&)|, <di < oo,
Co. [P, = sup|(Dw(®) |, <d2 < o0,
C3. [M7'|, =sup|(M©) |, <ds < o0,

for some d1,d»,ds € Ry, where

Hix,y,w,w)= Z H,Jdaﬁy’e“k’x)W“Wﬂ,
[l+la|+|Bl=]

[Hiy.w.w)]= > Hj, V' ww),
l+2lal=j

[Hj] represents the mean value of H;, j=0,1,2,..., and M is a b x b matrix. We say that
H € DC(y, 1), if the above (w(&), £2(¢€)) € DC(y, 1), for some & € O. We define the norm of the
matrix M = (Mjj)axp DY Maxi<ia Z?:] Imjj|, and denote by H the function H — Hoy — Hi — H. For
convenience, we write Hojoo, ji1=2. Hoioo,jij=1, Hooi,ji=1 as Ho200. Ho100, Hoo11, respectively.

Remark 2.3. In view of the Hamiltonian (2.3) and the non-degeneracy of A = (% . %)1@.1@. it is
U 3atl] :

reasonable to assume that & — w(£) and & — A(€) = £, A, defined on [1,2]? c R?, satisfy conditions

Cq1,Cy, C3 for some d;‘,d;,d; € R;. We will see later that O = [1,2]” before the first KAM step,

however, throughout the KAM steps,

1 1

O=[-(1+e2)didse, . (14 e2)didse, ], (2.8)

equivalently, O = [—1, 11.
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3. KAM step

To begin with the KAM iteration, we first fix r, s, &, > 0 and restrict the Hamiltonian (2.3) to the
domain D(r, s), restrict the parameter & to the set [1, Z]b. We set the initial values wg = w,., £2° = 2%,
1

Ay=A,=¢e,A PP=P* ro=r,s0=5, Yo=yx =&, d) =d}, d) =d3, d} =d}, and
HO=No+P(x,y, w, W, &% &),

_ 1
No = (wo, y) + (£2°, ww) + E(yA{), y) € NF(ro, s0.d3,d3,d3) N DC(yo, T),

where @, = () = &30 +£*A, 2* = Q") =&, > p+E°B, P =&, P(x, y. W, W.£%, &), £* € Oy,

Oo= {56[1,21”: |(k, w0 (&) + (1. 2°&))| > ﬁ |k|+|l|¢0}.

For convenience, we will fix & by &* throughout this paper. It is obvious that there exists a positive
constant c,, such that

1XpollDro,s0),00 < CxE4 1= €. (3.1)

Remark 3.1. For fixed &, > 0, and for prescribed integer b > 1, the existence of Oy can be guaranteed
by Lemma 6 in [16], since we have chosen the admissible tangential set Jj.

Suppose that after vth KAM step, we arrive at a Hamiltonian
H=H,=N+P(x,y,w, w,&" 1,¢),
1
N=Ny=(@,y) +(2,ww)+ - (yA’, y) NF(r,s,d1,d2,d3) N DC(y, 7), (32)

which is real analytic on D =D, = D(r,, sy), for some r =r, <rg, s =5, < Sg, and depends on A =

3+L
Ay € A=A, CE=[—4, ] Whitney smoothly, with w = w, = w,(A) = (1 + &, V. :=tW)w, =
Aw, 2=02"=2"0), A=A, =A,0), dy=d}, dy=d}, d3=d}, o<y =n <31 P=P"(),

We also assume that
IXpllp,a <6, (3.3)

for some 0 <& =¢, < &.

Remark 3.2. In the last part of this paper, we will find that w, =& 3@, @, = DE*) = a + E*A,

where £* = £3£*, For each A € A* = My>1 Av, and each E* ¢ Og C [£2,2631°, we finally get an

invariant torus We. (T? x {A%°}) of the original Hamiltonian Hy with the tangential frequency of the
1

form o* = (1 + 8:00 A®)wy. Since w, (0) = wy, we can view Ag as {Op: A = 0}. Moreover, in this
paper, we index quantities at (v + 1)th step by +, and write < - in the estimates to suppress various
constants, which do not depend on the iteration steps. In addition, all the constants c1, c2, c3, ¢4
below are positive and independent of the iteration steps.
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In the following, we look for a special F = F¥ defined on a smaller domain D, = D(r, s4), such
that the translation ¢, : (x,y, w, W) — (x,y + y*, w, W), where y* is (v + 1)th new introduced
parameter, and the time one map dﬁ}l := @ of the Hamiltonian flow @; associated with F carry
the above Hamiltonian (3.2) into the next KAM cycle, which means that the new Hamiltonian H =
Ho®t=Ho¢, o®, =N, + PT satisfies all the above assumptions (A1), ..., (A4) and has the same

estimates as (3.3) with respect to the new parameters ry, sy, &4, di, dT, dT, and new domains
P P +1 540 €45 g, Oy, A3, YVt
1

