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Summary

Objective: The composition of articular cartilage changes with progression of osteoarthritis. Since compositional changes are associated with
changes in the mechanical properties of the tissue, they are relevant for understanding how mechanical loading induces progression. The
objective of this study is to present a computational model of articular cartilage which enables to study the interaction between composition
and mechanics.

Methods: Our previously developed fibril-reinforced poroviscoelastic swelling model for articular cartilage was combined with our tissue com-
position-based model. In the combined model both the depth- and strain-dependencies of the permeability are governed by tissue composi-
tion. All local mechanical properties in the combined model are directly related to the local composition of the tissue, i.e., to the local amounts
of proteoglycans and collagens and to tissue anisotropy.

Results: Solely based on the composition of the cartilage, we were able to predict the equilibrium and transient response of articular cartilage
during confined compression, unconfined compression, indentation and two different 1D-swelling tests, simultaneously.

Conclusion: Since both the static and the time-dependent mechanical properties have now become fully dependent on tissue composition, the
model allows assessing the mechanical consequences of compositional changes seen during osteoarthritis without further assumptions. This
is a major step forward in quantitative evaluations of osteoarthritis progression.
ª 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Articular cartilage covers the articulating ends of diarthro-
dial joints. It serves to allow almost frictionless motion, dis-
tribute the loads over a large contact area, and dissipate
the energy associated with dynamic loads. Osteoarthritis
which involves degeneration of the articular cartilage is
the most common cause of disability in the elderly. During
this disease both the structure and composition of articular
cartilage change. Computer models have been successful
in predicting the initial changes that occur during cartilage
damage initiation1e3. To study the influence of these
changes on the progression of cartilage damage, which
is mostly induced by excessive loading at high loading
rates, a model is needed that can take into account local
changes in tissue constitution as well as the transient me-
chanical tissue behavior. Therefore the goal of this study
was to develop a model for articular cartilage in which
all local material properties that determine the equilibrium
and the transient behavior are the direct consequence of
the local composition of the tissue. Such a model enables

*Address correspondence and reprint requests to: Dr Corrinus
C. van Donkelaar, Ph.D., Department of Biomedical Engineering,
WH 4.118, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands. Tel: 31-40-247-3135; Fax:
31-40-244-7355; E-mail: c.c.v.donkelaar@tue.nl

Received 4 October 2005; revision accepted 20 December 2005.
554
us to study the influence of local changes in composition
that occur during cartilage degeneration and adaptation.

We have recently developed a model in which the equilib-
rium behavior of articular cartilage is the direct result of its local
composition4. With this model we were able to explain the
depth- and strain-dependent equilibrium behavior of articular
cartilage during confined compression. To be able to account
for the transient behavior as well, the model must be extended
to include viscoelastic behavior. This essential model exten-
sion requires validation with experimental data from literature.

Two distinct mechanisms are responsible for the visco-
elastic behavior of articular cartilage5e7: the frictional drag
force of interstitial fluid flow through the porous solid matrix
(i.e., the flow-dependent mechanism) and the time-dependent
deformability of the solid matrix (i.e., the flow-independent
mechanism). Fluid movement in loaded cartilage is gov-
erned by the hydraulic permeability of the solid matrix. It
was shown that the negative fixed charge density of the
proteoglycans limits fluid flow and thereby affects the per-
meability of the tissue8e11. The permeability is also highly
dependent on pore sizes in the extracellular matrix10e14.
When the tissue is deformed the fixed charge density and
pore sizes change8,10,11,14,15. Hence, the permeability of car-
tilage is strain-dependent. It has also been shown that the
permeability in articular cartilage is depth-dependent16,17.

Several empirical equations for deformation-dependent
permeability of cartilage have been proposed13,15,18,19. In
these empirical equations the permeability is based on the
changes in fluid content of the tissue. However, not all the
fluid is able to flow out freely. Part of the water in the tissue
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is absorbed by the collagen fibrils20e23. It has been shown
that the amount of intra-fibrillar water depends on the os-
motic pressure in the tissue23. As the osmotic pressure is
highly dependent on volumetric strain, this introduces an
additional strain-dependency of the permeability.

