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We investigated TNF-a and IL-1b regulation of ADAMTS-4 expression in nucleus pulposus (NP) cells and
its role in aggrecan degradation. Real-time quantitative RT-PCR, Western blotting, and transient
transfections with rat NP cells and lentiviral silencing with human NP cells were performed to determine
the roles of MAPK and NF-kB in cytokine-mediated ADAMTS-4 expression and function. ADAMTS4
expression and promoter activity increased in NP cells after TNF-a and IL-1b treatment. Treatment of
cells with MAPK and NF-kB inhibitors abolished the inductive effect of the cytokines on ADAMTS4 mRNA
and protein expression. Although ERK1, p38a, p38b2, and p38g were involved in induction, ERK2 and
p38d played no role in TNF-aedependent promoter activity. The inductive effect of p65 on ADAMTS4
promoter was confirmed through gain and loss-of-function studies. Cotransfection of p50 completely
blocked p65-mediated induction. Lentiviral transduction with shRNA plasmids shp65, shp52, shIKK-a,
and shIKK-b significantly decreased TNF-aedependent increase in ADAMTS-4 and -5 levels and
aggrecan degradation. Silencing of either ADAMTS-4 or -5 resulted in reduction in TNF-aedependent
aggrecan degradation in NP cells. By controlling activation of MAPK and NF-kB signaling, TNF-a and
IL-1b modulate expression of ADAMTS-4 in NP cells. To our knowledge, this is the first study to show
nonredundant contribution of both ADAMTS-4 and ADAMTS-5 to aggrecan degradation in human NP
cells in vitro. (Am J Pathol 2013, 182: 2310e2321; http://dx.doi.org/10.1016/j.ajpath.2013.02.037)
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The intervertebral disk is a unique tissue that that permits
rotation, as well as flexion and extension of the spine. It consists
of a gel-like nucleus pulposus (NP) surrounded circumferen-
tially by a fibrocartilagenous annulus fibrosus. Cells of the NP
are derived from the notochord,1 an embryonic tissue with
limited blood supply. In common with chondrocytes, NP cells
secrete a complex extracellular matrix that contains fibrillar
collagens and the proteoglycan aggrecan. Assembly of these
macromolecules provides a robust hydrodynamic system that
accommodates applied biomechanical forces to the spine.2e4

Intervertebral disk degeneration is characterized by increased
expression of catabolic enzymes, decreased proteoglycan
synthesis, and an overall shift toward synthesis of a fibrotic
stigative Pathology.

.

matrix. When this occurs, the water-binding capacity of the
tissue is compromised, resulting in a failure to resist
compressive forces and a reduction in disk height.5,6 Although
a great deal is known about importance of proteoglycan
secretion and function, the molecular mechanisms controlling
aggrecan turnover in cells of the normal and the degenerated
disk are not well understood. It has been reported that during
disk degeneration and herniation, in addition to infiltrating
immune cells, resident NP and annulus fibrosus cells produce
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Control of ADAMTS-4 in Nucleus Pulposus
high levels of the cytokines TNF-a and IL-1b.7,8 These cyto-
kines stimulate production of NGF, BDNF, and VEGF, mole-
cules associated with nerve ingrowth and angiogenesis by NP
cells.9 Moreover, both cytokines up-regulate expression by NP
cells of catabolic matrix metalloproteinases (MMPs)3 and two
major aggrecanases, A disintegrin and metalloproteinase with
thrombospondin motifs 4 (ADAMTS-4) and 5 (ADAMTS-
5).7,10e12 Among several members of the ADAMTS family
that cleave aggrecan in vitro, ADAMTS-4 (aggrecanase-1) and
ADAMTS-5 (aggrecanase-2) are the most likely to play a role
in aggrecan degradation and subsequent disk degeneration as in
the pathogenesis of osteoarthritis.13,14 ADAMTS-4 and -5
produce fragments of aggrecan usually found in synovial fluid
and cartilage by cleaving the protein following Glu373,
Glu1545, Glu1714, Glu1819, and Glu1919.13,15,16

Unlike cartilage, in the NP both ADAMTS-4 and
ADAMTS-5 expression is elevated in human degenerative
disk disease.17e19 Surprisingly, despite the importance of these
aggrecanases in the pathogenesis of osteoarthritis and disk
disease, only a few studies have investigated regulation of
ADAMTS transcription in NP cells,10,11,17,18 and none have
used promoter analysis. A clue to the mechanism lies in the
findings that, in NP cells, NF-kB may contribute to TNF-
a regulation of ADAMTS-4 and ADAMTS-5 expression,11

and that TNF-a and IL-1b also modulate ADAMTS-5 enzy-
matic activity through syndecan-4.19 These observations beg
the question of howTNF-a and IL-1b control the expression of
ADAMTS-4 and-5 andwhat is their relative contribution inNP
cells in terms of aggrecan degradation. Although the present
study addressed both ADAMTS-4 and -5, the mechanistic
aspects of transcriptional control were studied using a 3.5-kb
human ADAMTS4 promoter fragment. Here, we show for the
first time that TNF-a and IL-1b control ADAMTS4 transcrip-
tion in MAPK- and NF-kBedependent fashion. Importantly,
our results show that ADAMTS-4 and ADAMTS-5 are
nonredundant and that both play a role in the cytokine-
dependent degradation of aggrecan in human NP cells. A
therapeutic strategy could conceivably target these enzymes for
the structural preservation of the intervertebral disk.