3+5-
D, A4. Moreover, Ny € NF(ry,sy,df,dy,d3)NDC(y4,7), wop =146, "Ny, L€ Ay
3.1. Truncating the perturbation and solving the homological equation
Let R = Py + P1 + P, be the truncation of the Taylor-Fourier series of P up to order 2, i.e.,, R =

D itlaltipi<2 Puiapy'e® ¥ w® WP, we wish to construct a function F = Fo + F1 + Fa, with [F] =0,
such that

{F,N}=R—[R]—-Q, (34)

where Q ={N, F}3 = {%(yA/, y), Fa}. Let qﬁfr be the Hamiltonian flow of F, then

(N+P)opyo®} =N, +PT,

1
Ny=N+ E(y*A, y*)+(y"A, y)+ [Rol + [Ri] + [R2],

1
P+=f{tR+(1—r)[R],F}o¢+o<p;dt+'ﬁo¢+o<p}+Qo¢+. (3.5)
0

Therefore, after (v + 1)th KAM step, we arrive at the Hamiltonian

Hopro®io-opyy10®yig=H" =N, +P"H,
Nyt = {@us1, ) + {27 W) + 2 (A0, ),
Wy =0+ (Y + -+ Y TYA+ PGgg + -+ + Pligo-
QU =%+ (y' + -+ Y T)B+ Py + -+ Poorts
A1 = AL+ Piygo + -+ Pgogp-

Define ¢; : (x, y, w. W) — (x,y + /. w, W), j > 1, with yJ = —PL, L A1, j>2, y! = (G- Do, —
PS]OO)A_]y we then have

_ 1 o _ 3+a
Wy+1 —w*+y A+P0100—)\.a)*—(1 +8* )\)CU*,
1 1 1 -1 0
2" =2+ y'B— (Pgio0+ - + Po100) A~ B+ Pgor1 + -+~ + Poorn»
A\ = AL+ Pygo + -+ + Poop- (3.6)
- 1 34w 1 3w o 3 i i .
Remark 3.3. Observe that A € [1— 56, 14356, 1, |wi| <d) = 0(¢.7), Pyyg0 = P10 ™ ¥+ -,

¥y, 1< j< v, PYo = 0(E31E*P), £ €[1,21° is fixed, and |A~!| < ¢ mp, for some constant
Cx.mp > 0. Therefore, we have y!' = y'(n), y/ = yiE*, y', ...,y ) = yi(y") = yI(V), j > 2, with
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1 1 1

3-L 3+ 343
the estimates |y!| < (1+ O (&, °))cnmbd°€* <(1+82)cy, mbd &y Y=y = 0(8 ), and |y1|

Cx mb|P0100| Cx,m,b€j—1. Thus, Pomo = Pmoo(y ), Poon =P} 011(3’ ), Pozoo = Pozoo(y ) I<j<v.
Consequently, the frequencies and the matrix-valued mapping in (3.6) can be regarded as the map-
ping from [—x. x]* to their images, ie, wyy1 = wyr1(y), 2UF =V, A=A (D,
v > 0, so after we choose & in the initial parameter space, the parameter space in the KAM step

+a . o
is [—x, X]b in fact, however, since yl(X) A= (8 Ay — Pgmo)A—1 is one-one, it is reason-
able to consider the one-dimensional parameter space & = [—%, %], rather than the whole one
Ei={Ey" .y Ec,2P, y el—x, xIP, ¥ €l—CrmpEj-1, Crmpejl’, 2 < j< oo}, and
to assume that H depends on A Whitney smoothly.

Lemma 3.1. Define D; = D(rj,s;) = D(ry + jo, %,;s), 0 < j <4, then the solution of (3.4) satisfies

-4 —(4t+5
IXFllps,a <y "(r—ry) g,

with

3" Friap
IAt

). (3.7)

|Friepl 4 = SUP max(
reA <1

(The derivatives with respect to X are in the sense of Whitney.)

