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In this paper, we deal with conditional independence models closed with respect to gra-
phoid properties. Such models come from different uncertainty measures, in particular
in a probabilistic setting. We study some inferential rules and describe methods and algo-
rithms to compute efficiently the closure of a set of conditional independence statements.
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1. Introduction

Conditional independence structures arise in different frameworks, in particular, in probability and in multivariate sta-
tistics. For example, graphical models [9,10,14,16,15,22,24,27,29,36] have been deeply developed as a tool for representing
conditional independence relations or associations among the relevant variables and to simplify computation. Usually, prob-
abilistic conditional independence structures are based on the classical notion of conditional independence. It is well known
that the classical definition of stochastic independence leads to some counter-intuitive situations (see for example [4,6,30])
when some events with probability 0 are involved and when logical links among the variables are present. So other defini-
tions of independence have been introduced in literature to encompass such situations. In particular, cs-independence intro-
duced in [4] within the framework of coherent conditional probability [19,6] avoids the usual inconsistency related to logical
dependence. The relationship between cs-independence and classical independence is described in [30] by considering gra-
phoid properties.

It is well known [14] that for any probability measure P, the associated independence model M, under the classical def-
inition, is a semi-graphoid (i.e. it satisfies symmetry, decomposition, weak union, contraction) and if P is strictly positive,
then M is a graphoid (also intersection property holds). On the other hand, cs-independence induces a structure not neces-
sarily closed under symmetry, but its reinforcement (requiring symmetry) induces independence models closed under gra-
phoid properties [30,33].

Among the peculiarities of coherent conditional probability framework, we recall that it allows to deal with partial assess-
ments with (possible) conditioning events of zero probability, which represent a very crucial feature not only from a merely
. All rights reserved.
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theoretical point of view, but they are met in many real problems, for example in medical diagnosis, statistical mechanics,
physics, etc. (see, e.g. [5,21,20]). In medical diagnosis, for example, given probability assessments relative to some symptoms
conditionally to some of the diseases, the following problems arise: (i) is this partial likelihood coherent? (ii) given an assess-
ment on diseases is the assignment (the latter one together with the likelihood) global coherent? (iii) given a set of condi-
tional independence relations on the diseases and on symptoms, are they compatible with the coherent assessment? If the
answers are all yes, then we may try to ‘‘update” (coherently) the priors into the posteriors and discover the further induced
conditional independence relations. Then, starting from a partial assessment and a set J of conditional independence state-
ments given by an expert field, we can check whether the assessment is coherent [6,19] and whether it is compatible with
the set J of independence statement [34].

The significance of independence models and graphoid structure is not limited to probabilistic models: in fact many inde-
pendence models arising from different uncertainty measures are tested on the basis of graphoid properties (see e.g.
[1,7,11,8,12,13,15,17,18,23,25–27,32,35]).

The aim of this paper is to consider a set J of conditional independence statements, compatible with a (coherent) condi-
tional probability assessment, and to build in an efficient way the closure through graphoid properties. The obtained results
are valid not just in the coherent setting, but also for classical independence models closed with respect to graphoid
property.

This topic by considering semi-graphoid properties has already been faced successfully by Studený [27,28]. Since the
computation of the closure is infeasible due to its size, which is exponentially larger than the size of J, our aim is, like in
[27,28], to find a suitable subset of the closure which represents the same independence structure. This set should be as
small as possible and from it all the relations in the closure should be easily deducible.

In other words, this small set of independence statements, which is called ‘‘fast closure”, can be considered a basis for the
closure.

The computation of the fast closure is relevant for the complexity of selection (based essentially on statistical tests) of a
model on the basis of data for building, for example, the relevant Bayesian network. This is one of the motive of our effort.

We describe two algorithms to compute the reduced set. The first, called FC2, uses a generalization of the contraction and
intersection (see also [28]). The second one, called FC1, is based on a unique inference rule introduced in this paper.

An empirical evaluation of the performance of FC2 and FC1 is provided by comparing computation times and number of
iterations, as well as a comparison between the needed time to compute the fast closure and the time for computing the
complete closure (the size of both closures is compared).

The paper is organized as follows: in Section 2 some preliminaries concepts about graphoids, closure and implications for
independence relations are recalled. In Section 3, we describe the generalized inference rules, the fast closure and the algo-
rithm FC2; while in Section 4 a system based on a unique inference rule and its corresponding algorithm FC1 are introduced.
In Section 5, we describe and comment some experimental results. The last section is devoted to the conclusions.
2. Graphoid

Throughout the paper the symbol eS ¼ fY1; . . . ;Yng denotes a finite not empty set of variables. Given a subset
I # S ¼ f1; . . . ;ng of indices, we denote by YI the vector ðYi : i 2 IÞ of random variables, and given an uncertainty measure
u, a conditional independence statement YA � YBjYC (compatible with u), where A;B;C are disjoint subsets of S, will be de-
noted simply also as an ordered triple ðA;B;CÞ. A conditional independence model, related to an uncertainty measure u, is a
subset of all ordered triples ðA;B;CÞ of disjoint subset of S, such that A and B are not empty. In particular, we refer to prob-
abilistic independence models. The properties of such models depend obviously on the independence notion taken into ac-
count. The classical definition of stochastic independence of two events
PðE ^ HÞ ¼ PðEÞPðHÞ ð1Þ
gives rise to counter-intuitive situations when one of the events has probability 0 or 1. For instance, an event E with PðEÞ ¼ 0
(or PðEÞ ¼ 1) is stochastically independent on itself, while it is natural (due to the intuitive meaning of independence) to re-
quire for any event to be dependent on itself. Among other classical formulations, we recall
PðEjHÞ ¼ PðEjHcÞ; ð2Þ
that is equivalent to (1) for events such that the probability of H is different from 0 and 1, in fact in these ‘‘extreme” cases the
relevant conditional probabilities may even lack meaning according to the Kolmogorovian definition of conditional proba-
bility. Anyway, also by considering the stronger formulation (2) in the more general framework of de Finetti some critical
situations continue to exist [30,32], for this reason other stronger independence notions have been introduced (see, e.g.,
cs-independence [4,6]). The particularity of de Finetti’s approach is also to manage partial assessments by checking whether
a partial assessment P on a set of conditional events is coherent (i.e. there exists a conditional probability in the sense of de
Finetti [19] that extend the partial assessment P, see also [4]) and whether a given set of conditional independence state-
ments is compatible with the coherent partial assessment P [34] (i.e. there exists a conditional probability among the exten-
sions of P, inducing the given set of independence statements).
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We recall that a conditional independence model (i.e. the set of conditional independence statements) arising from the
classical independence notion is closed under semi-graphoid properties. Moreover, if the probability is strictly positive, the
associated conditional independence model is also closed under graphoid properties [14]. For the properties of the condi-
tional independence models arising from cs-independence, see [30], in particular we recall that these models are not nec-
essarily closed with respect to symmetry [31] but, by reinforcing cs-independence (in a way requiring symmetry) the
associated models are closed with respect to graphoid properties [30].

Let Sð3Þ be the set of triples ðA;B;CÞ of disjoint sets of S such that A and B are not empty. We recall that a graphoid is a
couple ðS;IÞ, where I is a ternary relation on the set S, which satisfies the following properties:

G1 if ðA;B;CÞ 2 I, then ðB;A;CÞ 2 I (Symmetry);
G2 if ðA;B;CÞ 2 I, then ðA;B0;CÞ 2 I for any nonempty subset B0 of B (Decomposition);
G3 if ðA;B1 [ B2;CÞ 2 I with B1 and B2 disjoint, then ðA;B1;C [ B2Þ 2 I (Weak Union);
G4 if ðA;B;C [ DÞ 2 I and ðA;C;DÞ 2 I, then ðA;B [ C;DÞ 2 I (Contraction);
G5 if ðA;B;C [ DÞ 2 I and ðA;C;B [ DÞ 2 I, then ðA; B [ C;DÞ 2 I (Intersection).

A semi-graphoid is a couple ðS;IÞ satisfying only the properties G1–G4. The symmetric version of rules G2 and G3 will be
denoted by

G2s if ðA;B;CÞ 2 I, then ðA0;B;CÞ 2 I for any nonempty subset A0 of A;
G3s if ðA1 [ A2;B;CÞ 2 I, then ðA1;B;C [ A2Þ 2 I.

Let h; h0 2 Sð3Þ, we denote by
h ‘R h0
the fact that h0 is obtained by applying once the property R to h, where in this context R can be G1, G2 or G3.
Moreover, let h1; h2; h 2 Sð3Þ;
h1; h2 ‘R h
denotes that h is obtained by applying once R to the pair h1; h2 of triples. In this case R can be either G4 or G5.
Now, we start from a set J � Sð3Þ of triples, compatible with a coherent conditional probability, and we are interested to

establish whether a triple h 2 Sð3Þ can be derived from J, in symbols
J ‘� h:
This means that h can be obtained by applying a finite number of times the rules G1–G5 starting from the set of triples J. This
problem is called ‘‘implication problem” and has been already studied, for instance, in [37].

A strictly related problem is to compute the closure of a set J, defined as
J ¼ fh 2 Sð3Þ : J ‘� hg:
It is clear that the implication problem can be easily solved once the closure of J has been computed. But the computation of
the closure is infeasible because its size is exponentially larger than the size of J. Then, in the following sections we describe
how it is possible to compute a smaller set of triples having the same information as the closure. This problem has been al-
ready faced in [28], with particular attention to semi-graphoid structures.

3. Generalized inference rules

In order to compute efficiently the closure of a set of conditional independence statements we introduce in Section 3.1 a
notion of generalized inclusion, that is related to the notion of dominance given in [27]. Moreover in Section 3.2 we study
some properties of intersection and contraction that lead to suitable inferential rules. In Section 3.3, we provide a procedure
to compute a ‘‘small” set that can be considered a sort of basis for the closure, with respect to graphoid, of a given set of
conditional independence statements.

