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1. Introduction

A quasigroup is a set Q endowed with a binary operation x-y such that two of the unknowns
X,¥,z € Q determine uniquely the third in the equation x-y = z. Loops are quasigroups with a unit
element. The multiplication tables of finite quasigroups are Latin squares. The multiplication tables
of finite loops are normalized Latin squares, that is, in which the first row and column contain the
symbols {1, ..., n} in increasing order. The left and right multiplication maps of a loop (Q, -) are the
bijections L, : X — a-xand R, : x — x - a, respectively. These are precisely the permutations which
are given by the rows and columns of the corresponding Latin square. The group generated by the left
and right multiplication maps of a loop Q is the multiplication group Mlt(Q).

Loops arise naturally in geometry when coordinatizing point-line incidence structures. Most
importantly, any projective plane can be coordinatized by a planar ternary ring (PTR), having an
additive and a multiplicative loop; cf. [6]. A special case of PTRs is the class of (pre-)semifields, where
the addition is associative and both distributivities hold. More precisely, a pre-semifield is a set S
endowed with two binary operations x + y and x o y such that the addition is an elementary Abelian
group with neutral element 0, S* = S\ {0} is a multiplicative quasifield and the two operations satisfy
both distributive laws. A semifield is a pre-semifield with multiplicative unit element, that is, where
(S*, o) is a loop. Semifields are sometimes called non-associative division rings, as well.

The most known proper semifield is the division ring of the real octonions Q and its complex
counterpart @(C). Both are alternating algebras of dimension 8 over the ground field. On the one
hand, a disadvantage of the complex octonions is that they contain zero divisors. On the other hand, it
can be constructed over an arbitrary field F, and the set of invertible elements form a loop in all cases.
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It is well known that these structures play an important role in the understanding of the orthogonal
group 07 (8, F) and its triality automorphism. In fact, 0" (8, F) is the multiplication group of the loop
of the invertible elements of O(F). Moreover, the automorphism group of O(F) is the exceptional Lie
group G, (F). This fact explains the natural seven-dimensional orthogonal representation of G, (F). As
regards these and other basic properties of octonions, we refer the reader to [5].

Any finite semifield S defines a loop whose multiplication group is contained in GL(n, q) where
IFq is the center of S. The center Z(S*) of S* is isomorphic to IFZ; hence for the multiplication group
of the factor loop Q = S*/Z(S*), we have Mlt(Q) < PGL(n, q). Conversely, let (Q, -) be a loop and
assume that for some n, g, its multiplication group is contained in the group I"L(n, q), where the latter
is considered as a permutation group acting on the nonzero vectors of V = Fy. Then, we can identify
Q with V* = V \ {0} and consider V = (V, +, -) as endowed with two binary operations, where
0-x = x-0 = 0. The fact that the left and right multiplication maps are additive is equivalent to V
being a semifield.

In this paper, we investigate the following problem: Let G be a finite permutation group on the set
Q.Isthere aloop operation x-y on Q such that MIt(Q) < G? In particular, we are interested in the cases
where G is a projective linear group or a big Mathieu group. As regards this question, the most general
results are due to Vesanen [14] and Drapal [7], who showed that (a) if MIt(Q) < PI'L(2,q) (@ >
5), then Q is a cyclic group, and (b) the answer is negative for the groups PSp(2n,q) (n > 2),
PU(n, ¢*) (n > 6), PO(n, q) (n > 7o0dd), and PO®(n, q) (n > 7 — & even). Recall that for the loop
Q of units of O(F,) modulo the center, MIt(Q) = P27 (8, q).

In [3, Problem 398], A. Drapal asked the above question in the following formulation: Givenn > 3
and a prime power g, does there exist a normalized Latin square such that for the group G generated by
the rows and the columns, PSL(n, q) < G < PI'L(n, q) holds? We answer this question affirmatively
when ¢" > 8. Our construction uses multiplicative loops of semifields and it is unique in the following
sense. Let Q be a finite loop such that PSL(n, ) < M(Q) < PGL(n, q). Then there is a semifield S with
center Fy and dimension n over F, such that Q = S$*/Z(S*).