We hypothesize that if the properties of the constituents
of articular cartilage are chosen correctly, the appropriate
global and depth-dependent cartilage behavior, including
permeability, results from the composition of the tissue.

To asses this hypothesis a relation between permeability
and tissue composition is derived. This relation together
with a new viscoelastic law for the collagen fibrils will be im-
plemented in the model of Wilson et al.4. To determine the
unknown material parameters and to validate the model, the
model was fitted to confined compression, unconfined com-
pression and indentation data of DiSilvestro and Suh24 and
to 1D-swelling data of Wilson et al.4 and Eisenberg and
Grodzinsky25.

Methods

MODEL

In the fibril-reinforced poroviscoelastic swelling theory4,26,
articular cartilage is assumed as biphasic, consisting of
a porous solid matrix saturated with water. The porous solid
matrix consists of a swelling nonfibrillar part which contains
mainly proteoglycans, and a fibrillar part representing the
collagen network. According to Wilson et al.4 the total tissue
stress is given by

stot ¼�mfIþ ns;0

  
1�

Xtotf

i¼1

ri
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where mf is the water chemical potential, I the unit tensor,
Dp the osmotic pressure gradient, ns,0 the initial solid vol-
ume (in the unloaded and nonswollen state), snf the stress
in the nonfibrillar matrix, sf

i the fibril stress in the i th fibril
with respect to the global coordinate system, totf the total
number of fibril compartments included, and rc

i the volume
fraction of the collagen fibrils in the ith direction with respect
to the total solid volume.

Fibrillar part

The fibril stress tensor is given by4

sf ¼
l

J
Pf~ef~ef; ð2Þ

where J is the determinant of the deformation tensor F, l the
elongation of the fibril, Pf the first PiolaeKirchhoff fibril
stress, and ~ef the current fibril direction. In Wilson et al.26

the viscoelastic behavior of the collagen fibrils was repre-
sented by a linear spring S1, parallel to a nonlinear spring
S2 in series with a linear dashpot with dashpot constant h
(Fig. 1). Hence, the equilibrium stiffness of the collagen
fibrils was assumed to be strain-independent. However,
Charlebois et al.27 have shown that the equilibrium stiffness
of the collagen fibrils is strain-dependent. Therefore, the
mechanical behaviors of springs S1 and S2 were replaced by
the two-parameter exponential stressestrain relationships28e31

P1 ¼ E1

�
ek13f � 1

�
for 3f > 0

P1 ¼ 0 for 3f � 0
ð3Þ

and
P2 ¼ E2

�
ek23e � 1

�
for 3e > 0

P2 ¼ 0 for 3e � 0
; ð4Þ

respectively, with E1, E2, k1 and k2 positive material con-
stants, 3f the total fibril strain, and 3e the strain in spring S2.
Since the strains in the upper and lower part of the spring
system in Fig. 1 are the same, the total fibril stress is given by

Pf ¼ P1 þP2: ð5Þ

The derivation of P2 as a function of the fibril strain 3f is
given in Appendix A.

As discussed in Wilson et al.26 the fibril structure was im-
plemented as two primary and seven secondary fibril direc-
tions. The density of each fibril with respect to the total
collagen density is given by

rc ¼ rc;tot

C

2C þ 7
for the primary fibrils

rc ¼ rc;tot

1

2C þ 7
for the secondary fibrils

; ð6Þ

with C a positive constant greater than 1. For the determina-
tion of the fibril strains and directions, the reader is referred
to Wilson et al.26,32.

Nonfibrillar part

Although the solid material itself is virtually incompress-
ible due to its porous structure, the entire solid matrix is
compressible. For a solid fraction of 1 there are no pores,
hence the entire matrix has become incompressible. As
the solid fraction approaches 0 the volume fraction of the
pores approaches 1. Because the pores themselves are
fully compressible the entire solid matrix is also fully com-
pressible. Based on the assumption that the solid matrix be-
comes incompressible when the solid fraction approaches 1
and becomes fully compressible when the solid fraction ap-
proaches 0, the stress in the nonfibrillar solid matrix is given
by following modified Neo-Hookean law4,

snf ¼�
1

6
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where Gm is the shear modulus.
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Fig. 1. Schematic model for a viscoelastic collagen fibril (3f is the to-
tal fibril strain, 3v the dashpot strain and 3e the strain in spring S2).
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Osmotic swelling

For the swelling behavior the biphasic swelling theory26,33

was used. This theory is based on the hypothesis that elec-
trolyte flux can be neglected in mechanical studies of
charged materials34. This means the ion concentrations
can always be assumed in equilibrium.