3.1. Generalized inclusion

Let us focus our attention to the first three graphoid rules. Given a triple h2 2 Sð3Þ it is possible to compute all the triples h1

which can be obtained from h2 with a finite number of applications of G1, G2 and G3. We will say that any such triple h1 is
generalized-included in h2 (briefly g-included), in symbol h1 v h2.

In order to simplify the notation in the following, given a triple hi ¼ ðAi;Bi;CiÞ;Xi stands for ðAi [ Bi [ CiÞ.

Proposition 1. Given h1 ¼ ðA1;B1;C1Þ and h2 ¼ ðA2;B2;C2Þ, then h1 v h2 if and only if the following conditions hold

(i) C2 # C1 # X2;
(ii) either A1 # A2 and B1 # B2 or A1 # B2 and B1 # A2.
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Proof. We prove first that if (i) and (ii) hold, then h1 v h2.
Suppose that A1 # A2 and B1 # B2, h1 is obtained from h2 by the following steps: take B02 ¼ B2 n C1 and C02 ¼ C2 [ ðC1 \ B2Þ,

so B1 # B02 and ðA2;B2;C2Þ ‘G3 ðA2;B
0
2;C

0
2Þ; ðA2; B

0
2;C

0
2Þ ‘G2 ðA2;B1;C

0
2Þ; furthermore ðA2;B1;C

0
2Þ ‘G1 ðB1;A2; C

0
2Þ.

Now, let A02 ¼ A2 n C1, so C1 ¼ C02 [ ðC1 \ A2Þ;A1 # A02 and ðB1;A2;C
0
2Þ ‘G3 ðB1;A

0
2;C1Þ; ðB1;A

0
2; C1Þ ‘G2 ðB1;A1;C1Þ; moreover

ðB1;A1;C1Þ ‘G1 ðA1;B1;C1Þ.
The case A1 # B2 and B1 # A2 follows from the previous case by applying as first step the symmetry.
Now, we need to prove that if h1 v h2, then ðiÞ and ðiiÞ hold. If h1 v h2, then there exist h0i;Ri; i ¼ 1; . . . ;n, such that

h01 ¼ h2; h
0
nþ1 ¼ h1, h0i ‘Ri

h0iþ1, with Ri 2 fG1;G2;G3g. We will prove by induction on i that h0i v h2. For i ¼ 1, it is trivial. If it is
true for i (i.e. h0i v h2), suppose that A0i # A2 and B0i # B2, we have the following three cases

(1) h0i ‘G1 h0iþ1 with A0iþ1 ¼ B0i # B2;B
0
iþ1 ¼ A0i # A2;C

0
iþ1 ¼ C0i;

(2) h0i ‘G2 h0iþ1 with A0iþ1 ¼ A0i # A2;B
0
iþ1 # B0i # B2;C

0
iþ1 ¼ C0i;

(3) h0i ‘G3 h0iþ1 with A0iþ1 ¼ A0i # A2;B
0
iþ1 # B0i # B2;C

0
iþ1 ¼ C0i [ ðB

0
i n B0iþ1Þ;C2 # C0i # C0iþ1. Furthermore, B0i n B0iþ1 # B2 and C0i # X2

imply C0iþ1 # X2.

The case A0i # B2 and B0i # A2 follows analogously to the previous one. �

Generalized inclusion is strictly related to the following partial order relation va on Sð3Þ, defined in [27] and called dom-
inance: the triple h ¼ ðA;B;CÞ is said to dominate h0 ¼ ðA0;B0; C0Þ (in symbol h0 va h) if h0 can be derived from h by means of
decomposition, weak union and their symmetric properties (i.e. G2, G3, G2s and G3s).

Proposition 2. Given h1 ¼ ðA1;B1;C1Þ and h2 ¼ ðA2;B2;C2Þ; h1 va h2 if and only if

(i) C2 # C1 # X2;
(ii) A1 # A2 and B1 # B2.

Proof. The proof goes along the same lines of that one of Proposition 1. �

Given h ¼ ðA;B;CÞ, denote with hT ¼ ðB;A;CÞ the transpose of h. The relation between v and va is simple: h0 v h if and
only if either h0 va h or h0 va hT .

As the next result shows, the g-inclusion verifies almost all the properties of a partial order relation on Sð3Þ, in fact the anti-
symmetric property is verified in a weaker form called ‘‘weak anti-symmetry”:
ðASÞ�h1 v h2 and h2 v h1 implies either h1 ¼ h2 or h1 ¼ hT
2:
Proposition 3. The g-inclusion satisfies reflexive, transitive and the weak anti-symmetric ðASÞ� properties.

Proof. Reflexivity is trivial. To prove transitivity, let h1 v h2 and h2 v h3, we have the following four cases:

(1) if h1 va h2 and h2 va h3, then h1 va h3 from transitivity of dominance (since va is an order relation);
(2) if h1 va hT

2 and h2 va hT
3 (being h2 va hT

3equivalent to hT
2 va h3), then h1 va h3 again from transitivity of dominance;

(3) if h1 va hT
2 and h2 va h3 (so hT

1 va h2), then hT
1 va h3;

(4) if h1 va hT
2 and h2 va hT

3, then h1 va h3.

Now, suppose h1 v h2 and h2 v h1, we have four cases:

(1) if h1 va h2 and h2 va h1, then h1 ¼ h2 since va is anti-symmetric.
(2) If h1 va hT

2 and h2 va hT
1, then (being h2 va hT

1 equivalent to hT
2 va h1) h1 ¼ hT

2.
(3) If h1 va h2 and h2 va hT

1, then A1 # A2;A2 # B1;B1 # B2 and B2 # A1, so by transitivity A1 # A2 # B1 which is impossible
since A1 and B1 are disjoint.

(4) If h1 va hT
2 and h2 va h1 we get a contradiction as in the previous step. �

Now, we extend the definition of g-inclusion between triples to the case of sets of triples and we show its
properties.

Definition 4. Let H; J be subsets of Sð3Þ. J is a covering of H (in symbol H v J) if and only if for any triple h 2 H there exists a
triple h0 2 J such that h v h0.

We show that the g-inclusion between sets of triples verifies some properties of g-inclusion between triples.
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Proposition 5. The g-inclusion between subsets of Sð3Þ satisfies reflexivity and transitivity.

Proof. Reflexivity is trivial. To prove transitivity suppose H v K and K v J, with H;K; J # Sð3Þ. Then, for any h 2 H there
exists h0 2 K such that h v h0. For h0 2 K , since K v J, there exists h00 2 J such that h0 v h00. From Proposition 3, h v h00. �

The following example shows that the g-inclusion between sets of triples does not satisfy the anti-symmetry neither in its
weak form.

Example 1. Given S ¼ f1;2;3;4g, consider the triples h ¼ ðf1g; f2g; f3gÞ; h0 ¼ ðf1;4g; f2g; f3gÞ 2 Sð3Þ and the subsets
H ¼ fh; h0g and J ¼ fh0g of Sð3Þ. It is easy to check that H v J and J v H, but there is h 2 H such that h R J and hT R J.

However, in Proposition 16 we will show for which particular sets the anti-symmetry holds.

3.2. Generalization of G4 and G5

In order to study the inferential rules, we first prove a sort of monotonicity property for G4 and G5.

Proposition 6. Let h1; h2; h3; h4 be triples such that h1 v h3; h2 v h4 and it is possible to apply the contraction rule to both pairs
ðh1; h2Þ and ðh3; h4Þ. If h1; h2 ‘G4 h and h3; h4 ‘G4 h0, then h v h0.

Proof. Suppose that h1 va h3 and h2 va h4, so A1 # A3; B1 # B3; C3 # C1 # X3; A2 # A4; B2 # B4; C4 # C2 # X4.
If there exists a triple h ¼ ðA;B;CÞ such that h1; h2 ‘G4 h, then A ¼ A1 ¼ A2;C1 ¼ ðB2 [ C2Þ; ðB1 \ B2Þ ¼ /; B ¼ ðB1 [ B2Þ and

C ¼ C2.
If there exists a triple h0 ¼ ðA0;B0;C0Þ such that h3; h4 ‘G4 h0, then A0 ¼ A3 ¼ A4;C3 ¼ ðB4 [ C4Þ, ðB3 \ B4Þ ¼ /;B0 ¼ ðB3 [ B4Þ

and C0 ¼ C4.
Then, it is simple to observe that h va h0 being A ¼ A1 # A3 ¼ A0; B ¼ B1 [ B2 # B3 [ B4 ¼ B0; C0 ¼ C4 # C2 ¼ C; C ¼ C2 #

X4 # X4 [ B3 ¼ A4 [ ðB3 [ B4Þ [ C4 ¼ ðA0 [ B0 [ C0Þ.
Now, if h1 va hT

3 and h2 va h4 (analogously the cases h1 va h3 and h2 va hT
4, or hT

1 va hT
3 and hT

2 va hT
4) it is not possible to

apply contraction either between h1 and h2 or between h3 and h4. �

Proposition 7. Let h1; h2; h3; h4 be triples such that h1 v h3; h2 v h4 and it is possible to apply the intersection rule to both the
pairs ðh1; h2Þ and ðh3; h4Þ. If h1; h2 ‘G5 h and h3; h4 ‘G5 h0, then h v h0.

Proof. Suppose that h1 va h3 and h2 va h4, so A1 # A3; B1 # B3; C3 # C1 # X3; A2 # A4; B2 # B4; C4 # C2 # X4.
If there exists a triple h ¼ ðA;B;CÞ such that h1; h2 ‘G5 h, then A ¼ A1 ¼ A2;B1 [ C1 ¼ B2 [ C2;C ¼ C1 \ C2;B ¼ B1 [ B2.
If there exists a triple h0 ¼ ðA0;B0;C0Þ such that h3; h4 ‘G5 h0, then A0 ¼ A3 ¼ A4;B3 [ C3 ¼ B4 [ C4;C

0 ¼ C3 \ C4;B
0 ¼ B3 [ B4.