2. On transitive linear groups

Let p be a prime, V = F% and I" = GL(d, p). Let G < I" be a subgroup acting transitively on
V* =V \ {0}. Then Gy < G < N (Gp), where we have one of the following possibilities for Gy (cf. [2,
Section 7.3]):

Case Cond.onp Cond. on d Go

) p arbitrary eld SL(d/e, p®)
(I)  p arbitrary eld,d/eeven Sp(d/e, p°)
(m p=2 d = 6e G2(p%)
(Iv)y pef2,3,5,7,11,23,19,29,59} d e {2,4,6} Sporadics

(I)-(II1) are three infinite classes of transitive linear groups; the others are sporadic constructions.
There are 25 sporadic cases; the largest group in this class has order 12 096. Using the computer
algebra software GAP4 [8], the following result can easily be checked:

Lemma 2.1. No sporadic finite transitive linear groups can be the group of multiplications of a finite
loop. O

Proposition 2.2. Let S be a finite semifield of dimension n over its center Fq. Let G be the group of
multiplications of the multiplicative loop S*. Then SL(n, q) < G < GL(n, q).

Proof. Let the socle Gy of G be SL(ng, 1), Sp(ng, r) or Gy(r). Then G < I'L(ng, r) and F, is a normal
subfield of S. The generalized Cartan-Brauer-Hua theorem [9, Lemma 1.1] implies that F, is central
inS; hencer = q,ng = nand G < GL(n, q). Let us assume that Gy = Sp(n, q) or G = G2(q). In
the latter case n = 6 and q is even; hence G,(q) < Sp(6, q). Indeed, for q even, the six-dimensional
representation of the exceptional Lie group G,(q) is constructed from its natural seven-dimensional
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orthogonal representation by using the isomorphism O(7, q) = Sp(6, q); cf[13, Theorem 11.9]. Thus,
in both cases, the multiplication group of the central factor loop Q = S*/Z(S*) is contained in
PSp(n, q). This contradicts [14, Theorem S]. O

Proposition 2.3. Let n > 3 be an integer and q a prime power such that q" > 8. Then, there is a semifield
S such that the multiplication group G of S* satisfies SL(n, q) < G < GL(n, q).

Proof. By Proposition 2.2, we only have to present a semifield which has dimension n over its center
Fy. We distinguish between three cases: (1)q > 3,(2)q = 2 and nis odd, and (3) g = 2 and nis even.
In case (1), we can use Albert’s twisted fields [1]. Let F be the finite field Fn. Let 6 : x > x9 and

o x> x" " be automorphisms of F and ¢ € F such that ¢ = x9~! has no solution in F. As in [1],
the semifield S = (F, +, %) is defined using the quadruple (F, 8, o, c).Asn > 3,0 # ¢ and we can
use [1, Theorem 1] to deduce that the center of S is F.
In case (2), we construct a proper binary semifield S = (F, +, %) of Knuth’s type from the fields

F = Fum, Fy = F, and the Fy-linear map f : F — Fy. As in [11, Section 2], we first define
xoy=xy+ FX)y+f(¥)x)?andputx*y = (x/1) o (y/1) where x/1is given by (x/1) o 1 = x. Let z
be a nonzero element of Z(S, +, *). Then (x o 1) % ((y 0 1) xz) = ((x 0 1) % (y o 1)) * z implies

Xo(yoz/1)/1=(xo0y)/10z/1.
We define the maps «, 8 : S — S by

a(u) =(uoz/1)/1, Bw)=u/loz/1.
Then the above equation has the form

xoa(y) = Bxoy),

and the triple (id, «, ) defines an autotopism of the pre-semifield (F, +, o). By [11, Theorem 6],
a(u) = Z'ufor some z’ € Fy. As a # 0, this implies z/ = 1 and « = id. Thus,

uol= aWol=uoz/1=—=1=2z/1
= z=101=14+2f1)*=1.

Hence, Z(S) consists of 0 and 1.
In case (3), put F = F,n2 and pick elements f, g € F such thaty®> + gy +f # 0 forally € F. Define
the multiplicationon S = F + AF by

(a + Ab)(c + Ad) = (ac + b”drzf) + A(bc +a°d + b°d*g),

where xX° = x*and T = 0~ '. Asn > 4, 0 # id and by [10, Section 7.4], S is a semifield with unit
element 1 =1+ A - 0. Assume thata + Ab € Z(S).If ¢ € F is such that ¢’ # c then

ac + A(bc) = (a + Ab)c = c(a+ Ab) = ac + A(c°b) <= b = 0.
Furthermore,

M =al=A° < a=d° < acT,.
This shows Z(S) = F,. O

Remarks. It is an easy exercise to show that a semifield cannot have dimension 2 over its center.
Moreover, it is also easy to see that no proper semifield of order 8 exists.