Materials and Methods

Reagents and Plasmids

The 3.5-kb (�3109 to þ406 bp) human ADAMTS4 promoter
in pb-gal-Basic vector was a kind gift from Dr. K.
Thirunavukkarasu (Lilly Research Labs, Indianapolis, IN).20

The insert was recloned in basic pGL3 using XhoI and Hin-
dIII digestion. pCMX-IkBM (catalog no. 12330), and RelA/
p65 (catalog no. 20012), p50 (catalog no. 20018) developed by
Dr. Inder Verma and psPAX2 (catalog no. 12260) and
pMD2G (catalog no. 12259) developed by Dr. Didier Trono
were obtained from the Addgene repository (Cambridge, MA).
Plasmids DN-p38a, DN-p38b2, DN-p38g, and DN-p38d
were kindly provided by Jiahui Han (Scripps Research Insti-
tute, La Jolla, CA); plasmids ERK-1K71R and ERK-2K52R,
The American Journal of Pathology - ajp.amjpathol.org
by Melanie Cobb (University of Texas Southwestern Medical
Center, Dallas, TX); plasmids pLKO.1shADAMTS-4 and
pLKO.1shADAMTS-5, by Dr. Mike Baker (University of
Sheffield, Sheffield, UK); and plasmids shp65, shp52,
shIKK-a, and shIKK-b in lentiviral FSVsi vector that coex-
presses yellow fluorescent protein (YFP), by Dr. Andree
Yeremian (University of Lleida, Lleida, Spain). The vector
pRL-TK (Promega, Madison, WI) containing the Renilla
luciferase gene was used as an internal transfection control.

The amount of transfected plasmid, the pretransfection
period after seeding, and the post-transfection period
before harvesting were optimized for NP cells with pSV
b-galactosidase plasmid (Promega).21 Wild-type and p65 null
cells were a kind gift from Dr. Denis Guttridge (Ohio State
University, Columbus, OH). Antibody that recognizes
ADAMTS-dependent aggrecan degradation in interglobular
domain (anti-NITEGE) was a gift from Dr. Peter Roughley
(Shriners Hospital for Children, Montreal, QC, Canada).
Antibodies against ADAMTS-4, -5, and ADAMTS-generated
aggrecan neoepitope ARGSVIL were obtained from Abcam
(Cambridge, MA). P-p38, p38, p52, P-p65, p65, IKK-a,
IKK-b, P-ERK, ERK, P-JNK, and JNK antibodies were ob-
tained from Cell Signaling Technology (Danvers, MA).
b-Tubulin was obtained from the Developmental Studies
Hybridoma Bank (University of Iowa, Iowa City, IA) and
GAPDH from Novus Biologicals (Littleton, CO). TNF-a and
IL-1b were purchased from PeproTech (Rocky Hill, NJ).

Isolation of NP Cells and Cytokine Treatments

Rat and humanNP cells were isolated using amethod reported
by Risbud et al.21 NP tissue from lumbar disks of three or four
rats was pooled for each isolation. NP cells weremaintained in
Dulbecco’smodified Eagle’smedium (DMEM) and 10% fetal
bovine serum (FBS) supplemented with antibiotics and used
within the first three passages. To investigate the effect of
cytokines, cells were treated with 5 to 20 ng/mL IL-1b and 25
to 100 ng/mL TNF-a for 24 hours in serum-free medium.

Human Tissue Collection and Grading

Both lumbar and cervical disk tissues were collected as
surgical waste from individuals undergoing elective spinal
surgical procedures. Consistent with Thomas Jefferson Uni-
versity’s Institutional Review Board guidelines, informed
consent for sample collection was obtained from each patient.
Assessment of the disease state was performed using Pfirr-
mann grading.22 This scheme uses T2-weighted magnetic
resonance imaging with image analysis by three independent
observers. Patient age, spinal level, and grade of NP tissues
used for cell isolation are listed in Supplemental Table S1.

RT-qPCR Analysis

After treatment, total RNA was extracted from NP cells
(5 � 105 cells per plate) using RNeasy mini spin columns
2311
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Tian et al
(Qiagen, Valencia, CA). Before elution from the column, RNA
was treated with RNase-free DNase I. Two micrograms of total
DNA-free RNA was used to synthesize cDNA, using a Super-
Scipt III cDNA synthesis kit (Life TechnologieseInvitrogen,
Carlsbad, CA). Reactions were set up in triplicate in 96-well
plates using 1 mL cDNA with Fast SYBR Green PCR Master
Mix (Life TechnologieseAppliedBiosystems, Foster City, CA)
to which gene-specific forward and reverse PCR primers were
added. Each set of samples included a template-free control.
PCR reactions were performed in a StepOnePlus real-time PCR
system (Life TechnologieseApplied Biosystems) according
to the manufacturer’s instructions. Expression of the gene of
interest was first normalized to the housekeeping gene hypo-
xanthine phosphoribosyltransferase 1 (Hprt1), with data ex-
pressed as relative to the corresponding control group. All of the
primers were synthesized by Integrated DNA Technologies
(Coralville, IA) (Table 1).