Then, it is simple to observe that h va h0 being A ¼ A1 # A3 ¼ A0; B ¼ B1 [ B2 # B3 [ B4 ¼ B0; C0 ¼ C3 \ C4 # C1 \ C2 ¼ C;

C ¼ C1 \ C2 # X3 \ X4 ¼ A3 [ ðB3 \ B4Þ [ ðB3 \ C4Þ [ ðC3 \ B4Þ [ ðC3 \ C4Þ ¼ ðA0 [ B0 [ C0Þ.
Now, if h1 va hT

3 and h2 va h4 (analogously the case h1 va h3 and h2 va hT
4, or hT

1 va hT
3 and hT

2 va hT
4) it is not possible to

apply intersection either between h1 and h2 or between h3 and h4. �

3.3. Closure through two generalized rules

Now, our target, as that in [27], is to find a fast method to compute a reduced (with respect to g-inclusionv) set J� included
in J and having the same information of J; this means that for any triple h 2 J there exists a triple h0 2 J� such that h v h0.

Therefore, the computation of J� provides a solution to the implication problem for J. The strategy to compute J� is to use a
generalized version of the remaining graphoid rules G4, G5 and their symmetric ones (see also [28]).

Given h1; h2 2 Sð3Þ, let
WCðh1; h2Þ ¼ fs : h01; h
0
2 ‘G4 s; with h01 va h1; h

0
2 va h2g:
Proposition 8. Let h1 ¼ ðA1;B1;C1Þ; h2 ¼ ðA2;B2;C2Þ be a pair of triples belonging to Sð3Þ, then

(1) WCðh1; h2Þ is not empty if and only if all the following five conditions hold:
(a) ðA1 \ A2Þ – /;
(b) C1 # X2 and C2 # X1;
(c) ðB1 n C2Þ – /;
(d) B2 \ X1 – /;
(e) jðB1 n C2Þ [ ðB2 \ X1ÞjP 2.
(2) If WCðh1; h2Þ is not empty then
gcðh1; h2Þ ¼ ðA1 \ A2; ðB1 n C2Þ [ ðB2 \ X1Þ;C2 [ ðA2 \ C1ÞÞ
is in WCðh1; h2Þ and dominates any triple belonging to WCðh1; h2Þ.
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Proof. If WCðh1; h2Þ – / then for any s ¼ ðA;B;CÞ 2WCðh1; h2Þ there exist h1 ¼ ðA1;B1;C1Þ va h1 and h2 ¼ ðA2;B2;C2Þ va h2

such that h01; h
0
2 ‘G4 s. Therefore, the following conditions hold:

� A01 # A1;A
0
2 # A2, A01 ¼ A02, then A1 \ A2 – /.

� C01 ¼ B02 [ C02;C1 # C01 # X1;C2 # C02 # X2 and / – B02 # B2. This implies C1 # C01 ¼ B02 [ C02 # X2, so C1 # X2.
From C02 # C01 it follows C2 # X1.

� B02 # C01 # X1, B02 # B2, so B02 # B2 \ X1 and then B2 \ X1 – /.
� B01 \ C01 ¼ /, C01 ¼ B02 [ C02;B

0
1 \ C02 ¼ /;/ – B01 # B1 and C2 # C02, then it follows B01 # B1 n C2 and hence B1 n C2 – /.

� Moreover, from B01 \ B02 ¼ /, B01 # B1 n C2 and B02 # X1 it follows jðB1 n C2Þ [ ðB2 \ X1ÞjP 2. In fact, B01 – / and B02 – / so
ðB1 n C2Þ [ ðB2 \ X1Þ contains at least two elements (otherwise there are no two disjoint subsets).

Suppose that the conditions (a)–(e) hold, it is possible to find two disjoint nonempty sets B1 and B2 such that
B1 # B1 n C2;B

2 # B2 \ X1 and B1 [ B2 ¼ ðB1 n C2Þ [ ðB2 \ X1Þ. Let C2 ¼ C2 [ ðC1 \ A2Þ, the triples ha ¼ ðA1 \ A2;B
1;B2 [ C2Þ and

hb ¼ ðA1 \ A2;B
2;C2Þ are such ha va h1; hb va h2 and ha; hb ‘G4 gcðh1; h2Þ ¼ ðAgc;Bgc;CgcÞ. This result implies that WCðh1; h2Þ is

not empty and gcðh1; h2Þ 2WCðh1; h2Þ.
Now, it is simple to prove that s va gcðh1; h2Þ. In fact it is straightforward to show that A # Agc and B # Bgc . Since

C2 # C02 ¼ C and ðA2 \ C1Þ# C02 then Cgc ¼ C2 [ ðA2 \ C1Þ# C. On the other hand, since C02 # C01 # X1 and C02 # X2 then
C # ðX1 \ X2Þ which is a subset of Agc [ Bgc [ Cgc . �

When WCðh1; h2Þ is empty, we set gcðh1; h2Þ ¼?. The function gcð�; �Þ has already been introduced in [28] in an essentially
equivalent form. The conditions (a)–(e), which assure that WCðh1; h2Þ is not empty, are however stronger than those given in
[28]: in fact, we are looking for the triple dominating all the triples obtained through G4 by h1 and h2 or by some their dom-
inated triples. This is clarified in the next example.

Example 2. Consider the triples h1 ¼ ðf1;4g; f2g; f3gÞ and h2 ¼ ðf1;3g; f2g; f4gÞ. The condition (e) fails, since
ðB1 n C2Þ ¼ ðB2 \ X1Þ and it contains just the element 2. Then, in this case WCðh1; h2Þ ¼ /, however it could be noted that
by applying G3 to one of the two triples we get h ¼ ðf1g; f2g; f3;4gÞ va hi (for i ¼ 1;2) and so h adds no further information.

We denote with GCðh1; h2Þ the set formed by the possible (i.e. belonging to Sð3Þ) triples among gcðh1; h2Þ; gcðh1; h
T
2Þ; gcðhT

1; h2Þ
and gcðhT

1; h
T
2Þ. Obviously, GCðh1; h2Þ is in general different from GCðh2; h1Þ.

Remark 1. Given a pair h1 ¼ ðA1;B1;C1Þ and h2 ¼ ðA2;B2;C2Þ such that h1; h2 ‘G4 s ¼ ðA;B; CÞ, then s ¼ gcðh1; h2Þ. In fact,
A ¼ A1 ¼ A2 ¼ A1 \ A2, B ¼ B1 [ B2;C ¼ C2;C1 ¼ B2 [ C2. From A2 \ B2 ¼ A2 \ C2 ¼ / it follows that A2 \ C1 ¼ /, so
C ¼ C2 [ ðA2 \ C1Þ. Furthermore, from B2 # C1 # X1 it follows that B2 ¼ B2 \ X1 and from B1 \ C2 # B \ C ¼ / it follows that
B1 ¼ B1 n C2, so B ¼ ðB2 \ X1Þ [ ðB1 n C2Þ.

Now, we provide a result similar to Proposition 8 by considering the set
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WIðh1; h2Þ ¼ fs : h01; h
0
2 ‘G5 s;withh01 va h1; h

0
2 va h2g
Proposition 9. Let h1 ¼ ðA1;B1;C1Þ; h2 ¼ ðA2;B2;C2Þ be a pair of triples belonging to Sð3Þ, then

(1) WIðh1; h2Þ is not empty if and only if all the following five conditions hold:

(a) A1 \ A2 – /;
(b) C1 # X2 and C2 # X1;
(c) B1 \ X2 – /;
(d) B2 \ X1 – /;
(e) jðB1 \ X2Þ [ ðB2 \ X1ÞjP 2.
(2) If WIðh1; h2Þ is not empty, then
giðh1; h2Þ ¼ ðA1 \ A2; ðB1 \ X2Þ [ ðB2 \ X1Þ; ðC1 \ A2Þ [ ðC2 \ A1Þ [ ðC2 \ C1ÞÞ

is in WIðh1; h2Þ and dominates any triple belonging to WIðh1; h2Þ.
Proof. If WIðh1; h2Þ – / then for any s ¼ ðA;B;CÞ 2WIðh1; h2Þ there exist h01 ¼ ðA
0
1;B

0
1;C

0
1Þ va h1 and h02 ¼ ðA

0
2;B

0
2;C

0
2Þ va h2 such

that h01; h
0
2 ‘G5 s. Then, the following conditions hold:

� From A01 # A1;A
0
2 # A2;A

0
1 ¼ A02, it follows ðA1 \ A2Þ– /.

� From B01 [ C01 ¼ B02 [ C02 it follows that C01 # B02 [ C02. Therefore, C1 # C01 # B02 [ C02 # X2.From B01 [ C01 ¼ B02 [ C02 it also follows
that C02 # B01 [ C01. Therefore, C2 # C02 # B01 [ C01 # X1.

� From B01 # C02 # X2 and B01 # B1, it follows B01 # B1 \ X2 – /.
� From B02 # C01 # X1 and B02 # B2, it follows B02 # B2 \ X1 – /.
� Moreover, from B01 \ B02 ¼ /, B01 # B1;B

0
2 # B2;B1 \ X2 – / and B2 \ X1 – /, it follows jðB1 \ X2Þ [ ðB2 \ X1ÞjP 2.
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Suppose the conditions (a)–(e) hold, it is possible to find two disjoint nonempty set B1 and B2 such that
B1 # B1 \ X2;B

2 # B2 \ X1 and B1 [ B2 ¼ ðB1 \ X2Þ [ ðB2 \ X1Þ. Let C1 ¼ ðC1 n B2Þ [ ðC2 n B1Þ [ B2 and C2 ¼ ðC1 n B2Þ[
ðC2 n B1Þ [ B1, then the triples ha ¼ ðA1 \ A2;B

1;C1Þ and hb ¼ ðA1 \ A2;B
2; C2Þ are such ha va h1; hb va h2 and

ha; hb ‘G5 giðh1; h2Þ ¼ ðAgi;Bgi;CgiÞ. This result implies that WIðh1; h2Þ is not empty and giðh1; h2Þ 2WIðh1; h2Þ.
Now, it simple to prove that s va giðh1; h2Þ. In fact it is straightforward to show that A # Agi and B # Bgi. For showing that

Cgi # C note that C1 # C01;C2 # C02;A2 \ C1 # C02;A1 \ C2 # C1.
On the other hand, since C # C01 # X1;C # C02 # X2 then C # ðX1 \ X2Þ ¼ ðAgi [ Bgi [ CgiÞ: �

Again, when WIðh1; h2Þ is empty, we set giðh1; h2Þ ¼?. Also the function gið�; �Þ has already been introduced in [28] in an
essentially equivalent form.