Proof. We will construct a function F = Fy + F; + F», where

_ 0,i(k,x) _ 10 i(k,x) 1 I zkx
FO_Zer ) Fl_Z(FknW”+FI<n '+ Z Fry
k#0 k,n k0, |l|=1
Fy= Z (F,:,}Oy'wn + F,},?lylwn) itkx) Z Fknmwnv_vme”k"‘)
I|=1,n |k|4+|n—m|£0
+ Z (Flgr?mW”Wm + F;?,menWm i(k,x) + Z F2 l i(k,x)
k,n,m k=0, |l|=2

having the same form as Py, Pi, Py, such that

{F/,N}=P;—[Pjl—Q,, [Fj]=0, j=0,1,2. (3.8)

This is equivalent to

ik, 0)Ff = PP, k#0,
i((k, )+ 20)FO =P, |1l =1,
i((k, ) — 2q)For = PPL, |l =1,

i(k, w)F} +ikFPA =P},

i((k, ) + 20 + 2m) FRO, +IkFLA = PR,
i((k, ) + 25 — 2m)Fpb = Pits [kl +n—m| #0,
i((k, ) — 2n — 2m)FR2, =

Pknm ’
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i((k, ) + $2n) FLIO +ikF10A = PJ1°,

kn

i((k, @) — 25)FOV +ikFJIA = PLOT,

kn

i(k, w)F} +ikF} A = P.
Since N € DC(y, t), we have

|FQ| <y UIkIT|PY|,. k#O,

4 <

y UkIT| Py =1,

’Fkn|A S’A’
[For| <y UkIT|POY| . =1,

[FaL <y KT PLl s Kl 4 In—m] #£0,

|Fknm A S <y kI |Pknm A

It follows that

RLILAP —2), 2741 pO

|4 < e <y kP P
[{k, )]

720 KIIF

knm |4 = "1k ") + 20+ 2ol

|Fk |A’

_3|k|3r+2|P£|A,

Ik[|F0] o

Flop Tl kel =22t p10)

|k11 |A |<ka))+9| || | kn|A
k|| Forla

Flo1 kA =221 pOT|

| kn |A< |(I<,a)) 2] | | | kn |A

1
2 LI s
IFéla < Tica] kIT2| PO .

Therefore,

1 1 B
1 XFollps,a < 2 X:|F,?||k|e”dr3 < 2 ZV k|7 ke | PO eI
3 k0 3 k£0

2
S
4, —1 k _1k
<3Sy Y kT Xpy lIp, ae” I
3

k0
<y 1Y kT Mg
k0
1 XF, D3, le Zlk(F Wi + FOlwy,)el ) 4 Z ikF] yleit
3% kn k=0, |I|=1
ZFl eitk.x) 1 Z“(F +F ) k,x)“n&enp
k40 53 o

(3.9)

(3.10)

(3.11)
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< ’1Z|k| KI(|PLO| + [P )5 472 37 [kl k2F 1 POk
k20

+y 2T KPRyt S (PSR eHrentere )
k#0 k,n

< .yfz Z |k|21+1 —Ikl(ra— r3)8 (312)
k#0

Z 2F,fyle””‘ + Z FHOWn i(k,x) + Z F’:’gn Wne

k=20, [I'|=1 ll=1,n l=1,n

Zisz leitkox) | Z ikFL10y wye %) 4 Z ikF Oy wyel k)
[N=2 [ll=1,n N=1,n

IXF,lIDs,0 = —

1
=
53

+ Z ik(F20 WnWm + Fp2. Wy wn)e' % 4 Z ikFL Wy Wie )
k,n,m |k|+n—m|#£0

|:| Z F;rzoylel (k,x) +ZFkanme i(k,x) +ZFkanme i(k,x)
=1

+ } LTI W
=1 k,m

< (2Zy—3|k|3r+2’P£|elk|r3 +)/_2|k|2r+1(|P,1,?’ + |P,?,}|)e”"r3

k,n

]naenp

+Z|k|)/_3|k|3r+2‘P;?|€|k|r3+Z|k|)/_2|k|zr+1(|P]1,?’+|P](<J,H)e”<lr3

k k,n
+ > Ikly RPT PR [ Y Ikly kI[P [
k,n,m k.,n,m
+ ) Ky KT P e+ Z(Z y kTP ek
[k|+In—m|#0 n k,m
k
+ Z y—l |k| |P02 |e|k‘r3) ﬂp) <.y -3 Z |k|31'+2 —|k|(rg— T3)€ (313)
k0

In conclusion, we get

-3 314+b+1 _,—1(rg— -3 — (3744
IXFlipsa <y =2 Y PTHHlel0mlg By )=Crg,
I>1

Through elementary calculation, we have

0Priagp
oA

0Friap
oA

wmmA+| y”w”“(wmmA+‘

J)