When the distinction between extra- and intra-fibrillar water
is taken into account, the effective fixed charge density
should be expressed as mEq fixed charges per ml extra-fibril-
lar water and not based on the total fluid content as is usually
done. The osmotic pressure gradient Dp is then given by4

Dp¼ fintRT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

F;exf þ 4

�
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�2�
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�2
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ext

vuut � 2fextRTcext: ð8Þ

where the fixed charge density based on the extra-fibrillar
fluid fraction cF,exf, is given by

cF;exf ¼
nfcF

nexf

; ð9Þ

with nf the total fluid fraction, nexf the extra-fibrillar fluid frac-
tion and cF the normal fixed charge density in mEq per ml
total fluid. For more details about determining the extra-
fibrillar fluid fraction the reader is referred to Wilson
et al.4. The osmotic (fa) and activity coefficients (ga) were
implemented as proposed by Huyghe et al.35. The external
salt concentration (cext) was 0.15 M, the temperature (T )
293 K and the gas constant (R) 8.3145� 10�3 N m/mmol K.

Permeability

In Wilson et al.26,32 the permeability (k) was assumed to
be strain-dependent, and given by36

k ¼ k0

�
1þ e

1þ e0

�M

¼ k0

�
1� nf;0

1� nf

�M

; ð10Þ

where k0 is the initial permeability, M a positive constant,
and e and e0 the current and initial void ratios, respectively,
and nf and nf,0 the current and initial fluid fractions, respec-
tively. When accounting for the fact that only the extra-fibril-
lar fluid can flow out of the tissue, this becomes

k ¼ k0

�
1� nexf;0

1� nexf

�M

: ð11Þ

Based on the assumption that the depth- and strain-de-
pendent permeabilities are governed by the same mecha-
nism, the initial extra-fibrillar fluid fraction nexf,0 is replaced
by a reference value cref that is constant over the depth of
the tissue

k ¼ k0

�
1� cref

1� nexf

�M

¼ að1� nexfÞ�M ; ð12Þ

with a a positive material constant. Hence, the permeability
is only a function of the current extra-fibrillar fluid fraction.

Composition

The fluid fraction, collagen fraction and fixed charge den-
sity distributions as a function of the normalized depth z*
were taken the same as in Wilson et al.4.

nf ¼ 0:9� 0:2z�; ð13Þ
ncoll ¼ 1:4ðz�Þ2�1:1z� þ 0:59; ð14Þ

cF ¼�0:10ðz�Þ2þ0:24z� þ 0:035; ð15Þ

where nf is the total fluid volume fraction, ncoll the collagen
density per solid volume, and cF the fixed charge density in
mEq/ml water.

The model was implemented in ABAQUS v6.5-1 (Hibbitt,
Karlsson & Sorensen, Inc., Pawtucket, RI, USA). For more
details about this model see Wilson et al.4,26,32.

DETERMINATION OF UNKNOWN MATERIAL PROPERTIES

Based on Wilson et al.26 we used C¼ 3 [Eq. (6)]. The fac-
tor M was directly determined by fitting Eq. (12) to the
depth-dependent permeability as measured by Marou-
das17. The shear modulus Gm was determined by fitting
the model to the 1D-swelling data from Eisenberg and
Grodzinsky25. The remaining unknown material parameters
E1, E2, k1, k2, h0 and a were determined by fitting them to
the confined compression, unconfined compression and in-
dentation data of DiSilvestro and Suh24 and the 1D-swelling
data of Wilson et al.4. The fitting procedures were the same
as used in Wilson et al.4,26,32. For the confined compres-
sion, unconfined compression and indentation tests the
same meshes and boundary conditions were used as in
Wilson et al.26. For the 1D-swelling tests the same meshes
and boundary conditions were used as in Wilson et al.4. The
experiments are briefly described below.