Given two triples h1; h2, Proposition 9 gives rise to the dominant triple generated through G5 by h1; h2 or by some dom-
inated triples, respectively, by h1 and h2. The set GIðh1; h2Þ is formed by the possible (i.e. belonging to Sð3Þ) triples among
giðh1; h2Þ; giðh1; h

T
2Þ, giðhT

1; h2Þ and giðhT
1; h

T
2Þ. Then, GIðh1; h2Þ ¼ GIðh2; h1Þ. Also in this case, whether h1; h2 ‘G5 s then s ¼ giðh1; h2Þ.

The previous sets GC and GI are used to introduce two new inference rules

G4� ‘‘generalized contraction”: from h1; h2 deduce any triple s 2 GCðh1; h2Þ;
G5� ‘‘generalized intersection”: from h1; h2 deduce any triple s 2 GIðh1; h2Þ;

which, as explained above, generalize the two classical inference rules.
It is possible to compute the closure of a set J of triples in Sð3Þ, with respect to the generalized contraction G4� and general-

ized intersection G5�, that is
J� ¼ fs : J ‘�G sg; ð3Þ
where J ‘�G s means that s is obtained by applying a finite number of times the rules G4� and G5�.
We show the relationship between the two closures J� and J.
First we prove that if a triple can be deduced through G4� or G5�, then it can be deduced by means of G1–G5.

Proposition 10. Let J be a subset of Sð3Þ and denote by J� and J the closure, respectively, with respect to the generalized rules G4�–
G5� and the graphoid properties G1–G5. Then J�# J.

Proof. The proof can be done by structural induction: we need to show that h1; h2 ‘G4� s implies fh1; h2g ‘� s and h1; h2 ‘G5� s
implies fh1; h2g ‘� s. From Proposition 8, if WCðh1; h2Þ – /, then gcðh1; h2Þ 2WCðh1; h2Þ and dominates any triple belonging to
WCðh1; h2Þ. Hence, if h1; h2 ‘G4� s, then s ¼ gcðh1; h2Þ and s 2WCðh1; h2Þ. Being s 2WCðh1; h2Þ; s is obtained with G4 by some h01
and h02 with h01 va h1; h

0
2 va h2. Finally, by definition of dominance va; h

0
1 and h02 are obtained through G2, G3, G2s, G3s, so

fh1; h2g ‘� h0i for i ¼ 1;2. Obviously, this is true also for s.
If h1; h2 ‘G5� s, we get the same conclusion by Proposition 9. �

Now, we prove that any triple obtained through G1–G5 is g-included in a triple deduced from G4� and G5�.

Proposition 11. Let J be a subset of Sð3Þ and denote by J� and J the closure, respectively, with respect to the generalized rules G4�–
G5� and the graphoid properties G1–G5. Then J v J�.

Proof. The proof is by induction. We can obtain, starting from J0 ¼ J,
J ¼
[1
i¼0

Ji;
where Ji ¼ Ji�1 [ fs : s is obtained by applying any graphoid property to Ji�1g.
Since J is finite this iterative process ends when Jk ¼ Jkþ1, k 2 N and Jk ¼ J. We show that Ji v J�. For i ¼ 0 it is trivial.

Suppose that Ji v J� and let s 2 Jiþ1 n Ji.
If s is obtained by means of G1, G2, G3 from h 2 Ji, then s v h and, since h 2 Ji, by hypothesis 9�h 2 J� such that h v �h, so

by transitivity s v �h.
If h1; h2 ‘G4 s with h1; h2 2 Ji, then, by hypothesis, there exist �h1; �h2 2 J� such that h1 v �h1 and h2 v �h2; s 2WCð�h1; �h2Þ and,

from Proposition 8, s v gcð�h1; �h2Þ 2 J�.
The proof of the case h1; h2 ‘G5 s goes in the same line of the previous one and it is based on Proposition 9. �

Note that J� is a subset of J, so even if J� has the same information of J, is smaller than J. Actually, J� contains some ‘‘redun-
dant” triples, that means that are g-included in the other ones.

3.4. Algorithm with two generalized rules

Starting from a set J # Sð3Þ, in order to reduce as much as possible the cardinality of J without losing information, we define
the ‘‘maximal” (with respect to g-inclusion) triple set
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J=v ¼ fs 2 J : 9= �s 2 J with �s – s; sT such that s v �sg:
Obviously, J=v # J. Now we prove that there is no loss of information by using J=v instead of J.

Lemma 12. Let S be a finite set and J # Sð3Þ. Then, J v J=v.

Proof. Let h 2 J, if 9= �h 2 J such that h v �h; h – �h and h – �hT , then h 2 J=v. Otherwise, i.e. h 2 J n J=v, since J is finite,
any chain
h1 v h2 v � � � v hn v � � �
with hi 2 J and i P 1, must have a maximal element hn, which necessarily belongs to J=v. �

Then, given a set J of triples in Sð3Þ, we compute J� and then we cut redundant triples by taking its ‘‘maximal” triples, i.e.
J�=v. We call the set J�=v ‘‘fast closure” and we denote it, for simplicity, with J�.

The proof of the following relationships is trivial.

Proposition 13. Given a subset J of Sð3Þ, then J�# J and J v J�.

It is interesting to show that J=v and J� essentially coincide, as shown in the following result:

Proposition 14. Given a subset J of Sð3Þ, then J=v v J� and J� v J=v.

Proof. By Proposition 13 it follows that J=v # J v J�; J� ¼ J�=v # J� # J v J=v. �

Now, we propose a procedure to compute the closure and we show some properties, but before we introduce the notion
of ‘‘maximal” set, that will be useful for proving completeness and correctness of the procedure.

Definition 15. A subset J of Sð3Þ is said maximal if J ¼ J=v.

The next result shows that g-inclusion on maximal subsets of Sð3Þ satisfies weak anti-symmetric property.

Proposition 16. Let J;H be two maximal sets of Sð3Þ, then H v J and J v H if and only if for any h 2 H either h 2 J or hT 2 J and
for any s 2 J either s 2 H or sT 2 H.

Proof. Consider the case H v J and J v H. From H v J for any h 2 H there exists s 2 J such that h v s. From J v H there
exists r 2 H such that s v r. By transitivity we have h v r, but, being H maximal set, h ¼ r, so s v h and h v s imply that
h ¼ r or h ¼ rT .

The vice versa, it is trivial by Definition 4. �

The following algorithm computes J� by avoiding to build before J�,1

Algorithm 1 Fast closure by G4� and G5�

1: function FC2 J
2: J0  J
3: N0  J
4: k 0
5: repeat
6: k kþ 1
7: Nk :¼

S
h12Jk�1 ;h22Nk�1

fGCðh1; h2Þ [ GCðh2; h1Þ [ GIðh1; h2Þg
8: Jk  FindMaximal ðJk�1 [ NkÞ
9: until Jk ¼ Jk�1

10: return Jk

11: end function

where FINDMAXIMAL is the function which computes J=v for a given setJ # Sð3Þ.
The completeness and correctness of the above procedure is provided in the following result.

Theorem 17. For any subset J of Sð3Þ, then

(1) FC2ðJÞ v J�;
(2) J� v FC2ðJÞ.
rogram which computes the closure with respect to semi-graphoids (through G4� , G1 and by using dominance relation), based on the results in the
of Milan Studený [27,28], has been implemented by Kumicak at Charles University (2004).
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Proof. First we give a proof of J� v FC2ðJÞ, since J� v J�, (2) holds. To compute J� we will use the following recursive schema
J00 ¼ J
J0k ¼ J0k�1 [ fs : s ¼ GCðh1; h2Þ or s ¼ GCðh2; h1Þ or s ¼ GIðh1; h2Þ with h1; h2 2 J0k�1g:
Let also N00 ¼ J and N0k ¼ J0k n J0k�1.
It is possible to prove that, for any h 2 N;N0h v Nh and J0h v Jh by induction on h. For h ¼ 0 it is trivial. If it is true for h,

consider s0 2 N0hþ1, for example s0 ¼ gcðh01; h
0
2Þ with h01; h

0
2 2 J0h. It is easy to see that either h01 2 N0h or h02 2 N0h, otherwise s0

would be already present in J0h.
By inductive hypothesis, there exists h1 2 Jh; h2 2 Nh such that h01 v h1 and h02 v h2. Therefore, s 2 GCðh1; h2Þ# Nhþ1 with

s0 v s.
Along the same line it is possible to prove the other cases.
Now, for any s0 2 J0hþ1 one has the following cases:

� s0 2 N0hþ1, then there exists s 2 Nhþ1 such that s0 v s. Now, if s 2 Jhþ1 then the claim is true. Otherwise, there exists �s 2 Jhþ1

such that s v �s, so by transitivity s0 v �s.
� s0 R Nhþ1, then s0 2 J0h and by hypothesis there exists s 2 Jh such that s0 v s.

Since J is finite, then there exists n 2 N such that J0n ¼ J0n�1 ¼ J� and Jn ¼ Jn�1 ¼ FC2ðJÞ, then J� v FC2ðJÞ.
Furthermore, by observing that Jn # J by Proposition 10, J v J� by Proposition 11 and J� v J� by Lemma 12 it follows that

FC2ðJÞ v J�. �

Note that FC2 is based on g-inclusion (instead of dominance), so it does not require to apply G1, but just G4� and G5�.
It is easy to see that the function FC2, so called because it uses two inference rules, terminates after a finite number of

steps for each possible set J # Sð3Þ, because of the finiteness of Sð3Þ.

4. A unique inference rule

In Section 3, we have described a procedure to compute efficiently the closure of a set of conditional independence state-
ments. This procedure arises essentially from the generalized contraction and intersection rules. Now, in order to improve
such procedure, we look for a unique inferential rule with the aim of simplifying the procedure. By taking into account Prop-
ositions 8 and 9, that provide necessary and sufficient conditions for applying generalized contraction and intersection, the
notion of almost complete pair of triples is introduced in order to characterize the dominant triples arising from generalized
rules.