Protein Extraction and Western Blotting

NP cells (1 � 106 cells per plate) were placed on ice immedi-
ately after treatment and washed with ice-cold Hanks’ balanced
salt solution. All of the wash buffers and the final resuspension
buffer included 1� protease inhibitor cocktail (Roche Applied
Science, Indianapolis, IN), 5 mmol/L NaF, and 200 mmol/L
Na3VO4. Conditioned medium was collected and concentrated
using centrifugal filter units (EMD Millipore, Billerica, MA).
For detecting aggrecan neoepitopes, protein lysates were pre-
treated with 0.1 U/mL chondroitinase ABC (Sigma-Aldrich, St.
Louis, MO) for 1 to 6 hours at 37�C. Proteins were resolved on
8% to 12% SDS-PAGE gels and were transferred by electro-
blotting to polyvinylidene difluoride membranes (Bio-Rad
Laboratories, Hercules, CA). The membranes were blocked
with 5% nonfat dry milk in Tris-buffered salineeTween
(50 mmol/L Tris, pH 7.6, 150 mmol/L NaCl, 0.1% tween 20)
and incubated overnight at 4�C in 3% nonfat dry milk in Tris-
buffered salineeTween with the specific antibodies all at
a dilution of 1:1000. Immunolabeling was detected using
Amersham ECL reagent (GE Healthcare, Little Chalfont, UK).

Transfections and Dual-Luciferase Reporter Assay

NP cells were transferred to 48-well plates at a density of
2 � 104 cells per well, at 1 day before transfection. To inves-
tigate the effect of NF-kB on ADAMTS4 promoter activity,
Table 1 Sequences of Primers Used in RT-qPCR

Target Primer sequence

HPRT1
Forward 50-AGTCCCAGCGTCGTGATTAGTGAT-30

Reverse 50-GAGCAAGTCTTTCAGTCCTGTCCA-30

ADAMTS4
Forward 50-ACAATGGCTATGGACACTGCCTCT-30

Reverse 50-TGTGGACAATGGCTTGAGTCAGGA-30

ADAMTS5
Forward 50-GTCCAAATGCACTTCAGCCACGAT-30

Reverse 50-AATGTCAAGTTGCACTGCTGGGTG-30

2312
cells were cotransfected with 50 to 200 ng of p65, p50, or both
p65 and p50 with or without appropriate backbone vector and
175 ng ADAMTS4 reporter and 175 ng pRL-TK plasmid. To
investigate the effects of p38 and ERK signaling, cells were
transfected with 50 to 150 ng of dominant-negative p38 (DN-
p38) or DN-ERK plasmids. In some wells, cells were treated
with the inhibitors for NF-kB (10 mmol/L sm-7368), p38
(10 mmol/L SB203580), ERK (10 mmol/L PD98059), or JNK
(10 mmol/L SP600125) (all Calbiochem, from EMD Milli-
pore). In some experiments, cells were transfected with 250 ng
ofADAMTS4 reporter plasmids with 250 ng pRL-TK plasmid.
Lipofectamine 2000 (Life TechnologieseInvitrogen) was
used as a transfection reagent. For each transfection, plas-
mids were premixed with the transfection reagent. At 48
hours after transfection, the cells were harvested and a dual-
luciferase reporter assay system (Promega) was used for
sequential measurements of firefly and Renilla luciferase
activities. Quantification of luciferase activities and calcu-
lation of relative ratios were performed using a luminometer
(TD-20/20; Turner Designs, Sunnyvale, CA). At least three
independent transfections were performed, and all analyses
were performed in triplicate.

Lentiviral Particle Production and Viral Transduction

HEK 293T human embryonic kidney cells (1.3 � 106 cells
per plate) were seeded in 10-cm plates in DMEM with 10%
heat-inactivated FBS, at 2 days before transfection. Cells
were transfected with 2.5 mg of shRNA control sequence or
gene-specific shRNA plasmids, along with 1.875 mg psPAX2
(a packaging vector) and 0.625 mg pMD2.G (an envelope
vector). After 16 hours, the transfection medium was
removed and replaced with DMEMwith 5% heat-inactivated
FBS and penicillinestreptomycin. Lentiviral particles were
harvested at 48 and 60 hours after transfection. Human NP
cells (1� 106 cells per plate) were plated in DMEMwith 5%
heat-inactivated FBS, at 1 day before transduction. Cells in
10-cm plates were transduced with 5 mL of medium con-
taining viral particles, along with 6 mg/mL polybrene. After
24 hours, the medium was removed and replaced with
DMEM with 5% heat-inactivated FBS. Cells were harvested
for protein extraction at 5 days after viral transduction.

