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Immunoglobulin E (IgE) is pathogenic in allergic diseases

such as asthma, allergic rhinitis, atopic dermatitis, and food

allergy. Recent studies using genetically modified IgE

reporter mice indicate that the majority of serum IgE in mice

is produced by short-lived IgE plasma cells, with minor

contributions from long-lived IgE plasma cells, and implicate

IgG1 and IgE memory B cells as potential sources of IgE

memory. Clinical studies using antibodies against IL-13 or

the IL-4 and IL-13 receptor subunit IL-4Ra, as well as an

antibody against the M1 prime domain of human membrane

IgE, indicate that, similar to mice, a proportion of IgE in

humans is derived from ongoing IgE immune responses

and short-lived plasma cells. Targeting IgE production

may lead to new therapies for the treatment of allergic

diseases.
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Introduction
Immunoglobulin E (IgE) mediates anaphylaxis reactions

that are pathogenic in allergic diseases such as asthma,

allergic rhinitis, atopic dermatitis, and food allergy [1]. In

patients with these diseases, total and allergen-specific IgE

levels are elevated compared to healthy individuals. Treat-

ment of moderate-to-severe asthmatics who are poorly

controlled on inhaled corticosteroid therapy with a neu-

tralizing anti-IgE monoclonal antibody (omalizumab)

decreases free serum IgE levels and reduces asthma

exacerbations [2]. Omalizumab does not significantly

affect IgE production in these patients, at least in the first

year of treatment [3]. Therefore, therapies that inhibit IgE

production may yield new treatments for allergic diseases.

In this review, we summarize our understanding of IgE
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production in vivo, focusing on recent studies in mice that

examine the biology of IgE-producing plasma cells and the

sources of IgE memory. We discuss approaches for inhibit-

ing IgE production either by neutralizing the cytokines IL-

4 and IL-13 or by targeting IgE-switched B cells directly

through the membrane IgE B cell receptor (BCR). Finally,

we summarize the effects of therapeutics targeting IL-4,

IL-13, IL-4Ra, or the membrane IgE BCR on IgE pro-

duction in human clinical studies.

IgE production and memory in mice
IgE exists in two forms, a membrane BCR form that is

expressed on IgE-switched B cells and a secreted form

that is produced by IgE plasma cells (Figure 1a). Class

switch recombination of naı̈ve B cells to IgE-switched

cells requires the cytokines IL-4 in mice and either IL-4

or IL-13 in humans [4,5]. Both primary and memory IgE

antibody responses are generated through a pathway that

requires membrane IgE-expressing cells, since these

responses are absent in mice in which membrane IgE

expression is abolished without affecting secreted IgE [6].

Consistent with this, mice in which the transmembrane

and/or cytoplasmic domains of membrane IgE are modi-

fied have altered primary and memory IgE responses

[6,7].

The pathway of B cell differentiation to IgE production,

including the location and lifespan of IgE-producing

plasma cells and the identity of the memory B cells that

give rise to IgE memory responses, has been poorly

understood due to difficulties in identifying IgE-switched

B cells in vivo [8,9,10�,11�]. Recently, three separate

groups have generated IgE reporter mice in which a

fluorescent protein is associated with either transcription

(M1 prime GFP knockin mice [12,13,14��,15,16] and

CeGFP mice [17��]) or translation (Verigem mice

[18��]) of the membrane IgE BCR (Figure 1b). Studies

utilizing these reporter mice, as well as earlier studies that

utilized mice with monoclonal T and B cells [19], have

greatly increased the understanding of IgE production

and memory and have revealed several mechanisms that

limit IgE responses in vivo [10�,11�].

IgE antibody responses in mice are typically transient and

are not sustained like IgG1 antibody responses [20,21].

Studies of Verigem mice revealed that early IgE

responses are generated from short-lived IgE plasma cells

located in extrafollicular foci. Late IgE responses arise

from germinal centers, but in contrast to IgG1 germinal

center B cells, which are sustained over time and which

give rise to long-lived IgG1 plasma cells, IgE germinal

center B cells do not persist and are predisposed to
www.sciencedirect.com

https://core.ac.uk/display/82188246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2014.08.001&domain=pdf
lawren@gene.com
scheerens.heleen@gene.com
http://www.sciencedirect.com/science/journal/09527915/31
http://dx.doi.org/10.1016/j.coi.2014.10.011
http://dx.doi.org/10.1016/j.coi.2014.08.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.sciencedirect.com/science/journal/09527915