Definition 18. Let h1 ¼ ðEð1;1Þ; Eð1;2Þ; Eð1;3ÞÞ; h2 ¼ ðEð2;1Þ; Eð2;2Þ; Eð2;3ÞÞ be in to Sð3Þ, then ðh1; h2Þ is said almost complete pair of
triples if

� ðEð1;iÞ \ Eð2;jÞÞP 1 for i; j ¼ 1;2;3;
� ðEð1;iÞ n X2Þ – /; ðEð2;iÞ n X1Þ– / for i ¼ 1;2.

From Propositions 8 and 9, condition ðbÞ (i.e., Eð1;3Þ # X2 and Eð2;3Þ # X1) is necessary for applying G4� and G5� to
h1 ¼ ðEð1;1Þ; Eð1;2Þ; Eð1;3ÞÞ and h2 ¼ ðEð2;1Þ; Eð2;2Þ; Eð2;3ÞÞ. Such condition can be reformulated, according to the above notation, as
Eði;3Þ # X3�i with i ¼ 1;2. Note that Definition 18 does not require the above condition.

First, we introduce for h1 ¼ ðEð1;1Þ; Eð1;2Þ; Eð1;3ÞÞ and h2 ¼ ðEð2;1Þ; Eð2;2Þ; Eð2;3ÞÞ such that Eði;3Þ # X3�i (i ¼ 1;2), the following
functions.

Definition 19. If ðEði;jÞ \ Eð3�i;kÞÞ– /, let
ĥði;j;kÞðh1; h2Þ ¼ Eði;jÞ \ Eð3�i;kÞ; Eði;3�jÞ [ ðEð3�i;3�kÞ \ XiÞ; C
� �
with C ¼ ðEð1;3Þ \ Eð2;3ÞÞ [ ðEði;3Þ \ Eð3�i;kÞÞ [ ðEð3�i;3Þ \ Eði;jÞÞ, otherwise ĥði;j;kÞðh1; h2Þ ¼?.

Definition 20. If for any i 2 f1;2g ðEð1;1Þ \ Eð2;iÞÞ– /; ðEð1;2Þ \ Eð2;3�iÞÞ – / and at least one of these sets
ððEð1;1Þ \ Eð2;3�iÞÞ or ðEð1;2Þ \ Eð2;iÞÞÞ is not empty let mðh1; h2Þ be
ðEð1;1Þ \ Eð2;2ÞÞ [ ðEð1;2Þ \ Eð2;1ÞÞ; ðEð1;1Þ \ Eð2;1ÞÞ [ ðEð1;2Þ \ Eð2;2ÞÞ; Eð1;3Þ [ Eð2;3Þ
� �
otherwise mðh1; h2Þ ¼?.

For example, given h1 ¼ ðEð1;1Þ; Eð1;2Þ; Eð1;3ÞÞ; h2 ¼ ðEð2;1Þ; Eð2;2Þ; Eð2;3ÞÞ, we have that ĥð1;1;1Þðh1; h2Þ is Eð1;1Þ \ Eð2;1Þ;
�

Eð1;2Þ [ ðEð2;2Þ \ X1Þ; ðEð1;3Þ \ Eð2;3ÞÞ [ ðEð1;3Þ \ Eð2;1ÞÞ [ ðEð2;3Þ \ Eð1;1ÞÞÞ.
Given h1; h2, we denote by Kðh1; h2Þ the set
Kðh1; h2Þ ¼ fh1; h2; mðh1; h2Þ; ĥði;j;kÞðh1; h2Þ : i; j; k 2 f1;2gg: ð4Þ
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Some properties of the set Kðh1; h2Þ are shown in the following.

Theorem 21. Let h1; h2 be an almost complete pair of triples of Sð3Þ such that Eði;3Þ# X3�i for i ¼ 1;2. Then, Kðh1; h2Þ is closed with
respect to G4� and G5� and
Table 1
ĥð1;1;1Þ v

gcð�; ĥð1
gcð�T ; ĥð
gcð�; ĥT

ð1

gcð�T ; ĥT
ð

gcðĥð1;1;
gcðĥð1;1;
gcðĥT

ð1;1;

gcðĥT
ð1;1;

gið�; ĥð1;
gið�T ; ĥð1
gið�; ĥT

ð1;

gið�T ; ĥT
ð1
fh1; h2g� v Kðh1; h2Þ:
Proof. First of all we prove the closure of Kðh1; h2Þ with respect to G4� and G5�. Since ðh1; h2Þ is an almost complete pair, it is
easy to see that Kðh1; h2Þ is composed by 11 elements, because all the ĥði;j;kÞ’s, as well as m, are not ?. With simple (but tedious)
computations it is possible to see that applying in all the possible ways G4� and G5� to ĥð1;1;1Þ and the elements of Kðh1; h2Þwe
obtain the results shown in the Table 1. The condition 1 of Definition 18 assures that it is possible to apply the generalized
rules as much as possible, and then the number of null entries in Table 1 is minimized.

For each entry in the table, it is possible to see that there are only three possibilities:

(1) the entry is ?, because the rule cannot be applied;
(2) the entry corresponds to an element of Kðh1; h2Þ;
(3) the entry is g-included into an element of Kðh1; h2Þ.

Thus the application of generalized rules to ĥð1;1;1Þ does not produce any further non redundant triple.
The results of the application of generalized rules to the others ĥði;j;kÞ are similar to those shown in Table 1 and are not

reported here.
At the same way, Tables 2 and 3 show that the application of generalized rules to m and, respectively, to h1 (as well as h2,

whose corresponding results table is not reported) produces only triples g-included in Kðh1; h2Þ (sometimes member of
Kðh1; h2Þ).

Now, we prove that Kðh1; h2Þ v fh1; h2g�. Since h1; h2 form an almost complete pair of triples, it is easy to check that
conditions (a)–(e) of Propositions 8 and 9 hold for any pair hðjÞi , hðkÞ3�i, with i; j; k 2 f1;2g and where
hðjÞi ¼
hi for j ¼ 1;
hT

i for j ¼ 2:

�

Therefore, gcðhðjÞi ; h
ðkÞ
3�iÞ – ? and giðhðjÞi ; h

ðkÞ
3�iÞ– ?. On the other hand, it is easy to check that conditions (a)–(e) of Proposition 8

are satisfied by the pair gcðhðjÞi ; h
ðkÞ
3�iÞ; giðhðjÞi ; h

ðkÞ
3�iÞ and
ĥði;j;kÞðhðjÞi ; h
ðkÞ
3�iÞ ¼ gcðgcðhðjÞi ; h

ðkÞ
3�iÞ; giðhðjÞi ; h

ðkÞ
3�iÞÞ:
Finally, the conditions (a)–(e) of Proposition 9 hold for the pair of triples ðĥT
ði;j;kÞðh1; h2Þ; ĥT

ðl;3�j;3�kÞðh1; h2ÞÞ and it is easy to check
that
mðh1; h2Þ ¼ giðĥT
ði;j;kÞðh1; h2Þ; ĥT

ðl;3�j;3�kÞðh1; h2ÞÞ:
Since all the elements of Kðh1; h2Þ are obtained through G4� and G5�, then its elements must be g-included into fh1; h2g�. �

Actually, Theorem 21 implies that for an almost complete pair h1; h2 of triples the set Kðh1; h2Þ ‘‘coincides” with fh1; h2g�,
being also a maximal set.
ersus all the elements in Kðh1; h2Þ.

ĥð1;1;1Þ ĥð1;1;2Þ ĥð1;2;1Þ ĥð1;2;2Þ ĥð2;1;1Þ ĥð2;1;2Þ ĥð2;2;1Þ ĥð2;2;2Þ h1 h2 m

;1;1ÞÞ ¼ ĥð1;1;1Þ ¼? ¼? ¼? ¼ ĥð2;1;1Þ ¼? ¼? ¼? ¼ ĥð1;1;1Þ ¼ ĥð2;1;1Þ ¼?

1;1;1ÞÞ ¼? ¼ ĥð1;1;1Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼? va ĥð1;1;1Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼? ¼? va ĥð1;1;1Þ

;1;1ÞÞ ¼? va ĥð1;1;2Þ va ĥð1;2;1Þ va ĥð1;2;2Þ ¼? va ĥð2;1;2Þ va ĥð2;2;1Þ va ĥð2;2;2Þ va ĥð1;1;2Þ vaĥð2;1;2Þ ¼ m

1;1;1ÞÞ ¼ ĥð1;1;1Þ vah1 vah2 ¼ m va ĥð1;1;1Þ vah2 vah1 ¼ m vah1 vah2 va ĥð1;2;2Þ

1Þ; �Þ ¼ ĥð1;1;1Þ ¼? ¼? ¼? ¼ ĥð1;1;1Þ ¼? ¼? ¼? va ĥð1;1;1Þ vaĥð1;1;1Þ ¼?

1Þ; �T Þ ¼? va ĥð1;1;1Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼? va ĥð1;1;1Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼? ¼? va ĥð1;1;1Þ

1Þ; �Þ ¼? ¼ ĥð1;1;2Þ va ĥð1;2;1Þ va ĥð1;2;2Þ ¼? va ĥð1;2;1Þ va ĥð1;1;2Þ va ĥð1;2;2Þ va ĥð1;1;2Þ vaĥð1;2;1Þ ¼ m

1Þ; �T Þ ¼ ĥð1;1;1Þ vah1 vah2 ¼ m va ĥð1;1;1Þ vah2 vah1 ¼ m vah1 vah2 va ĥð1;2;2Þ

1;1ÞÞ ¼ ĥð1;1;1Þ ¼? ¼? ¼? va ĥð1;1;1Þ ¼? ¼? ¼? ¼ ĥð1;1;1Þ vaĥð1;1;1Þ ¼?