Statistical Analysis

All experiments were repeated independently three times.
Data are presented as means � SEM. Differences between
groups were analyzed by Student’s t-test and analysis of
variance. P < 0.05 was considered significant.

Results

Expression of ADAMTS-4 Is Regulated by TNF-a and
IL-1b in NP Cells

Expression of ADAMTS-4 in mature rat tissues was studied
using real-time PCR and Western blot analysis. Compared
ajp.amjpathol.org - The American Journal of Pathology
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Control of ADAMTS-4 in Nucleus Pulposus
with Hprt1, the basal expression of ADAMTS4 mRNA in
healthy NP and in annulus fibrosus tissue is very low
(Figure 1, A and B). NP tissue shows weak ADAMTS-4
bands at approximately 58 and 73 kDa (Figure 1B). To
explore the premise that cytokines concerned with disk
degeneration regulate ADAMTS-4 expression, rat NP cells
were treated with TNF-a and IL-1b, and expression of
ADAMTS-4 was analyzed. Treatment with both TNF-a and
IL-1b resulted in dose-dependent increase in ADAMTS4
mRNA levels (Figure 1, C and D). In addition, we measured
the level of ADAMTS-4 protein in conditioned medium of
treated NP cells by Western blot analysis. Cytokine treat-
ment significantly increased ADAMTS-4 protein expression
The American Journal of Pathology - ajp.amjpathol.org
in both rat NP cells (Figure 1, E and F) and human NP cells
(Supplemental Figure S1A). To investigate whether the
regulation of expression is at the transcriptional level, we
measured the activity of a 3.5-kb ADAMTS4 promoter
(Figure 1G) after cytokine treatment. Both cytokines
significantly increased the promoter activity (Figure 1H).

TNF-a and IL-1b Promote ADAMTS-4 and -5 Expression
through Activation of MAPK and NF-kB Signaling

To determine whether MAPK and/or NF-kB signaling
is required for the cytokine-dependent induction of
ADAMTS-4 in rat NP cells, we first evaluated activation of
Figure 1 Expression and cytokine dependency
of ADAMTS-4 in rat NP cells. A: RT-qPCR analysis
shows ADAMTS-4 was expressed at a very low level
in adult rat NP and annulus fibrosus (AF) tissues.
B: Western blot analysis of ADAMTS4 expression in
adult disk tissues reveals bands at 58 and 73 kDa,
representing mature/processed protein. C and D:
RT-qPCR analysis of ADAMTS4 expression by rat NP
cells treated with the cytokines TNF-a (C) and IL-
1b (D) for 24 hours. There was a dose-dependent
increase in ADAMTS4 mRNA expression by the
cytokine treatment. E and F: Western blot analysis
of NP cells indicates increased expression of
ADAMTS-4 after TNF-a and IL-1b treatment. G:
Schematic of ADAMTS4 promoter constructs,
showing important transcription factor and regu-
latory elements. H: Treatment of NP cells with TNF-
a and IL-1b resulted in significant induction of
ADAMTS4 promoter activity. Data are expressed as
means � SEM from three independent experi-
ments. *P < 0.05. Ctrl, control.

2313

http://ajp.amjpathol.org


Tian et al
these signaling pathways after treatment with TNF-a and
IL-1b. After treatment with TNF-a (Figure 2A) or IL-1b
(Figure 2B), there was a rapid increase in P-p65 protein
levels. Activation was maximal at 5 to 30 minutes and then
declined rapidly. As expected, there was no appreciable
change in the level of total p65 during the treatment period.
We also examined levels of the phosphorylated MAPK iso-
forms P-p38, P-ERK1/2, and P-JNK. Again, there was
a rapid increase in all three isoforms, among which ERK
exhibited more sustained levels of phosphorylation. To
ascertain whether the cytokine-induced expression of
ADAMTS-4 and -5 requires NF-kB and/or MAPK signaling,
rat NP cells were pretreated with pathway-specific inhibitors.
Pretreatment caused a significant suppression in TNF-a and
IL-1b induction of both ADAMTS4 and ADAMTS5 mRNA
2314
levels (Figure 2, CeF). Similarly, a pronounced decrease in
cytokine-mediated increase in levels of ADAMTS-4 protein
(58 and 73 kDa) was seen in the presence of MAPK and NF-
kB pathway inhibitors (Figure 2, G and H).