A
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thus the conclusion can be reached, if we multiply the upper bounds of (3.9), (3.10), thus of (3.11),
(312), (313) by y~1k|*™*1, and redefine the norm of Fuap by the C! norm (3.7), instead of the C°
norm (2.5). O

3.2. Estimating the new lower order terms

By virtue of w; = w; (y!) = wy, + y! A+Po1oo =rws, QY =2+ ytB+ Pl AL = AL+ P0200+

3+ 3+
4 Ploo, forall v >0, and |y!| = 0(5*0), lyTI=0(), forallv>1,ie[l—1e, © 141, ]
|, = 0(er 1), PYypo = O(21E*]) = O(e?), we have

1 345 1 343\ 0
|w+|[ X XJb 1+ 28* |‘0*|ll 2 S 1+ 25* di,

(D)™ lipxp = AT =) 7 Hp <,
- —19-1
A 1’[ x.xP = |AL [1+(P8200+"'+P3200)A; l] ’
<(1+0(2))|A, \[1 ap S (1+-¢ 3)d3, (3.14)
1
where Do, = ?}TT Dw, = §&. Thus Ny € NF(ry, sy, d{,dj,d), with df = (1 + %8:+ao ), df =

dy, df = (1 + -e2)d. Since |(y"B)nla, < -n7'yTla, < n7le, |(le)n|A1 <7yl < 1550,

n,0 -1 -1 1 1, -1
[Poo11l0s <7 'e0, |PJgi1la <n7'e, we have [£2; — 2754, < e, |92F — $£n|a, <~ &. More-
over, the upper bound ¢z ;p of |A~1| in Remark 3.3 is d2 in fact. As a result, |AL| = |(e,A)7 1| <

34k o .
e 1dy, yl e [—(1 +eHd0dde, @, (1 +e2)dld%e, 10, y/ e[—dJej_1,dej11P, j=2,...,00. In ad-
dition, dJ can be chosen as & 'dY.

3.3. Estimating the new frequency domain

Observe that

5 1 1 ys S Yt
|k, 2] = 5 |k, )| > 5 R R
[(k, Raws) + 27| = |(k, Aews) + 2n|=|(y*B),,| — | PGor1]
14 _ Y+
> e~ ez g

|k, Aewy) + 2,5 £ 25| > [k, Aws) + 20 £ 2m| — |(yTB), |

_|(Y+B)m|_|Pgo11|_|P6no11|
vt
Yo, WtE v

= . = T
[k|*  min{|n|, Im|} ~ |k

if y» < Zy*, C]E* |k|® — Y1, C1&pk|T — Yv+1, for some c1 > 0 and for all v > 1. Thus, in the
succeeding KAM step, small divisor condltlons are automatically satisfied for |k| < K, if for all v > 1,

1 &
Y < 5 Vs el K <Ve—v1. &Kl <yo— Y. (3.15)
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In what follows, we consider some new domains. Let n = 8%, D}?n =Djy=D(@ry+jo, %ns), where

0 =1(r—r4),0<j<4 Dy=D(rs,s4), 54 = §ns, D=D(r,s). It is clear that D C Dj, C D; C D.

3.4. Estimating the coordinate transformation
Lemma3.2.If ¢ < (3y%(r —r)*+3)3, we then have
¢+ 0Pk :Dyyx Ay — D, —1<t<1.
Moreover, denote by @+ = ¢ o (D}, then for all v > 1, we have
1 1
1_ ag +_ —12
ot - ’d”D?,,,Al <80, |oF - ld”Dm’M <8 e,
1
1 ao +
|[po! - Id||D?W,A1 <8, |Dot — 1d||DWA+ <-6.

Proof. Denote by @, ®L,, ®L;, dL, the components of @& in x, y, w, W planes respectively, setting

B=y 4 —r)~“ g, by virtue of

t
CDE: =id+ / XF o <p; d57 XF = (Fy7 _FXs {iFwn}neN1 s {_iFv_v,,}neN1)7
0
we have the estimates

| 2% _id|‘Dzn,A+ < IXFllps,a <-B <1,

t
|¢§:1|D2,,,A+<|X|+ /Fyoq>;;ds <ri+20 +-sp<ry+30,
0
t
t s 1 2 3
|Pkalp,, a, SIVI+|— [ Feo@pds| < ons+s2 < s,
0

t s
|<1>F3|D2;7’A+ <|w|+| | Fwo®ids

O~

! s+s/3<3 s
<= ° X 7, )
N 27

— 1 3
|Palp,, 4, < W+ < s +-sB < s,

t
/Fv—vo<p?:d5
0

provided that

; 3
£ L <§y2(r - r+)2’+3> , (3.16)
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1
this means that ®% : Dy, — D3y, —1 <t < 1. Due to |y!| = 0(&,°), |[y*| = 0(¢), we know that ¢, :
1