;1;1ÞÞ ¼? ¼ ĥð1;1;1Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼? va ĥð1;1;1Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼? ¼? va ĥð1;1;1Þ

1;1ÞÞ ¼? ¼ ĥð1;1;2Þ va ĥð1;2;1Þ va ĥð1;2;2Þ ¼? va ĥð1;2;1Þ va ĥð1;1;2Þ va ĥð1;2;2Þ va ĥð1;1;2Þ vaĥð1;2;1Þ ¼ m

;1;1ÞÞ ¼ ĥð1;1;1Þ vah1 vah2 ¼ m va ĥð1;1;1Þ vah2 vah1 ¼ m vah1 vah2 va ĥð1;2;2Þ



Table 2
m versus h1 ; h2 ; m.

h1 h2 m

gcð�; mÞ va ĥð1;1;2Þ va ĥð2;1;2Þ ¼ m
gcð�T ; mÞ va ĥð1;2;1Þ va ĥð2;2;1Þ ¼?
gcð�; mT Þ va ĥð1;1;1Þ va ĥð2;1;1Þ ¼?
gcð�T ; mT Þ va ĥð1;2;2Þ va ĥð2;2;2Þ ¼ m
gcðm; �Þ va ĥð1;1;2Þ va ĥð1;2;1Þ ¼ m
gcðm; �T Þ va ĥð1;2;1Þ va ĥð1;1;2Þ ¼?
gcðmT ; �Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼?
gcðmT ; �T Þ va ĥð1;2;2Þ va ĥð1;2;2Þ ¼ m
gið�; mÞ va ĥð1;1;2Þ va ĥð1;2;1Þ ¼ m
gið�T ; mÞ va ĥð1;2;1Þ va ĥð1;1;2Þ ¼?
gið�; mT Þ va ĥð1;1;1Þ va ĥð1;1;1Þ ¼?
gið�T ; mT Þ va ĥð1;2;2Þ va ĥð1;2;2Þ ¼ m

Table 3
h1 versus h1; h2.

h1 h2

gcð�; h1Þ vah1 va ĥð2;1;1Þ
gcð�T ; h1Þ ¼? va ĥð2;2;1Þ
gcð�; hT

1Þ ¼? va ĥð2;1;2Þ
gcð�T ; hT

1Þ vah1 va ĥð2;2;2Þ
gcðh1; �Þ vah1 va ĥð1;1;1Þ
gcðh1; �T Þ ¼? va ĥð1;1;2Þ
gcðhT

1 ; �Þ ¼? va ĥð1;2;1Þ
gcðhT

1 ; �T Þ vah1 va ĥð1;2;2Þ
gið�; h1Þ vah1 va ĥð1;1;1Þ
gið�T ; h1Þ ¼? va ĥð1;1;2Þ
gið�; hT

1Þ ¼? va ĥð1;2;1Þ
gið�T ; hT

1Þ vah1 va ĥð1;2;2Þ
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Now the aim is to extend the previous result to any pair of triples h1; h2, using for the set Kðh1; h2Þ the same definition as
for almost complete pair, without including the undefined triples. To achieve this goal we need to give some preliminary
results based on the following notion of projection of a triple.

Definition 22. Given h ¼ ðA;B;CÞ and Y # ðA [ B [ CÞ, if ðA \ YÞ – / and ðB \ YÞ– /, then
pY ðhÞ ¼ ðA \ Y; B \ Y;C \ YÞ
is said the projection of h on Y.

Now, it is straightforward to prove that

Lemma 23. Given h1 ¼ ðA1;B1;C1Þ; h2 ¼ ðA2;B2;C2Þ and Y # X1 with ðA1 \ YÞ– /; ðB1 \ YÞ – /. If h1 va h2, then
pY ðh1Þ va pY ðh2Þ.

In the following we show how the generalized rules work with respect to projections.

Lemma 24. Given h1 ¼ ðA1;B1;C1Þ; h2 ¼ ðA2;B2;C2Þ with C1 # X2 and C2 # X1, let Y be a subset of X1 \ X2 such that the
projections pY ðh1Þ and pY ðh2Þ are defined. If gcðpY ðh1Þ;pY ðh2ÞÞ– ?, then gcðh1; h2Þ – ?, moreover
gcðpYðh1Þ;pYðh2ÞÞ ¼ pYðgcðh1; h2ÞÞ:
Proof. Since h0i ¼ pY ðhiÞ is defined, for i ¼ 1;2, let h0i ¼ ðA
0
i;B
0
i;C

0
iÞ and gcðh01; h

0
2Þ ¼ h0 ¼ ðA0;B0;C0Þ. We need to prove that if con-

ditions (a)–(e) of Proposition 8 hold for h01 and h02, then they are also verified for h1 and h2.

From A01 \ A02 ¼ ðA1 \ A2Þ \ Y – /, it follows ðA1 \ A2Þ – /.
From B02 \ X01 ¼ ðB2 \ X1Þ \ Y – /, it follows ðB2 \ X1Þ – /. From B01 n C02 ¼ ðB1 \ YÞ n ðC2 \ YÞ ¼ ðB2 n C2Þ \ Y – /, so

ðB1 n C2Þ – /. Moreover, from Theorem 21, it follows that B0 ¼ ðB01 n C02Þ [ ðB
0
2 \ X01Þ ¼ ½ðB1 n C2Þ [ ðB2 \ X1Þ� \ Y with

jB0jP 2, so jðB1 n C2Þ [ ðB2 \ X2ÞjP 2. Therefore, it is possible to apply G4� to h1; h2, obtaining gcðh1; h2Þ ¼ h ¼ ðA;B;CÞ. Since
ðA1 \ A2Þ \ Y ¼ A01 \ A02 ¼ A0; ½ðB1 n C2Þ [ ðB2 \ X1Þ� \ Y ¼ B0; ½C2 [ ðC1 \ A2Þ� \ Y ¼ C0, one has pY ðhÞ ¼ h0. �

Lemma 25. Given h1 ¼ ðA1;B1;C1Þ; h2 ¼ ðA2;B2;C2Þwith C1 # X2 and C2 # X1, let Y be a subset of X1 \ X2 such that the projections
pYðh1Þ and pYðh2Þ are defined. If giðpY ðh1Þ;pYðh2ÞÞ– ?, then giðh1; h2Þ – ?, and moreover
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giðpY ðh1Þ;pYðh2ÞÞ ¼ pYðgiðh1; h2ÞÞ:
Proof. It follows the same line of that Lemma 24. �

Lemma 26. Given h1 ¼ ðA1;B1;C1Þ; h2 ¼ ðA2;B2;C2Þwith C1 # X2 and C2 # X1, let Y be a subset of X1 \ X2 such that the projections
pY ðh1Þ and pYðh2Þ are defined.

If ĥði;j;kÞðpY ðh1Þ;pYðh2ÞÞ– ?, then ĥði;j;kÞðh1; h2Þ– ? and
ĥði;j;kÞðpYðh1Þ;pYðh2ÞÞ ¼ pYðĥði;j;kÞðh1; h2ÞÞ:
If mðpYðh1Þ;pYðh2ÞÞ– ?, then mðh1; h2Þ – ? and
mðpY ðh1Þ;pYðh2ÞÞ ¼ pYðmðh1; h2ÞÞ:
Proof. The proof is a straightforward consequence from the definition of the function ĥði;j;kÞð�; �Þ and mð�; �Þ and the properties
of pY . �

Now, we show that for any pair h1; h2 of triples, the set Kðh1; h1Þ is closed. For this aim, note that given h1 ¼ ðA1;B1;C1Þ and
h2 ¼ ðA2; B2;C2Þ, we can find an almost complete pair of triples ~h1; ~h2, with ~hi ¼ ðEði;1Þ; Eði;2Þ; Eði;3ÞÞ, and a suitable set Y, such that
for i ¼ 1;2
Eði;3Þ # X3�i and hi ¼ pYð~hiÞ: ð5Þ
Note that it is sufficient that Ai # Eði;1Þ;Bi # Eði;2Þ;Ci # Eði;3Þ and any component of ~hi contains other elements in a way that
Eð1;iÞ \ Eð2;jÞ – /, for i; j ¼ 1;2;3, and ðEðk;iÞ n X3�kÞ – /, for i; k ¼ 1;2;3.

Theorem 27. Let h1; h2 be such that C1 # X2 and C2 # X1. Then Kðh1; h2Þ is closed with respect to G4� and G5�.

Proof. Given h1 and h2, we can build (not necessarily uniquely) an almost complete pair ~h1; ~h2 of triples such that (5) hold for
a suitable set Y.

Note that, by Lemma 26, if ĥði;j;kÞðh1; h2Þ – ?, then ĥði;j;kÞð~h1; ~h2Þ – ? and ĥði;j;kÞðh1; h2Þ ¼ pY ðĥði;j;kÞð~h1; ~h2ÞÞ.
Again by Lemma 26, if mðh1; h2Þ – ?, then mð~h1; ~h2Þ– ? and mðh1; h2Þ ¼ pY ðmð~h1; ~h2ÞÞ.
Let h01; h

0
2 2 Kðh1; h2Þ. If h0 2 GCðh01; h02Þ (i.e. it is different from ?) then there exist s1, s2 in Kð~h1; ~h2Þ, with h01 ¼ pY ðs1Þ and

h02 ¼ pY ðs2Þ, such that (by Lemma 24) there exists s 2 GCðs1; s2Þ with h0 ¼ pY ðsÞ. If h0 2 GIðh01; h
0
2Þ, by Lemma 25, it is possible

to arrive at the same conclusion. Since Kð~h1; ~h2Þ is closed under G4� and G5�, by Theorem 21, there is r 2 Kð~h1; ~h2Þ such that
s v r. Moreover h0 ¼ pYðsÞ v pY ðrÞ by Lemma 23.

If r coincides with ~h1 or ~h2 the conclusion is trivial. Otherwise, r ¼ ĥði;j;kÞð~h1; ~h2Þ or r ¼ mð~h1; ~h2Þ. Since pY ðsÞ v pY ðrÞ,
one has pY ðrÞ– ?. By Lemma 26, pY ðrÞ ¼ r0, for r0 2 Kðh1; h2Þ, then h0 v r0 and Kðh1; h2Þ is closed with respect to G4�

and G5�. �

Also the vice versa holds: the elements of Kðh1; h2Þ are g-included in fh1; h2g�.