MAPK and C/EBP-b Control ADAMTS4 Promoter Activity
in NP Cells

To investigate the mechanism of MAPK regulation of
ADAMTS-4 expression, we transfected rat NP cells with
dominant-negative (DN) DN-p38a, DN-p38b2, DN-p38g,
DN-p38d, or DN-ERK1 or DN-ERK2 expression plasmids
and measured ADAMTS4 promoter activity. DN-p38d
(Supplemental Figure S1B) and DN-ERK2 (Supplemental
Figure S1, C and D) did not suppress promoter activity. In
Figure 2 Modulation of cytokine-dependent
expression of ADAMTS-4 and -5 expression by NF-
kB and MAPK signaling in rat NP cells. A and B:
Western blot analysis of NF-kB and MAPK signaling
proteins after treatment of NP cells with TNF-a (A)
and IL-1b (B). Cytokine treatment induced phos-
phorylation of p65, p38, ERK, JNK within the first
15 minutes. No appreciable change was observed
in expression of p65, p38, ERK, and JNK. CeF: RT-
qPCR analysis of ADAMTS4 and ADAMTS5 expression
by NP cells after treatment with TNF-a (C and E) or
IL-1b (D and F) for 24 hours with or without
inhibitors for NF-kB (SM7368, 10 mmol/L), p38
(SB203580, 10 mmol/L), ERK (PD98059, 10 mmol/
L), and JNK (SP600125, 10 mmol/L). Inhibition of
NF-kB signaling and MAPK signaling resulted in
a significant blocking of cytokine-dependent
induction in ADAMTS4 and ADAMTS5 mRNA
expression. G and H: Western blot analysis indi-
cates that treatment with NF-kB and MAPK inhib-
itors completely abolished ADAMTS-4 protein
induction (the bands are indicated by asterisk) by
TNF-a (G) and IL-1b (H). Data are expressed as
means � SEM from three independent experi-
ments. *P < 0.05.

ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Control of ADAMTS-4 in Nucleus Pulposus
contrast, cytokine-dependent induction in ADAMTS4 promoter
activitywas significantly suppressedbycotransfectionwithDN-
P38a (Figure 3,AandB), p38b2 (Figure3C), p38g (Figure3D),
andDN-ERK1 (Figure 3, E and F). Because CCAAT enhancer-
binding protein b (C/EBP-b; alias LAP2) has been shown to
control IL-1be and TNF-aedependent transcription in chon-
drocytes,23 we investigated whether a similar regulatory system
exists in cells of the NP. We transfected rat NP cells with liver-
enriched inhibitory protein (LIP), a functional LAP antagonist,
and measured cytokine-dependent ADAMTS4 promoter ac-
tivity. Surprisingly, suppression ofC/EBP-b function resulted in
further inductionof thepromoter activity byTNF-a (Figure3G).
On the other hand, cotransfection with LAP2 resulted in
suppression of the basal promoter activity (Figure 3H).
The American Journal of Pathology - ajp.amjpathol.org
NF-kB Signaling Controls ADAMTS4 Promoter Activity
in the NP Cells

To investigate the role of NF-kB in the transcriptional
regulation of ADAMTS4, we first used JASPAR database
analysis (performed January 2012)24 (http://jaspar.genereg.
net) for evidence of putative NF-kB binding motifs in the
promoter. Sequence analysis revealed four putative binding
sites. JASPAR analysis provides a quantitative score for each
potential binding site, based on the probability of observing
each nucleotide at each position of the binding motif
compared to the consensus sequences of known binding
sites. The raw score is normalized to a range of 0-1 to provide
a relative score.24 The sequence, the location in the promoter
Figure 3 MAPK signaling controls ADAMTS4
promoter activity in rat NP cells. A and B:
Cotransfection of rat NP cells with DN-p38a
abolished TNF-aedependent (A) and IL-1be
dependent (B) induction in ADAMTS4 promoter
activity. C and D: IL-1bedependent increase in
ADAMTS4 promoter activity was blocked by DN-
p38b2 (C) and DN-p38g (D). E and F: DN-ERK1
suppressed induction in ADAMTS4 promoter
activity by TNF-a (C) and IL-1b (D) treatment. For
IL-1b treatment, inhibition was seen only at the
highest dose (150 ng). G: NP cells were cotrans-
fected with LIP and ADAMTS4 promoter, and
luciferase activity was measured after TNF-a treat-
ment. Addition of LIP further increased TNF-ae
dependent ADAMTS-4 reporter activity. H: ADAMTS4
promoter activity was measured after cotransfection
with LAP2. LAP2 suppressed ADAMTS4 promoter
activity. Data are expressed as means � SEM from
three independent experiments. *P < 0.05.
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Figure 4 NF-kB regulation of ADAMTS-4
expression. A: Rat NP cells were transfected with
RelA/p65, and ADAMTS4 promoter activity was
measured. There was a dose-dependent increase in
promoter activity up to 100 ng of p65. B: Cotrans-
fection with RelB and c-Rel had no effect on
ADAMTS4 promoter activity in rat NP cells. C: Rat NP
cells were cotransfected with RelA/p65 and/or p50,
and promoter activity was measured. When p65 and
p50 were added together, p50 significantly blocked
p65-mediated induction in promoter activity. D:
Rat NP cells were cotransfected with p65 alone and
with increasing doses of p50. Even at 50 ng, p50
completely blocked p65-mediated induction of
promoter activity. E and F: Rat NP cells cotrans-
fected with p50, and ADAMTS4 promoter activity
was measured after TNF-a (E) and IL-1b (F) treat-
ment. Cytokine-mediated induction in promoter
activity was completely blocked by p50. G: TNF-ae
and IL-1bemediated induction in promoter activity
was completely blocked by the NF-kB inhibitor
SM7368. H: Cotransfection of cells with DN-NF-kB/
IkBaM resulted in a significant inhibition of IL-1b
edependent ADAMTS4 promoter activity. Data are
expressed as means � SEM from three independent
experiments. *P < 0.05.
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relative to transcription start site, and relative score was as
follows: GGCAAGTCCC, �159 relative to �150 bp, score
0.90; GGGGATTCTC, �1042 relative to �1033 bp, score
0.88; GGGATTCTCC, �1043 relative to �1034 bp, score
0.88; andGGGGATTTCC,�1394 relative to�1385 bp, score
0.98.We then examined the effect of overexpression ofNF-kB
subunits on ADAMTS4 promoter activity in rat NP cells.
Cotransfection with p65 resulted in a dose-dependent
increase in ADAMTS4 promoter activity (Figure 4A). On
the other hand, neither the RelB nor the c-Rel subunit
influenced ADAMTS4 promoter activity (Figure 4B).
Although p50 alone had no effect on ADAMTS4 promoter
activity, it blocked the inductive effect of p65 even at a low
2316
dose (Figure 4, C and D). Notably, p50 completely sup-
pressed the inductive effect of both cytokines on the
ADAMTS4 promoter (Figure 4, E and F).
To confirm that ADAMTS4 promoter activity is respon-