D3, — D is well defined, thus, @ = ¢, 0@} : Dyy x A — D is also well defined. Choosing y, = &,
Y+ =3V + o, since

@ . 3+%|w A71| a0 dy+ _ dP()]()()A_1
|, o 1 o = T T =
Aq Aq Ap
we have
A S U
* )
dx D?n,Al dx D1y, A4
thus

t t
Dq)}—1d=/DxFD<p;ds=/](DzF)Dcp;ds
0 0

together with

& —id=¢; o (P} —id) + (¢4 — id)
imply that

11 1 1
1 : 1 2 ag a0
||(,D —ld”D(lJn’Al < |¢1|D(1)77’A1 ||XF0||D3,A1 +|y |A1 <-ET & <&k,

_1 _1
”@*’—idHDmA+ <IP+1D1y A IXFlDs 4y + |YH],, < 6 Pe+ e <6, Ve,

- d¢r 20 ﬂ . g
! =g, <[, 192w+, <
do4 dy*
+_ - 2 an ’
oot p, <[ G|, 19w, + 5], <

for all v > 1. Therefore, Lemma 3.2 follows. O

3.5. Estimating the new perturbation

Since
1
P+:/{GI,F}o¢fdt+ﬁo¢++Qo¢+,
0

where Gy = tR+ (1 —t)[R], & = ¢ 0o PL, T =¢, 0@}, P=P—Pg—P;— P2, Q = (3(yA', ), Fa},
we have
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1
/ X{G[ dt + (¢+)*X‘[3 + (¢+)*XQ.
0

It follows from Lemma 2.5 that

1,2
I1X(Ge,FillDyy, Ay < -0~ N I XRlID3, 2, I1XFllD3, 2

r+)—(4‘[+6) -2 2

<y - n’e

1X51Dy,, 44 <C3nlXpllp,a, <378,

A ) "@TH 3

1Xq Dy, 4, <Cay n

4
Let ¢ =3max{cy, c2,¢3, ¢4} > 0 and &4 =cy ~4(r —ry)"@"+9¢3, we then have | Xp+|Ip,, A+ <&y

Moreover, if 80 = c4&4 is sufficiently small, then there exists a constant x, with 1 <« < §, such

that ¢, = ¢, for all v > 1. As a result, ylel- d0 ") ! dO "j 1]b Iyl = o(sy), j=2,...,00. This
completes one step of KAM iterations.
4. Iterative lemma and convergence

4.1. Iterative lemma

For any given r, s, ¢y, &, dj = 0(e;3), d3 =0(1), d5 =¢;'d}5, 2 <ap <48, and for all v > 1, we
define the following sequences:

v+l
Iy :ro(l - ZZ'), ro=r,
i=2

1
11 v—1 3
Sy=—&3 s 273V eil s =
v—gv1v1— j 0, So=S5,

j=0

v+1
Yv :_VO<1_22 )s J/*—S* s

—4 —(4t+6) 3
gy =cy, Hrv_1 — 1)~ )8v,1

€0 = Cx&y,
1 3+4&
d§=<1+§s* °>d°, dy=dJ,  dy=(e;'+€2)d),

d=di, j=1,23,

l(ao)r 48ap
T 48 —

Ky =2"K§, Ko=¢. <l(ap) < o0,
0

; j . .
Dy_1=D(ry-1,50-1), D ;= D(ru + 70 —ru),zfsv), i=23,

11 -
szixeAMc[—i,ﬂ: |(k, hevi) + (I, 2 )|/”Ir k| + 11| # 0,

1

- 34,
A=1+¢, OA}, Ag = {0}.
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Note that
i 3
O(ro) = [ [trjo1 —rp~“m+0]®
j=1
is a well-defined finite function of rg. Since &, <« %8%. by the choice of K, and y), we can easily

verify that the conditions (3.15) and (3.16) hold automatically for v > 1 and v > 0, respectively.
We summary the preceding analysis as follows.