Theorem 28. Let h1; h2 be such that C1 # X2 and C2 # X1. Then,
Kðh1; h2Þ v fh1; h2g�:
Proof. Let hi ¼ ðAi;Bi;CiÞ for i ¼ 1;2. From (4) the elements of Kðh1; h2Þ are h1; h2; ĥði;j;kÞðh1; h2Þ, with i; j; k ¼ 1;2, and mðh1; h2Þ. In
the following we denote ĥði;j;kÞðh1; h2Þ and mðh1; h2Þ with ĥði;j;kÞ and m, respectively.

Let us start to prove that
ĥð1;1;1Þ ¼ ðA1 \ A2;B1 [ ðB2 \ X1Þ; ðC1 \ C2Þ [ ðA1 \ C2Þ [ ðA2 \ C1ÞÞ
is g-included in fh1; h2g�. Firstly, note that the triple ĥð1;1;1Þ is defined if and only if A1 \ A2 – / by Definition 19.
Now, we need to show that there is h 2 fh1; h2g� such that ĥð1;1;1Þ v h.
If B2 \ X1 is empty, ĥð1;1;1Þ reduces to ðA1 \ A2;B1;C1 [ ðA1 \ C2ÞÞ, and therefore ĥð1;1;1Þ v h1.
Otherwise, if B2 \ X1 is nonempty, we can have four cases. Let us denote by r ¼ giðh1; h2Þ and by s ¼ gcðh1; h2Þ.

(1) If r and s are not defined, since ĥð1;1;1Þ is defined, by Propositions 8 and 9, the only possible situation2 is
jðB1 n C2Þ [ ðB2 \ X1Þj 6 1 and jðB1 \ X2Þ [ ðB2 \ X1Þj 6 1

and from B2 \ X1 – / it follows that ðB1 n C2Þ [ ðB2 \ X1Þ ¼ B1 \ B2; ðB1 \ X2Þ [ ðB2 \ X1Þ ¼ B1 \ B2 and jB1 \ B2j ¼ 1.
Therefore, we know that B1 � B1 [ ðB2 \ X1Þ and C1 # ðC1 \ C2Þ [ ðA2 \ C1Þ [ ðA1 \ C2Þ, so ĥð1;1;1Þ v h1.
(2) If r ¼? but s – ?, then either B1 \ X2 ¼ / or jðB1 \ X2Þ [ ðB2 \ X1Þj 6 1. In both cases ĥð1;1;1Þ ¼ s.
other combinations lead to contradiction.
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(3) If r – ? but s ¼?, then either B1 n C2 ¼ / or jðB1 n C2Þ [ ðB2 \ X1Þj 6 1. In both cases ĥð1;1;1Þ ¼ r.
(4) If r – ? and s – ? are defined, then it follows easily that gcðs;rÞ is defined and coincides with ĥð1;1;1Þ. In fact, it is easy

to show that s ¼ ðA3;B3;C3Þ and r ¼ ðA4;B4;C4Þ satisfy the conditions (a)–(e) of Proposition 8.

By a few simple steps it is possible to compute gcðs;rÞ and to observe that it coincides with ĥð1;1;1Þ.
In general, it is possible to compute ĥði;j;kÞ from hðjÞi and hðkÞ3�i following the same steps used to determinate ĥð1;1;1Þ. The triple

m can be obtained in four possible ways. For example, if A1 \ A2 – /;B1 \ B2 – / and A1 \ B2 – /, then ĥð1;1;1Þ; ĥð1;2;2Þ and
giðĥT

ð1;1;1Þ; ĥ
T
ð1;2;2ÞÞ are all defined and m ¼ giðĥT

ð1;1;1Þ; ĥ
T
ð1;2;2ÞÞ. In fact, it is very easy to see that ĥT

ð1;1;1Þ and ĥT
ð1;2;2Þ satisfy the

conditions (a)–(e) of Proposition 9. Finally, it is simple to observe that giðĥT
ð1;1;1Þ; ĥ

T
ð1;2;2ÞÞ ¼ m.

The proof of the other three cases goes along the same line. �

We show that Kðh1; h2Þ is closed under G4� and G5� for any pair of triples h1; h2.

Theorem 29. For any pair of triples h1; h2, we have that
fh1; h2g� v Kðh1; h2Þ and Kðh1; h2Þ v fh1; h2g�:
Proof. Since fh1; h2g# Kðh1; h2Þ, it follows that fh1; h2g v Kðh1; h2Þ. Since Kðh1; h2Þ is closed with respect to G4� and G5�, the
conclusion fh1; h2g� v Kðh1; h2Þ follows.

The relation has been already proved in Theorems 21 and 28. �

Note that in general Kðh1; h2Þmay not coincide with fh1; h2g� because it could contain some redundant triple. However, it
is easy to see that Kðh1; h2Þ=v v fh1; h2g� and fh1; h2g� v Kðh1; h2Þ=v from Definition 15 and Proposition 16, since both sets
are maximal. Therefore, the set Kðh1; h2Þ allows to compute fh1; h2g� without the algorithm FC2: in fact, it is possible to build
up such a set and apply to it the function FINDMAXIMAL. All this computation requires a constant number of steps with respect
to the size of h1; h2.

By using fh1; h2g�, it is possible to provide a new inference rule
U: from h1; h2 deduce any triple s 2 fh1; h2g�.
In the next section the main properties of this rule are studied.

4.1. Correctness and completeness of U

With the aim to prove the correctness and completeness of the inference rule U we denote with Jþ the set of triples ob-
tained by applying a finite number of times the rule U. First let us show that U is correct.

Proposition 30. Given a set J of triples in Sð3Þ, then Jþ# J.

Proof. Note that for h1; h2 2 J; fh1; h2g� # fh1; h2g# J.
Let s 2 Jþ. Then, it is possible to find a derivation h1; h2 ‘U s1; . . . ; h2n�1; h2n ‘U sn, in which sn ¼ s and for i ¼ 1; . . . ;2n

either hi 2 J or hi ¼ sj for j < iþ1
2

� �
. Now, we show by induction that each si 2 J for i ¼ 1; . . . ;n.

Since h1; h2 2 J, then s1 2 J. Suppose that s1; . . . ; sk�1 2 J, then h2k�1; h2k 2 J and so also sk 2 J. In fact,
fh2k�1; h2kg�# fh2k�1; h2kg by Proposition 13. Since J is closed with respect to graphoid properties fh2k�1; h2kg# J and so
fh2k�1; h2kg�# J. �

We give now some preliminary lemmas useful for proving the completeness of rule U.

Lemma 31. If h01; h
0
2 ‘G4� s0 and h0i v hi for i ¼ 1;2, then h1; h2 ‘G4� s with s0 v s.

Proof. If s0 is obtained by G4� from h01 and h02, then, by definition, there exist h001 v h01 and h002 v h02 such that h001; h
00
2 ‘G4 s0. Since

h00i v hi, for i ¼ 1;2, it follows that s0 2WCðh1; h2Þ [WCðh1; h
T
2Þ [WCðhT

1; h2Þ [WCðhT
1; h

T
2Þ and so there exists s 2 GCðh1; h2Þ such

that s0 v s, by Proposition 8. �

Lemma 32. If h01; h
0
2 ‘G5� s0 and h0i v hi for i ¼ 1;2, then h1; h2 ‘G5� s with s0 v s.

Proof. The proof goes along the same lines of Lemma 31. �

Lemma 33. If h01 v h1 and h02 v h2, then fh01; h
0
2g
� v fh1; h2g�.

Proof. Let s0 2 fh01; h
0
2g
�. Then s0 is obtained by applying G4� and G5� to h01 and h02. Therefore from h1 and h2 it is possible to get

a triple s with s0 v s, by Lemmas 31 and 32. �

In the following result the monotonicity of the inference rule U is shown.

Corollary 34. If h01; h
0
2 ‘U s0 and h0i v hi for i ¼ 1;2, then h1; h2 ‘U s with s0 v s.
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Proof. It is enough to observe that fh01; h
0
2g� # fh01; h

0
2g
� v fh1; h2g� v fh1; h2g�. �

Now we can prove the completeness of U.

Proposition 35. Let J be a nonempty subset of Sð3Þ. Then J v Jþ.

Proof. We need to show that J� v Jþ. The conclusion follows from the completeness of J� with respect to G4� and G5�.
Let J� ¼

S1
h¼0JðhÞ with Jð0Þ ¼ J
JðhÞ ¼ Jðh�1Þ [ fh : h1; h2 ‘G4� h or h1; h2 ‘G5� h with h1; h2 2 Jðh�1Þg:
We show by induction that JðkÞ v Jþ for any k. For k ¼ 0 it is trivial. Suppose that it holds for k > 0 and let s 2 Jðkþ1Þ n JðkÞ with,
for example, h1; h2 ‘G4� s for h1; h2 2 JðhÞ. By inductive hypothesis there exist s1; s2 2 Jþ with hi v si. Then, by Lemma 33, there
exists �s 2 fh1; h2g� with s v �s. �
4.2. Algorithm with one generalized rule

We provide an algorithm, alternative to FC2, and some theoretical justifications showing its better performance with re-
spect to FC2.

Algorithm 2 Fast closure by U

1: function FC1 J
2: J0  J
3: N0  J
4: k 0
5: repeat
6: k kþ 1
7: Nk :¼

S
h12Jk�1 ;h22Nk�1

fh1; h2g�
8: Jk ! FindMaximalðJk�1 [ NkÞ
9: until Jk ¼ Jk�1

10: return Jk

11: end function
Theorem 36. Let J be a nonempty subset of Sð3Þ, then

(1) FC1ðJÞ v J�;
(2) J� v FC1ðJÞ.