In the 1D-swelling test of Wilson et al.4 the free swelling
strains of articular cartilage were measured as a function
of the external salt concentration at 0.00, 0.07, 0.15, 0.30,
0.67, 1 and 2 M NaCl. The swelling strain was assumed
to be 0 at an external salt concentration of 2 M NaCl. These
tests were performed on cartilage from calf tibia plateaus
with an average thickness of 1.03 mm.

In the 1D-swelling experiments of Eisenberg and Grodzin-
sky25 cartilage plugs with a radius of 3.2 mm were axially
compressed by 15% in a confined compression setup. After
full relaxation, the external salt concentration was decreased
to 0.0001 M. After equilibrium the salt concentration was
repeatedly increased with 0.05 M until an external salt con-
centration of 2 M was reached. During this process the
height of the sample was held constant, while the axial reac-
tion forces were computed. The used samples were taken
from the patellae-femoral groove of mature 1e2-year-old cattle.

During the confined compression, unconfined compres-
sion and indentation test of DiSilvestro and Suh24, cartilage
plugs with a radius of 1.5 mm and an average thickness of
1.281 mm were compressed with 10% either a flat platen
(confined and unconfined compression) or a spherical im-
permeable indenter with a radius of 1.53 mm (indentation).
After full relaxation, an additional 5% strain at a ramp strain
rate of 0.001 s�1 was applied. This strain was held constant
until full relaxation. While the additional 5% straining and re-
laxation occurred, axial reaction forces were computed.
The used samples were taken from the patellae of mature
1e2-year-old cattle.

Results

DETERMINATION OF UNKNOWN MATERIAL PROPERTIES

The depth-dependent permeability of the model [Eq. (12)]
was fitted to experimental data of Maroudas17 (Fig. 2). The
resulting value for M was 1.339.
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The fit of the model to the 1D-swelling data of Eisenberg
and Grodzinsky25 resulted in a value for Gm of 0.903 MPa.
The normalized reaction force was almost in perfect agree-
ment with the experimental data [Fig. 3(a)].

The remaining unknown material parameters E1, E2, k1,
k2, h0 and a were determined by fitting the confined
compression, unconfined compression and indentation
data of DiSilvestro and Suh24, and 1D-swelling data of
Wilson et al.4 (Figs. 3(b)e6). The resulting model parame-
ters were determined at E1¼ 4.316 MPa, E2¼ 19.97 MPa,
k1¼ 16.85, k2¼ 41.49, h¼ 1.424� 105 MPa s and a¼
1.767� 10�17 m4/N s.

All model fits were in good agreement with the experi-
mental data. The coefficients of determination (R2) for the
different fits are given in Table I.

Discussion

The goal of this study was to develop a model for artic-
ular cartilage in which all local material properties are the
direct consequence of the local composition of the tissue.
Such a model enables us to study the influence of local
changes in composition that occur during cartilage degen-
eration and adaptation. To do this our fibril-reinforced poro-
viscoelastic swelling model for articular cartilage26 was
combined with our tissue composition-based model4, and
expanded with a new permeability law and a new law for
the viscoelastic behavior of the collagen network. The
new permeability law is based on the assumption that
both the depth- and strain-dependencies of the permeabil-
ity are governed by the same mechanism and are the di-
rect result of the composition of the tissue. We have
previously shown that this model can account for the
strain-dependent compressive equilibrium properties of ar-
ticular cartilage during confined compression4. In the cur-
rent study it has been shown that this model can also
account for the transient behavior of articular cartilage. It
was shown that the combined model can simultaneously
describe the behavior of articular cartilage in confined com-
pression, unconfined compression, indentation and two dif-
ferent 1D-swelling tests. With the proposed permeability
law, the strain-dependent permeability of articular cartilage
can be explained. There is no literature data available to
compare directly to the strain-dependent permeability.
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et al. (1976) along with the FEA-model curve fit.
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Fig. 3. (a) Axial reaction force, normalized with the reaction force at
an external salt concentration of 2 M, measured from 1D swelling
tests (Eisenberg and Grodzinsky, 1985) along with FEA-model
curve fit. (b) Axial strain measured from 1D free swelling tests