Lemma 4.1. Suppose that for v > 0, H, = N,, + PV is given on D, x O, which is real analytic in

(x, y, w, W) € D,, and Whitney smooth in £* € Oy C © = [1, 2] for v = 0, Whitney smooth in A € A, C
O =[—1, 31forv>1, where

1
Hy =N, + P’ = (wy, y) + Z Q27 wpwp + §<yA/v, Y)+PY(x y. w, W, E5 X ),
neNy

satisfying

Ny € NF(ry,sy.dy,dy,d5)NDC(yy,7), v=0,

341
woy=o,M)=(1+&, “Nw,, A, =A,}), v=0,
1
|21 (%) —.Q,’HAl <n el |2y —Q;”(x)]AU <nley_q, v=2,
| Xpollpg, 00 < €0, IXpvllp,, 4, <&y, V21, (41)

with A € Ay for v > 1, and A =0 for v = 0, where w, = w(£*) = ¢, B30 4+ £%A, o = (Kiys -5 Miy),
=<ﬁ- 20 )y ki |ulop < A3 AT g op < dS, 2% = 2(8* >—s;3ﬂ+s*8,ﬁ—(un,..»neNl,

,Uv Hi
(jm i )i<k<b,neNy» Ay = €A, d3 = e 1dY, then there exist a symplectic diffeomorphism ®,,41 : D% —
D?,, and a translation

¢v+1:D3 = D(ry.s), Xy, w, W) (x,y+y" w,w),

such that for Hyy 1 = Hy o ¢yq1 0 @yyq :=Hy o0 45"“ Ny41 + PV, the same assumptions (4.1) are
satisfied with v + 1 in place of v, for some }1)/0 <Y1 < 5 )/o' where

Ayy1 = < U Rv+]()’v+1)>

k|>Ky.1

Rt (rvs1) = {x € Ayt |k how,) + (I 21| < ’|’k|“ A= t(k)}.

Moreover, for all v > 1, and for some 1 < k < %, we have

1 v

< _8;10’ ”(pv-H _ K

_1
“Du+1»Av+1 See

| —idlp, 4,

v

1
Dol ~tdly, < e, DO~k <
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4.2. Convergence

Let ¥,(A\) =@l o---0 @', where @/ =¢jo®j, 1< j< v, and denote by ¥y =id. Inductively, we
have ¥, : D,, x A, — Dy, such that for all v > 1,

Hy=HooW, =N, +P"(x,y,w,w,£", %, ¢).

Let A* = ﬂv>lAv, we can apply Lemma 4.1 to conclude that H,, N,, P", w,, £}, A, con-
verge uniformly on D(%‘),O) X A* t0 Hoo, Noow P, oo, $25°, AL, respectively. Clearly, wo =

00!

3+
(1+e, 1wy, A € A*, and
o0 by 1 I
Noo = (@0, ¥) + D 20" WaWn + (VAL )
n
r 1 3+g 1 L
€ NF<30, 0, (1 + 58 °> nds, (e + .g§)d§> N DC(ZS:S : r).
Denote by ¢!, the flow of Xy, since Ho o ¥, = H,,, we have

Pl © Vv =Wp o Py, . (4.2)

Note that
1
Vi1 — V)= / D(®'o---0@l)(id+6(¢/ —id))do (@It —id).
0
Since, by Lemma 4.1, on D(2,0) x A*,

|D(@" o0 @))(id +6(®T" —id))|

<[[Ipo! (e o 0 @f)(id+6(¢7 ™ —id))]

—

1

1 ) 1
<O+e0)(1+-e) - (1+e") < et g8 _

we have
1
_ ‘l . ap
%1 = Yolp 0 g)xar = o" — ld|D(r70,O)><A" <&
) . j+H1 s 1~
Wjt1 = ¥ilp(o gyxar S e[@lh — ld|D(r70,O)><A* <&
for all j=1,2,.... This shows that ¥, converges uniformly on D(%O, 0) x A*, we denote by ¥ its
limit. Then

oo oo
Voo =Wo+ Y (Wjp1 — W) =id+ Y (Wj1 — ¥)).
j=0 j=0
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It follows that ¥, is real analytic in (x, y, w, W) and uniformly close to the identity. In the same way,
D, converges uniformly to D¥,, on D(%O, 0) x A*. Therefore, we can pass the limit on both sides
of (4.2) to conclude that

Bhiy © Woo = Yoo 0 By (4.3)

and
To .
Uy : D(E’O) x AY — D(r,s).
Since

4 3 4\v
- - 3 - ENES
gy =cy, i (roo1 =) W03 L <323 0)ed ),

we conclude that

”XPOOHD(%O,O)XA* =0.