sive to NF-kB signaling, we performed loss-of-function
studies. When cells were treated with the NF-kB inhibitor
SM7368 (Figure 4G) or cotransfected with DN-NF-kB/
IkBaM (Figure 4H), cytokine-mediated induction in
ADAMTS4 promoter activity was completely abolished.
Specificity of the NF-kB inhibitors SM7368 and IkBaM
was validated by measuring the activity of a well char-
acterized NF-kB responsive reporter (Supplemental
Figure S2A). To further validate the role of p65/RelA and
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Regulation of ADAMTS-4 and -5 expression by NF-kB. A: Immunofluorescence detection of YFP in human NP cells transduced with lentivirus
coexpressing YFP and NF-kB pathwayespecific shRNAs (LV-shp65, LV-shp52, LV-shIKKa, LV-shIKKb) show high transduction efficiency. BeG: Western blot
analysis of cells transduced with control lentivirus LV-shC and LV-shp65 (B), LV-shp52 (C), LV-shIKKa (E), and LV-shIKKb (F). Expression of p65, p52, IKK-a, and
IKK-b was suppressed by corresponding shRNAs, compared with cells transduced with a lentivirus expressing control shRNA. Densitometric analysis of p65 and
p52 in cells transduced with LV-shp65 and LV-shp52 (D) and of IKK-a and IKK-b in cells transduced with LV-shIKKa and LV-shIKKb (G). H:Western blot analysis of
ADAMTS-4 (AD-4), ADAMTS-5 (AD-5), and aggrecan neoepitope (ARGSVIL) in human NP cells infected with LV-shC and LV-shp65, LV-shp52, LV-shIKKa, and LV-
shIKKb after TNF-a treatment. Note that the TNF-aedependent increase in ADAMTS-4 (the band is indicated by an asterisk), ADAMTS-5, and aggrecan neo-
epitope (ARGSVIL) levels is significantly blocked by suppression of components of the NF-kB signaling pathway. Data are expressed as means � SEM from three
independent experiments. *P < 0.05. Original magnification, �20.
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to determine whether there is cell type specificity, we
measured ADAMTS4 promoter activity in RelA null and
wild-type mouse embryonic fibroblasts. Only in wild-type
cells was the promoter activity cytokine inducible
(Supplemental Figure S2, B and C).

NF-kB Signaling Controls TNF-aeDependent ADAMTS-4
and -5 Expression and Aggrecan Degradation in NP Cells

Given that IL-1b and TNF-a regulated ADAMTS-4 expres-
sion using similar signaling pathways, we performed
lentiviral-mediated gene silencing studies using TNF-a as
a representative cytokine. We first silenced the expression of
individual NF-kB signaling components and then measured
ADAMTS-4 expression in human NP cells. There was robust
YFP expression by the virally transduced cells (Figure 5A),
indicating high levels of transduction efficiency and transgene
expression. In cells transduced with plasmids shp65 and
shp52, there was a significant decrease in the protein levels of
The American Journal of Pathology - ajp.amjpathol.org
p65 and p52, respectively, compared with cells transduced
with control shRNA (Figure 5, BeD). Similarly, transduction
of human NP cells with plasmids shIKK-a and shIKK-
b resulted in decreased levels of IKK-a and IKK-b protein,
respectively (Figure 5, EeG). Importantly, suppression of
individual NF-kB signaling components significantly blocked
the inductive effect of TNF-a on the expression of ADAMTS-
4 and -5 protein levels, as well as aggrecan degradation as
measured by neoepitope generation (Figure 5H).