3. The main results on multiplication groups of semifields

The first part of the following theorem gives a general affirmative answer to Drapal’s problem. The
second part of the theorem is a partial converse of our construction based on semifields. The proof of
this part is basically contained in the proof of [ 14, Theorem S]. However, as it is not formulated in this
way, we present a self-contained proof, using slightly different notation.
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Theorem 3.1. (a) For any integer n > 3 and prime power q with q" > 8, there is a loop Q such that
PSL(n, ) < MIt(Q) < PGL(n, q).

(b) Let Q be a loop such that Mlt(Q) < PGL(n, q) with n > 3. Then there is a semifield S of dimension n
over its center Fq such that Q = S*/Z(S*).

Proof. Part (a) follows immediately from Propositions 2.2 and 2.3. Let Q be a loop with multiplication
group G = Mlt(Q) < PGL(n, q). We simply put F = IF, and write the elements of Q = PG(n — 1, q) in
the form xF with x € F" \ {0}. Let us denote the unit element of Q by eF. For any element xF, the left
and right translations Lyr, Ryr are represented by n x n matrices over F and we assume L = Rep = I.
We have

(XF) - (¥F) = (xRyp)F = (yLx)F,
and for all vectors x, y there is a unique nonzero scalar ¢, , with

XRyp = YLyr - Cxy. (1)
Clearly, cixy = Acx,y holds. For any x, y, z with x 4+ y # 0, the following is yielded:

ZLixsy)F * Cetyz = (X + YIRep = XRop + YRop = ZLyr - Coz + 2Ly - €y 2.
Let us now fix the elements x, y with x + y # 0 and define the matrices

U= Liceyrby V= LyrLy'

and the scalars

a2 =2 Bz = 22

Cxty,z Cxty,z

By [14, Lemma A], @ (z) and S(z) are nonzero constants; in particular, «(z) = a(e) and B8(z) = B(e).
Thus, for any x, y € F" \ {0} with x + y # 0, we have

L(x+y)F * Cxtye = Lyr - Cxe + LyF  Cxee- (2)
Let us now consider the set
£={0}U{aLy | € F*,x € F"\ {0}

of matrices. £ is closed under addition. Indeed, for fixed nonzero scalars «, 8 and vectors x, y, there
are unique scalars A, u in F such that ¢;x . = a, ¢,y = B. Then either aLr 4+ BL,r = 0 € £ or by (2),

aly + ,BLyF = Cux,elar + Cuy,eLyF = CAx+,uy,eL()Lx+uy)F e L.

We make the vector space V = F" into a semifield in the following way. Denote by T, the element
Cx.eLxr Of £. Then by (1),

eTy = elyr - Cxe = XRer = X.

Forx,y € V,definex oy = yT,.

Claim 1. (V \ {0}, o) is a loop with unit element e.

Clearly, T, is the identity matrix; hence e o x = xT, = x. x o e = eT, = x by definition. The equation
x oy = z has a unique solutiony = zT,j1 in y. Let us fix nonzero vectors y, z and take an element
Xo € V such that (xoF)(yF) = ZzF, that is, yLy,r = az for some o € F. Then a”l = Cixg,e fOr some
nonzero scalar A. With x = Axg, we have T, = a”LXOF andz = yT, = xo}.

Claim 2. (V, +, o) is a semifield.
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Since the left multiplication maps of V are the T,’s, we have left distributivity. Moreover, as £ is
closed under addition, for any x, y € V there is a unique z such that Ty 4+ T, = T,. Applying both sides
to e, we obtain z = x + y. Therefore,

x+y)oz=2Ty=z(Ti+T) =2y + 2z, =x0z+yoz.

Claim 3. The loop Q is the central factor of V.