It follows that
Blyy 0 Yoo (TP x 2)) = Wag 0 9y (TP x {1°°}) = Woe (T x {»})

on D(%", 0), for all A% € A*. Hence, Wuo (TP x {1°°}) is a b-dimensional embedded invariant torus of
the original perturbed Hamiltonian system at A% € A*.

5. Measure estimates

After (v + 1)th KAM step, we get the frequencies mapping &* » (w(£%), 2(£%)), y! — (wy11 (¥,
2Vt1(y")) and the matrix-valued mapping §* — A'(§*), y' — A ;(y"), y' = y' (1), which satisfy
conditions Cq, Cp, C3 with respect to djf and d;“, j=1,2,3, respectively, where

w(E) =6 a+EA=w,,
Q)= p+EB=0"
A(E*)=e, A=A,
w41 (y") = s + y A+ P00 = Aoos,
2V (y') =2+ y'B— (Poio0 + -+ + Ph100) A~ B+ Poor1 + - + Poorns
Vi1 (V1) = AL 4 Py + -+ + Poygos
1

. 3+a 3+a . 3+a
with % € [1,2]°, y' e [-(1 + eD)didse, O, (1 +eD)didze, 1P, eo=c leo, A=1+e, “r=t(),
reA, CE= [—%, %]. However, we need to exclude the resonant set
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v+1 _ v+1 _ v+1 v+1 v+1
R - U 7zk,l - U (Rk U Rkn U Rkpq )
k| =Ky, ! k| =Ky

- U re Ay |(k Aoy + (1, 2V < Yoi1 i:t(x)},

[k|*
[k =Kyl
where
. Y v VV e
Av={x. [tk R0 + (1. 2")[ > Gz Ikl + 1 0. A=r<x)},
v+1 _ - k. & Yv+1
Ry =10e Ayt [k dwy)| < s

Ryt = {x € Ayt |k dawy) £ 207 < %}

Ripe = {/\ € Ayt (k. Aw,) (2,1 £ 21| < Yoil }

k|
Lemma 5.1. When k # 0, (I, 2"%1) =0, we have R} }' = 0.

7",“4*,’ Hence, we complete the

=
WV

Proof. Obviously, |(k, @) + (I, 2V = |||k, ws)| > %w
proof. O

Remark 5.1. Lemma 5.1 implies that for k # 0, Rl‘j“ =¢ and

Rotl = {k € Ayt [tk Awy,) £ ()T + 20| <

Yv+1
kpq

lk|*

U {AGAV: (k. hewy) £ (2571 = 201)| < T,:F p;éq}.

In the following, we consider the set

R+ = {AeAv:|(k,w*)+0(l»~(2v+]>|< T

3+1
k| >Ky .1 (1—Je. “O)kl*

Obviously, RV*! ¢ RV*1. Since A — t(1_A) is a diffeomorphism between € =[—1, 4] and 1+ F :=

344 344
[1—0(ex ), 14+ 0(e, )], we just need to consider an auxiliary resonant set

Yv+1 }

~ 1
B2 U fom ks e o ol <P
(1—Le, ®)k7

k|=Ky.l t@)

- ,U (R uﬁ,‘ggl) c1+7F,
kI> Koy

where
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Yv

EV:{G: [k, ws) +o(l, 2%)] > , |k|+|l|7é0},

(- e, ©)k7
Yv+1 }

(1 1er 0
Yv+1 }

(1 Lol e

kn

RV = {O’GZV |k, w,) £o2) | <

RV = {o € Xy |(k, wy) j:a(.Ql‘,’“ +.Q;H)] <

C
Dt

o€y |k w) j:cf(.QI},’+1 - Q;H)| < yv—f p;éq},
(1— L&, )kl

Setting VV*t! = (k, w.) + o (I, 2V11), we then have

dvU-H
do

:<I7Qv+1_’_ iy 1(P0011 dmooA 'B) +y! B]> (1, AV+1),
o

Lemma 5.2. For fixed v > 0, m > 0, and for all | € Z°°, 1 < || < 2, we have

dvU—H
‘ do

3 1 . 3
> €&, mmln 1’% .

Proof. From the Hamiltonian (2.3) and Sectlon 3, we notice that P3,,, = 0 (e2|£*|?) = 0(83) P31 =
O(E2[E%%) = 0(€2), ..., PYigo = O(e<"), Pooiy = 0(n'ey) = 0 'ek"), 1 <k < 5..... We can
draw the conclusion from the following two cases.

Case 1. |I| =1, we have

v
1 j j -1 0,
n?+m+ (§*B+y'B), + Z(Poon — P1ooA” "' B),, + Poois
=
Gd[Z,”ﬂ(Péou — PpiopA™"B) +y' Bl 1873
do ZaTe

a1 =e;?