Proof. The proof of condition (2) goes into the same line of that of the Theorem 17 and uses the same sequences of sets J0k
and N0k for k ¼ 0;1;2; . . .. To show that J� v FC1(J) we prove by induction that J0k v Jk and N0k v Nk for any k. For k ¼ 0 it is
trivial. Suppose that it holds for k ¼ h� 1 and let, for example, s0 ¼ gcðh01; h

0
2Þ with h01 2 Jh�1 and h02 2 Nh�1. By inductive

hypothesis there are h1 2 Jh�1; h2 2 Nh�1 such that h01 v h1, h02 v h2; s0 2 fh01; h
0
2g v fh

0
1; h

0
2g� v fh1; h2g� v Nh. Analogously,

J0h v Jh.
Let N be such that J0N ¼ J0N�1 ¼ J� and JN ¼ JN�1 ¼ FC1ðJÞ, then it follows that J� v J� ¼ J0N v JN ¼ FC1ðJÞ.
For the condition (1), note that FC1ðJÞ v JN # J v J� v J�. �

Note that FC1 is more efficient of FC2 since it builds the closure of a pair of two triples in just one step (with one appli-
cation of the rule U), while FC2 can require two steps (with several applications of G4� and G5�) to get the same result. For
this reason it is easy to see that when FC1 computes the fast closure of a set J of n triples, with n > 2, each triple belonging to
J� will be generated in a number of steps which is always not greater than the number of steps required by FC2. Therefore,
the number of iterations of the loop in FC1 is not greater than the number of iterations needed by the analogous loop in FC2.

Moreover, FC1 can be optimized by observing that if h01 and h02 belong to fh1; h2g�, then fh01; h
0
2g� is g-included to fh1; h2g�.

The validity of this observation follows easily since fh01; h
0
2g� v fh

0
1; h

0
2g
� v fh1; h2g� v fh1; h2g�.

Therefore, it is not necessary to apply the inference rule U to a pair of triples h01 and h02, generated by U from the same two
triples h1 and h2, since from h01 and h02 we would obtain only redundant triples, which would be discarded by the function
FINDMAXIMAL.

Note that for the same reasons, we do not need to apply the rule U between a triple h and another one h0 generated from h
(by combining h with another triple h00): in fact if h0 2 fh; h00g�, then fh; h0g# fh; h00g� and so fh; h0g� v fh; h

00g�, which implies
that no maximal triple can be obtained.
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Therefore, the use of the inference rule U in FC1 can be enhanced by keeping track of the ‘‘parents” of each triple and by
neglecting the pairs which satisfies the two previously described situations (‘‘sibling” triples and ‘‘father–child”). For this rea-
son the number of triples generated by FC1 will be less than the number of triples generated by FC2, since in the latter a
similar improvement is not possible.

Summing up these two considerations (number of iterations to generate the closure and improvements) about the com-
putational differences between FC1 and FC2, we can expect that FC1 is faster than FC2 and generates a less number of triples.
The experimental results shown in the next section will confirm this intuition.

Another possible improvement for the implementation of FC1 would be to avoid (as shown by Theorem 28) to generate
ĥð1;1;1Þ when either B2 \ X1 ¼ / or jðB2 \ X1Þ [ ðB1 \ X2Þj 6 1 and jðB1 n C2Þ [ ðB2 \ X1Þj 6 1 since in these cases ĥð1;1;1Þ v h1.

However, note that even after this last optimization, Kðh1; h2Þ could be not maximal, therefore it is necessary to apply
again FINDMAXIMAL on Kðh1; h2Þ.

In our implementation, we use the first two optimizations, but we consider Kðh1; h2Þ instead of fh1; h2g�, because in any
case in each cycle of FC1 a call to function FINDMAXIMAL is however performed.

5. Experimental results

In this section, we describe some experimental results obtained with an implementation of the algorithms FC2 and FC1, as
well as an implementation of an algorithm to compute the complete closure (with respect to G1–G5). The main purposes of
these experiments is to give strong empirical justifications to some intuitive ideas, as well as to provide a numerical coun-
terpart to the theoretical results shown in the previous sections.

The first answer we expect from the experiments is a comparison between the two different algorithms implemented for
the computation of the fast closure. We provided some heuristic motivations to support that FC1 should have a better behav-
iour than FC2.

The other question is which is the quantitative difference in size and in computation time of the fast closure with respect
to the complete closure. It is simple to see that each triple h in the fast closure corresponds to several triples in the complete
closure, i.e. all the triple g-included in h.

The experiments were run on an AMD Dual Core Opteron at 1.8 GHz with 2 GByte main memory. We applied a cut-off of
5,000,000 triples that can be stored (to avoid problems with memory) and a time-out of 3600 s. Some preliminary results,
with different experimental parameters, have already been given in [3,2].

In the first set of experiments we compare the two algorithms described in the previous sections. We generate 200 ran-
dom sets of triples having nv variables and nr triples, for nr ¼ 10;15;20;25 and nv ¼ b0:5 � nrc;nr; b1:5 � nrc. We compute the
fast closure with FC2 and FC1 (see Table 4).

As we expected, FC1 is clearly faster than FC2, needs a smaller number of iterations for computing the closure and gen-
erates a sensitively lesser number of triples. Furthermore, the number of instances resolved by FC1 is slightly larger than
those resolved by FC2, see the last column of Table 4, and then any instance solved by FC2 is solved by FC1.

The third column contains the average computation times in seconds, the fourth column contains the average number of
iterations needed by each algorithm to find the closure, the fifth column contains the average number of the overall gener-
ated triples. The previous average values are computed over instances solved by FC2. The last column contains the number of
instances in which each algorithm has been able to compute the closure within the memory and time limits.

In the second set of experiments we compare the computation time needed for finding the complete closure and its size
with respect to the time and size of the fast closure. The complete closure is obtained by using an algorithm similar to FC1
and FC2, which uses all the inference rules G1–G5, without calling FINDMAXIMAL. Furthermore, we did not apply for it any cut-
off with respect to number of triples.
Table 4
Fast closure: FC2 versus FC1.

nr nv Time Size Iterations Generated Solved

FC2 FC1 FC2 FC1 FC2 FC1 FC2 FC1

10 5 0.00 0.00 10.84 4.17 4.00 691.33 201.97 200 200
10 10 2.15 1.06 95.94 7.31 6.43 63561.67 27523.80 200 200
10 15 60.14 30.77 215.88 7.78 6.25 429100.75 197149.92 197 198
15 7 0.21 0.09 46.85 5.86 5.51 15382.56 5840.90 200 200
15 15 638.44 335.52 862.23 12.04 9.84 2916763.34 1421116.05 116 126
15 22 68.71 33.34 282.33 8.87 6.42 359679.62 162101.98 156 161
20 10 142.28 79.19 433.84 8.10 7.41 1396140.47 652607.94 200 200
20 20 310.16 143.46 670.94 12.76 9.84 1280049.88 558191.29 49 55
20 30 44.91 18.97 202.70 7.70 5.34 225146.12 92839.77 181 187
25 12 1254.51 599.83 1054.48 9.21 8.31 7011081.22 3025176.67 67 99
25 25 171.89 81.14 554.83 12.17 8.74 697131.20 311854.02 65 70
25 37 12.93 5.94 112.97 5.66 3.77 88332.23 38183.21 194 195



Fig. 1. Sizes of the closure.

Table 5
Fast closure with FC1.

nr nv Time Size Iter. Gen.

4 4 0 3.95 2.75 12.1
4 6 0 5.85 2.95 29.2
7 7 2E�03 18.65 4.95 559.25
7 10 1.8E�02 32.05 4.7 1756.15
10 10 0.6755 86.9 5.95 18415
10 15 42.7225 320.45 6.7 335910.5

Table 6
Complete closure.

nr nv Time Size Iter. Gen. Res.

4 4 0 64 7 57 20
4 6 0.05 527 8.9 899 20
7 7 1.75 3282 13.15 9526 20
7 10 248 28,808 13.89 147,249 19
10 10 603 50,760 16.67 268,381 15
10 15 3513 159,164 14 683,991 1

Fig. 2. Computation times.
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The fast closure is obtained by FC1, since it is faster than FC2. Since we expect that the complete closure is much larger
than its fast version, we have run new experiments with smaller instances, instead of using the previous one. In particular,
we generate 20 sets of nr triples and nv variables, for nr ¼ 4;7;10 and nv ¼ nr; b1:5 � nrc.

In Table 5 the results for the fast closure are reported, with the average values calculated with respect to the solved in-
stances by FC1, the average computation time is negligible, except that in the last row, where we obtain results similar in
magnitude order, as those displayed in Table 4. The algorithm FC1 has been able to build the closure for each instance.

In Table 6 we report the results obtained in the computation of the complete closure. The last column contains the num-
ber of instances for which the algorithm has been able to compute the complete closure within an hour of computation. Note
that with nr ¼ 10 and nv ¼ 15 we could solve only one instance, which almost reached the time limit, while the fast closure
of this instance has only 27 triples and has been found in a negligible amount of time. The values in the last column are used
to compute the average values showed in Table 5.

The comparison of the size between fast and complete closure is impressive, as it is possible to see in the graph of Fig. 1
(the last rows of both tables have been ignored).

Clearly also the computation times for computing the complete closure are much higher than the time needed to compute
the fast closure, as displayed in the Fig. 2.

6. Conclusions

We show some properties of graphoid structures arising from conditional independence models, with the aim to compute
efficiently the closure of a set J of conditional independence statements. In particular, we provide a method which is able to
compute the ‘‘fast” closure of a set of triples using graphoid rules and it is able to compute the closure in medium size
instances.

A straightforward extension of this work is to adapt this framework for computing the closure by using semi-graphoid
axioms and compare it with that proposed in [28].

From the theoretical point of view, it could be worth to study whether there exist other groups of inference rules, other
than G4� and G5�, by which it is possible to compute the fast closure.

A further point of investigation to enhance the performance of our implementation is to look for suitable data structures
for representing sets of triples. Now, the sets of triples are represented by sequential unordered lists, in which the insertions
are performed at the end of the list, thus making simpler the step in which the Nk’s are computed. To test wether a given
triple is implied by the set, a linear search has to be performed. Moreover, the function FINDMAXIMAL takes a quadratic number
of steps. Therefore, it is desirable to look for a data structure in which the implication and FINDMAXIMAL procedures can be
solved in a faster way.
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