Let I denote the identity matrix on V. Then for all« € F, I = T, € £. Using a trick as above,
one can show that T,y = ATy, which implies that (Ax) o y = A(x o y). This means that the right
multiplication maps are in GL(V), as well. In particular, the multiplication maps corresponding to the
elements Ae are centralized by all left and right multiplication maps; thus, Ae € Z(V) forall > € F. By

(xoy)F = (YTOF = (YLw)F = (xF)(YF),

the map ¢ : x — XF is a surjective loop homomorphism. The kernel of ¢ consists of the elements Ae;
thus, ker ¢ is central in V. Since PSL(n, q) < MIt(Q) acts primitively, Q is a simple loop and the kernel
K of the homomorphism is a maximal normal subloop. This proves that ker ¢ = Z(V*). O

4. Mathieu groups as multiplication groups of loops

In [7], A. Drapal made some remarks on the question of whether the Mathieu group can occur
as multiplication groups of loops. As noted, there it is rather straightforward to show that the small
Mathieu groups Mg, M1; are not the multiplication groups of loops. Moreover, extensive computer
calculation showed that the same holds for the big Mathieu groups M,, and M,3. For M,,, the
computation was independently repeated in [ 12]. The author of this paper performed an independent
verification on M,3 which gave the same result as Drapal had.

The computation was implemented in the computer algebra GAP4 [8]. In order to reduce the
CPU time we used some tricks. First of all, let L be an n x n normalized Latin square and let

A = {ay,...,ay}, B = {bq, ..., by} be the permutations defined by the rows and columns of L, in
order. Thena; = b; = id, 1% = 1% = jand aibjai’lbj’] leaves 1 fixed. Conversely, assume that A, B
are sets of permutations of degree n such that

(T1) id € A, B,

(T2) foralli € {1,...,n} there are unique elements a € A, b € Bsuch thati = 1 = 1%, and

T oralla € A,b € B,aba™ 'b™" leaves 1 fixed;
(T3) forall Ab ba~'b711 fixed

then a normalized Latin square can be constructed such that the rows and columns of L determine the
elements of A and B. Indeed, for any i, j € {1, ..., n}, the jth element of the ith row will be j%, where a
is the unique element of A with 1¢ = i.

Let A, B be sets of permutations of degree n satisfying (T1)-(T3) and put G = (A, B). Then, the
following pairs of sets satisfy (T1)-(T3) as well:

(a) B, A;

(b) A", B", where h € Gy;

(c) Au~', uBu~!, where u € A;
(d) vAv~!, Bv~!, where v € B.

This implies the following:
Lemma 4.1. Let L be a Latin square of order n and assume that the rows and columns generate the group

G. Let a be an arbitrary row of L. Then for any a* € a® U (a~")° there is a Latin square L* such that a* is
arow of L* and the rows and columns of L* generate G.

Proof. Let A, B denote the sets of permutations given by the rows and columns of L. If a* = a~! then
define L* from the sets A* = Aa~!, B* = aBa~!. Thus, it suffices to deal with the case a* = a%. We can
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writeg = hv~! whereh € Gy, v € B.The sets A", B" determine a Latin square L" such that a” is a row of
L". This means that we can assume that a* = vav~"! where u € A. It follows from (d) that vAv~", Bv™!
determines a Latin square L* with row a*. In all cases, the rows and columns generate G. O

Put G = My3 < Sp3suchthat{1, ..., 7}isablock of the corresponding Witt design D. Let us assume
that L is a Latin square such that the rows A and columns B generate G. Let a4, a;5, d,3 be elements
of orders 14, 15 and 23 of G, respectively, mapping 1 to 2. Any fixed point free permutation x € G is
conjugate to one of the following elements: ays, ass, dz3, Ay, , aj5 , 3 - By Lemma 4.1, we can assume
that the second row of L is a4, a5 or a,3. Define X = {(1%,...,7%) | g € G}, |X| = 637 560.

On an office PC running GAP4 [8], it takes about 72 h to list all 7 x 7 submatrices K which have
the property that all rows and columns are in X, with given first column and first and second rows. If
the second row is determined by a4 of a5 then the number of such submatrices is about 4000 and
it takes 1 h more to show that none of these submatrices can be extended to a Latin square of order
23 such that the rows and columns are in G. That is, about 150 h of CPU time suffices to show that no
column or row of L can be of order 14 or 15. Thus, we can assume that all rows and columns of L have
order 23. Moreover, for any two rows x, y of L, xy~! has order 23, as well. About 3 h of computation
shows that any Latin square with these properties must correspond to a cyclic group of order 23.