Case 2. |l| =2, if the two nonzero components of | with the same sign, we have

|A;H—|—A5H % —3‘\/13 —}-m—i—\/q +m|> 8* s

otherwise, we have p # g, such that

1 1 _ p +qllp —ql
Av+1_Av+l > 3 2+m_ 2+m — _¢ 3 .

Subcase a. 0 <m < max{p?, q?}, we have

,3 pP+q 1 _3

1
AV+] AU+1 _ L L
| b > 2% 2V2max{p,q} 4v2 *
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Subcase b. m > max{p?, q?}, we have

|A;+1 _ A,‘]’+1| >

As a consequence, we arrive at the conclusion. O
Lemma 5.3. For fixed v > 0 and fixed |k| > K,,

1

7
meas<URU+l> = |k|v%+j

I

Proof. We only consider the case of | with two nonzero components of opposite sign, which is
the most complicated. Assume that p —q=¢ > 1. If ¢ > c’|k|, then Rl‘:;:]] = J, where ¢’ is some

constant large enough, independent of the iteration steps, if 1 < ¢ < c'|k|, since [£2)F! — 28A, =
1

I 1<icvtt (VB + o<y Pioiilas <-1e, by the assumption (A3), we have

_ Yv+1 3 _
,‘:;11 C Q,‘c’;rql = {o: |k, w.) e 30¢| < # +0(s:3q 1)}
(1—zec )K"

Due to Lemma 5.2, we get

meas( U U R,‘j;;l) Z ( Z meas(ﬁ,‘{’;}]) + meas(é,‘j?JJ)

1<c< k| P—9=¢ 1<c <kl Na<qo

3( Yv+190 -3 1
<'8*< e+ O |k|))’

by choosing Y419 — s =3¢ 1|k, i.e, qo =

] 2, we then arrive at
[kI™

1

v+1 yv+1
meas( U U Rkpq> |k|“1

1<c<c k| P—9=¢

and the proof is finished. O

Lemma 5.4.

meas( U 73"“) = meas( U U ’R"“) < a.}oo meas(1 + F).

V>0 v2>0 k| =Kyl
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Proof.

meas(U U RH’]) < 8* Z Z ”y'l},tl] = *%Z Z ;/l):llb 1

V20 [k|> Kyl V>0 k|> Ky V20 I>K,
1

3 Vo- 2+ s (G D g

<~8>EZU71H<'8* (ao)’

V20 (Qvg, I(“O))**b

1
where we have used that y, < %y*, Ye=264%, forall v>1.0wing to 2 <ag <48, and 7 >2b+ (3 +
%)l(ao), we have

~ Tag)y a5 700
meas< U R“”) <[00 0TI heas(1 4 F) < 8100 meas(1+ F).

This completes the proof. O

This means that the total measure of all excluded parameters in 1+ F can be as small as we

- 3+L
wish. Since % =A=1+4¢, A we know that meas(Uv>0 RV*1)/meas(€) can be as small as we

wish, thus, we obtain a positive-measure Cantor subset A* of &, such that We (T? x {(£*, 1%)}) is an
embedded invariant torus of the original perturbed Hamiltonian system at (§*, 1°°) € Op x A*, where
Oy is a positive-measure Cantor subset of [1,2]". Let 5* =g3&*, then £* ¢ o (a posmve measure

Cantor subset of [83 2631). Define @(£*) = @, = o + E*A, since w(£*) = w, = £ 3a + E*A, we
have |a)*|[8 263p =€ |w*|[1 o S <eldy, |(D6?)(€*))7]|[8* 23 = |(Da)($*))*1ln,2]b =|A7!| <d3, thus,
the tangential frequencues mapping £* — ®(*) satisfies Cq, C2 for cAi;k = sid’;, a; =dj. At this time,

ylel[— (1+82)d*d* g (1+82)d*d* °]b Since |y! |:O(&,F ), [y =o0(ey), j=2,...,00, at each

- 344 R ] )
(%,2.°) € Op x A*, if we let @* = 2®@, = (1+¢&, ““A®)d,, then Eq. (1.2) admits a small-amplitude
quasi-periodic solution of the form

b

u(t,x):Z\/§;‘+82y} +s§y?+---+€2yj?°cos(w‘]'~t)sinijx+ o(
=1

b 3
= Z\/é?cos(w}t) sinijx+ 0(|&*|?).
j=1

[N

&%)

From the above analysis, we complete the proof of the Main Theorem.
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