Both ADAMTS-4 and ADAMTS-5 Contribute to
TNF-aeInduced Aggrecan Degradation in NP Cells

We examined the effect of silencing of ADAMTS-4 and
ADAMTS-5 expression on aggrecan degradation in
human NP cells. ADAMTS protein levels in the silenced
NP cells or the conditioned medium were significantly
reduced (Figure 6, AeC). Furthermore, there was no
compensatory increase in either ADAMTS-4 or -5 when
2317
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Figure 6 ADAMTS-4 and ADAMTS-5 promote aggrecan degradation in human NP cells. A and B: Western blot analysis of human NP cells infected with
control lentivirus (LV-shC) and lentivirus expressing shRNA ADAMTS-4 (LV-shADAMTS4) (A) and shRNA ADAMTS-5 (LV-shADAMTS5) (B) plasmids. Compared
with control cells, expression of ADAMTS-4 and ADAMTS-5 was suppressed by shRNA shADAMTS-4 and shADAMTS-5 in both the conditioned medium and cell
protein. C: Densitometric analysis of multiple blots from the experiment presented in panels A and B. D and E: Western blot (D) and corresponding densi-
tometric analysis (E) of aggrecan neoepitope (ARGSVIL) in conditioned medium of cells treated with TNF-a. The level of ARGSVIL was significantly reduced
after cytokine treatment in cells transduced with LV-shADAMTS-4 (LV-shA4) and LV-shADAMTS-4 (LV-shA5), compared with control (LV-shC). F and G: Western
blot (F) and corresponding densitometric analysis (G) of aggrecan neoepitope (NITEGE) in concentrated conditioned medium of cells treated with TNF-a. The
level of NITEGE was significantly reduced after TNF-a treatment in ADAMTS-4 and ADAMTS-5 silenced NP cells. H: Western blot analysis of NITEGE in cell-
associated protein (the band is indicated by an asterisk) shows a significant reduction in levels after cytokine treatment in ADAMTS-4 and ADAMTS-5
silenced cells, compared with controls. Data are expressed as means � SEM from three independent experiments. *P < 0.05. Cell Pro, cell protein; CM,
conditioned medium.
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the other ADAMTS was silenced. We then used
neoepitope-specific antibodies anti-ARGSVIL and anti-
NITEGE to measure aggrecan degradation in ADAMTS
silenced cells. Suppression of ADAMTS-4 and -5 expression
resulted in a significant inhibition in TNF-aemediated
aggrecan degradation in NP cells (Figure 6, D and F).
Densitometric analysis validated these findings (Figure 6, E
and G). As expected, cells transduced with control shRNA
exhibited an increase in aggrecan neoepitope generation after
TNF-a treatment (Figure 6, D and F). The level of cell-
associated versus pericellular matrix aggrecan degradation
was also evaluated. In the cell-associated protein fraction,
compared with control cells, silencing of ADAMTS-4
2318
and ADAMTS-5 blocked aggrecan degradation after TNF-
a treatment.
Discussion

The experiments described here demonstrated for the first
time that expression of ADAMTS-4, an important enzyme
concerned with aggrecan degradation, is regulated by the
inflammatory cytokines TNF-a and IL-1b through the
MAPK and NF-kB signaling pathways in NP cells. A
second major observation is that, by regulating ADAMTS-4
and -5 expression and activity, these inflammatory cytokines
ajp.amjpathol.org - The American Journal of Pathology
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Control of ADAMTS-4 in Nucleus Pulposus
controlled aggrecan turnover. Importantly, both ADAMTS-
4 and -5 were required for the cytokine-dependent aggrecan
degradation in human NP cells, and their function appears to
be nonredundant, suggesting a possible role in intervertebral
disk pathologies.

According to our gene and protein expression studies,
ADAMTS-4 is expressed in tissues of the intervertebral
disk. The 73-kDa product on Western blot suggests that
a mature/processed form of the protease is present in healthy
discal tissues; the level of zymogen expression in the rat
probably reflects the low level of matrix (aggrecan) turnover
in the healthy disk. Although ADAMTS-4 is considered
chiefly in terms of aggrecan catabolism, it is involved with
a number of diverse physiological functions. Moreover, the
mechanism of regulation of expression is incompletely
understood. Conflicting data have been reported on the
expression of ADAMTS-4 in chondrocytes and fibroblasts;
some studies show that ADAMTS-4 is up-regulated by
TNF-a and IL-1b,25e27 whereas others show that cytokine
treatment does not affect ADAMTS-4 expression.28,29 In the
present study, treatment of NP cells with TNF-a and IL-1b
clearly induced ADAMTS-4 expression. Moreover, our
promoter studies showed that regulation was at the transcript
level. These results are consistent with previous reports that
the inflammatory cytokines induce ADAMTS4 mRNA
expression in the NP.10,11,19,30 Although the mechanism is
unknown, there is some evidence to indicate that TNF-
aedependent ADAMTS-4 expression and aggrecanase
activity in the NP may be regulated by ERK and NF-kB
signaling.11 We confirmed that both cytokines promoted
MAPK and p65/RelA activation and that these signaling
pathways controlled ADAMTS-4 expression. Furthermore,
mechanistic insights into regulation were forthcoming from
gain and loss-of-function transfection studies that measured
ADAMTS4 promoter activity. Our results clearly showed
isoform specificity for both MAPK signaling pathways.
Although p38a, p38b2, p38g, and ERK1 positively
controlled cytokine-dependent ADAMTS4 promoter activity,
p38d and ERK2 were not involved.