We have therefore the following:

Proposition 4.2. (a) There is no loop Q of order 10 or 22 such that MIt(Q) < Mo or MIt(Q) < M.
(b) Let Q be aloop of order 11 or 23 such that MIt(Q) < My or MIt(Q) < Mas. Then Q is a cyclic group.
(c) There are loops Q1 and Q, of order 12 and 24 such that Mlt(Q;) = My, and MIt(Q;) = Mag.

Proof. The loop Q, is Conway'’s arithmetic progression loop given in [4, Section 18]. Q; is commutative
and its automorphism group is transitive. The multiplication table of the loop Q, is given by the
following:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 15 18 11 24 8 17 21 20 9 10 22 7 5 19 23 6 12 13 16 14
2 20 17 9 16 23 21 8 14 19 11 6 13 12 5 15 10 24 18 22 7
1 19 22 14 21 11 6 10 5 7 20 23 24 18 13 9 15 17 16 8 12
6 12 10 13 23 15 3 19 2 4 17 14 18 24 21 16 11 20 9 1 22
516 9 17 20 1 15 14 18 24 23 19 4 2 22 10 3 13 12 11 21
8§ 2 3 4 1 18 12 16 10 23 19 17 15 11 20 14 24 22 21 13 9
7 9 16 20 17 21 13 1 23 10 24 3 14 19 2 18 22 11 15 12 4
17 20 16 24 11 18 15 19 8 12 7 5 4 13 22 21 23 2 14 1 3 6 10
10 13 23 12 22 19 21 14 5 11 2 24 18 9 4 6 8 1 20 7 16 17 15 3
1 18 15 24 1 4 3 2 14 16 5 9 20 12 7 21 22 8 13 19 10 23 17 6
12 23 13 10 11 24 15 18 7 19 20 22 21 2 9 8 6 16 4 5 3 1 14 17
13 10 12 23 17 20 16 9 4 22 18 19 14 6 24 1 3 11 8 2 5 7 2115
14 22 19 21 8 7 6 5 13 4 17 1 3 15 16 23 10 9 11 12 18 24 2 20
15 24 11 18 23 13 10 12 17 14 6 21 22 3 8 20 9 7 1 16 2 4 19 5

OoONOU A WN =

Q, is noncommutative and |Aut(Q;)| = 5.

References

[1] A.A. Albert, Generalized twisted fields, Pacific J. Math. 11 (1961) 1-8.
[2] PJ. Cameron, Permutation Groups, in: London Mathematical Society Student Texts, vol. 45, Cambridge University Press,
Cambridge, 1999.



24 G.P. Nagy / European Journal of Combinatorics 31 (2010) 18-24

[3] PJ. Cameron, Research problems from the 18th British Combinatorial Conference. The 18th British Combinatorial
Conference (Brighton, 2001), Discrete Math. 266 (1-3) (2003) 441-451.
[4] J.H. Conway, The Golay codes and Mathieu groups, in: J.H. Conway, NJ.A. Sloane (Eds.), Sphere Packings, Lattices and
Groups, Springer-Verlag, Berlin/New York, 1988, (Chapter 11).
[5] J.H.Conway, D.A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A K Peters, Ltd, Natick,
MA, 2003.
[6] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
[7] A. Drapal, Multiplication groups of loops and projective semilinear transformations in dimension two, J. Algebra 251 (1)
(2002) 256-278.
[8] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12; 2008. http://www.gap-system.org.
[9] T. Grundhofer, Projektivititengruppen von Translationsebenen, Result. Math. 6 (1983).
[10] D.E.Knuth, Finite semifields and projective planes, J. Algebra 2 (1965) 182-217.
[11] D.E. Knuth, A class of projective planes, TAMS 115 (1965) 541-549.
[12] P. Miiller, G.P. Nagy, A note on the group of projectivities of finite projective planes, Innov. Incidence Geom. 6-7 (2009)
291-294.
[13] D.E.Taylor, The Geometry of the Classical Groups, in: Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin,
1992.
[14] A.Vesanen, Finite classical groups and multiplication groups of loops, Math. Soc. Camb. Phil. Soc. 117 (1995) 425-429.


http://www.gap-system.org

	On the multiplication groups of semifields
	Introduction
	On transitive linear groups
	The main results on multiplication groups of semifields
	Mathieu groups as multiplication groups of loops
	References