(Wilson et al., 2005c) along with FEA-model curve fit.
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558 W. Wilson et al.: A model for the assessment of compositional changes
However, since the resulting strain- and time-dependent
behavior of the model concur with the experimental data,
it is concluded that the strain-dependent permeability in
the model is correct.
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Fig. 5. Axial reaction force, normalized to equilibrium, measured
from indentation tests24 along with FEA-model curve fit.
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Fig. 6. (a) Axial reaction force, normalized to equilibrium, measured
from unconfined compression tests24 along with fibril-reinforced
model curve fit. (b) Lateral displacement, measured from uncon-

fined compression tests24 along with FEA-model curve fit.
All material parameters (Gm, E1, E2, k1, k2, h0, a and M )
were assumed constant over the depth of the tissue and
were derived from fits to experimental data. Hence, all
depth-dependent behavior is due to the depth-dependent
tissue composition and structure. As the tissue composition
was not measured in experiments that were used to fit our
material parameters, we were obliged to base the pre-
scribed tissue composition on distinct literature data. Due
to this there might be an error in the obtained material
parameters.

Viscoelastic and anisotropic properties of the biphasic
nonfibrillar matrix5 were not included in this model. Although
we anticipate that the major viscoelastic and anisotropic
properties of the solid matrix come to the account of the fi-
brillar part, this may also explain part of the mismatches be-
tween the model and the experimental data.

As we used a biphasic swelling model the influence of ion
fluxes on the transient behavior of articular cartilage have
not been included in this study. However, as it was shown
in Wilson et al.33 that under physiological conditions the bi-
phasic swelling model behaves very similar to the full
mechano-electrochemical model, it is assumed that this
does not significantly influence our results.

To the best of our knowledge this is the first
model that includes a continuous depth-dependent per-
meability that is based on the tissue composition, with
constant, not depth-dependent mechanical properties of
the tissue components themselves. Previously, depth-
dependent permeability was included by directly defining
different permeability values for different layers of the
tissue38,39.

In conclusion, our recently developed composition-
based cartilage model4 was expanded with a new perme-
ability law and a new law for the viscoelastic behavior of
the collagen network of articular cartilage. In the new per-
meability law the permeability is only dependent on the ex-
tra-fibrillar fluid fraction. With this law both the depth- and
strain-dependent permeabilities of articular cartilage can
be explained based on the composition of the tissue,
with constant material properties for the tissue constituents
themselves. In the resulting model all local material prop-
erties are the direct consequence of the local composition
and structure of the tissue. This new model will enable us
to study the influence of well-characterized local changes
in composition that can occur during cartilage degenera-
tion and adaptation.
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Table I
The coefficients of determination (R2) for the performed model fits

Test R2

Permeability17 0.930
1D-swelling confined swelling25 0.977
1D-swelling free swelling4 0.980
Confined compression24 0.938
Unconfined compression (reaction force)24 0.998
Unconfined compression (lateral displacement)24 0.987
Indentation24 0.985
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Appendix A. Determination of the viscoelastic
fibril stress

The stresses in the dashpot and the spring S2 in Fig. 1
must be the same. Hence, P2 can also be given by

P2 ¼ h_3v ¼ h
�
_3f � _3e

�
; ðA1Þ

where 3v is the dashpot strain, and h the dashpot constant.
From Eq. (4) follows that

3e ¼
1

k2

log

�
P2

E2

þ 1

�
; _3e ¼

_P 2

ðP2 þE2Þk2

: ðA2Þ

The time derivative of the fibril strain is then given by

_3f ¼ _3e þ _3v ¼
_P 2

ðP2 þE2Þk2

þP2

h
: ðA3Þ

From Eqs. (A1) and (A3), and after time integration with
an implicit backward Euler scheme, P2 becomes

P2 ¼�
b

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c
p

for 3e > 0

P2 ¼ 0 for 3e � 0

; ðA4Þ

with

b ¼�3tþDt
f � 3t

f

Dt
hþ h

k2Dt
þE2; ðA5Þ

c ¼�3tþDt
f � 3t

f

Dt
hE2 �

hPt
2

k2Dt
: ðA6Þ
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