The presence of four putative NF-kB motifs in the
ADAMTS4 promoter indicated functional involvement of
this factor in controlling transcription. Mizui et al31 sug-
gested that the region between �383 and þ10 is required for
full activity of the human ADAMTS4 promoter. Notably, the
NF-kB motif with the second-highest relative score is con-
tained within this region. In further support for the role
of NF-kB in ADAMTS4 promoter regulation, our studies
clearly indicated that the inductive effect is restricted to p65
and p52 and that subunits RelB and c-Rel do not play
a regulatory role. Interestingly, p50 suppressed the inductive
effect of p65 on ADAMTS4 promoter. The observation that
the cytokine- and p65-dependent induction of ADAMTS-4
expression is suppressed by p50 is consistent with
previous reports of repressive function of p50 homodimers
in controlling expression of a number of genes, including
CCL2, CXCL10, GMCSF, and MMP13,32e34 as well as the
The American Journal of Pathology - ajp.amjpathol.org
recent report from our research group that clearly identified
p50 as a negative regulator of cytokine-dependent CCL3
transcription.35 On the other hand, our group has also shown
that p65 and p50 act synergistically to induce the expression
of the syndecan-4 gene (SDC4), one of the target genes of
TNF-a and IL-1b in NP cells.19 These results highlight the
importance of both context and target-gene specificity in the
regulatory machinery of NP cells. It is not unreasonable to
assume that formation of p50 homodimers and their binding
to the kB motifs results in recruitment of transcriptional
repressor such as HDAC1 to the ADAMTS4 promoter,
thereby suppressing RelA/p65 response.32 A detailed
investigation would be required to further elucidate the
mechanism and significance of this interesting finding. The
observation that RelA null cells failed to induce ADAMTS4
promoter activity, even when treated with cytokines,
provides further validation of the importance of NF-kB
signaling in promoter regulation. Moreover, the silencing
studies that demonstrated inhibition of TNF-aedependent
ADAMTS-4 and -5 expression after suppression of several
NF-kB signaling highlight the importance of this pathway in
controlling ADAMTS-4 expression. Taken together, the
results of these functional studies indicate that, by control-
ling the activity of both MAPK and NF-kB, especially
RelA/p65 signaling, cytokines control the expression of
ADAMTS-4 in NP cells.

Relevant to this discussion of control of ADAMTS4
transcription, Thirunavukkarasu et al20 showed that IL-1a
and oncostatin induced ADAMTS4 promoter activity,
possibly through NFATp and Runx2 in chondrocytic cells.
Mizui et al31 showed that nuclear factor I (NFI) is involved
in the negative regulation of the human ADAMTS4 promoter
activity in chondrocytes; they speculated that Sp1 and AP2
sites located within �382 to þ10 of the promoter may be
required for its full activity. Because the ADAMTS4
promoter contains several CCAAT enhancer elements and
because C/EBP-b is known to promote cytokine-dependent
transcription in chondrocytes,36 it was also important to
consider their possible regulatory roles. In contrast to its role
in chondrocytes, our present data clearly identify C/EBP-b
as a negative regulator of cytokine-dependent ADAMTS4
transcription in the NP, thus highlighting the unique
cell-type-specific regulation of this gene in NP cells.

We and others have demonstrated increased expression
of ADAMTS4 and ADAMTS5mRNA and protein during disk
degeneration.17,19,37 Patel et al37 and Seki et al38 showed that,
in both human and rabbit, although ADAMTS-4 protein
levels increase with severity of the disease, ADAMTS-5
levels are similar at early and late stages. Moreover, Seki
et al38 showed that silencing ofADAMTS-5 alone is sufficient
to block aggrecan degradation in rabbit disks. Lending
support to these earlier reports, in the present study expression
of ADAMTS-4 was more responsive to TNF-a in NP cells
from intervertebral disks of more degenerate grades; never-
theless, silencing of either ADAMTS-4 or ADAMTS-5
in grade 2 human NP cells resulted in inhibition of
2319
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TNF-aeinduced aggrecan neoepitope generation. Based on
these findings, it is not unreasonable to conclude that
ADAMTS-4 and -5 are nonredundant and therefore that
therapeutic blocking of the activity of even one of these
proteases could be expected to limit breakdown of the
aggrecan-rich matrix and possibly mitigate degenerative disk
disease.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2013.02.037.
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