IgE production in mice and humans Wu and Scheerens 9
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The mouse IgE genomic locus and IgE reporter mice. (a) IgE exists in a membrane B cell receptor form, which associates with the alpha and beta

subunits of CD79, and a secreted form. Both forms contain four immunoglobulin constant domains (CH1 to CH4), but the membrane form contains

additional transmembrane (TM) and cytoplasmic (CYT) domains. The mouse IgE genomic locus consists of four exons encoding each of the heavy

chain constant domains (CH1 to CH4), an exon encoding the transmembrane domain of membrane IgE (M1), and an exon encoding the cytoplasmic

domain of membrane IgE (M2). There are two polyadenylation sites (A) associated with secreted IgE that are located between the CH4 and M1 exons,

and three polyadenylation sites associated with membrane IgE that are located downstream of the M2 exon. The three polyadenylation sites

downstream of the M2 exon contain suboptimal sequences that result in lower levels of membrane IgE transcript. (b) M1 prime GFP knockin mice

contain an insertion of an IRES-GFP bicistronic reporter gene with an exogenous polyadenylation sequence downstream of the M2 exon of the

membrane IgE gene, as well as an insertion of the M1 prime domain of human membrane IgE (a 52 amino acid N-terminal extension of the

transmembrane M1 domain of human membrane IgE) into its comparable location in the mouse IgE locus [12]. Concerns have been raised that the

insertion of the human M1 prime and/or the exogenous polyadenylation sequences may have affected membrane IgE expression or function in M1

prime GFP mice [13]. Since there were no differences in primary or memory IgE and IgG1 responses between wildtype and M1 prime GFP mice upon

infection with N. brasiliensis or immunization with TNP-OVA, and there were also no differences in membrane IgE expression on in vitro-derived IgE-

positive B cells in IgE switch cultures, it was concluded that these modifications did not significantly affect IgE or IgG1 responses or membrane IgE

expression and function [12,15]. Verigem mice contain an in-frame insertion of a viral 2A peptide sequence and Venus yellow fluorescent protein at the

end of the M2 exon of the membrane IgE gene [18��]. During protein translation, the 2A peptide causes a skip that ultimately yields two separate

proteins: membrane IgE with an additional C-terminal 17 amino acid 2A peptide extension and the Venus protein. In addition, Verigem mice contain an

insertion of a furin cleavage site at the 30 end of the CH4 exon, which is a remnant of the original targeting vector. The modifications at the IgE locus in

Verigem mice do not appear to significantly affect IgE responses or membrane IgE expression and function, since no significant differences in

phenotype, differentiation, or behavior of IgE germinal center B cells or plasma cells were observed in Verigem mice compared to wildtype mice.

CeGFP mice contain an insertion of an IRES-GFP bicistronic reporter gene downstream of the end of the M2 exon of the membrane IgE gene [17��].
differentiate into short-lived IgE plasma cells [18��].
Studies of M1 prime GFP knockin mice [14��,15] and

CeGFP mice [17��] also demonstrated a transient IgE

germinal center response and the generation of primarily

short-lived IgE plasma cells, although the studies of

CeGFP mice suggested that IgE germinal center B cells

are predisposed to undergo apoptosis as opposed to

differentiate into plasma cells. Thus, the persistence of

IgE production in mice is limited by a transient germinal

center response and a short lifespan of IgE-producing

plasma cells.

Although most IgE plasma cells produced in mice are

short-lived cells that reside in the lymph nodes and

spleen, a small number of IgE plasma cells were found

in the bone marrow in Verigem mice, M1 prime GFP

knockin mice, and CeGFP mice [14��,17��,18��]. These

cells are likely to be long-lived IgE plasma cells that
www.sciencedirect.com 
contribute to low levels of sustained IgE antibody pro-

duction, consistent with other studies that have identified

long-lived IgE plasma cells in the bone marrow of wild-

type mice [22,23].

Very little is known about the memory B cells that give

rise to IgE memory responses. Studies of M1 prime GFP

knockin mice have identified a small population of IgE-

positive memory B cells and a small subpopulation of

IgG1-positive memory B cells that give rise to IgE

responses when transferred to B cell-deficient recipient

mice and rechallenged with antigen [14��,16]. In these

studies, it was calculated that the IgE memory B cells

contributed to the majority of the IgE memory response.

By contrast, studies of mice with monoclonal T cells and

B cells [17��,19] have identified IgG1 memory B cells as

the major source of IgE memory responses. In these

studies, however, IgE and IgG1 memory B cells were
Current Opinion in Immunology 2014, 31:8–15
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not purified and compared directly, and therefore it is

possible that the contributions of IgE memory B cells

were not fully accounted for due to their low frequency in

the mixed cell populations that were examined. Overall,

the understanding of the sources of IgE memory is

limited and remains controversial.

Targeting IgE production
Taken together, the studies in mice have delineated a

pathway of IgE production and memory that results in

primarily transient, short-lived IgE antibody responses

and limited IgE memory (Figure 2). This model for IgE

production and memory suggests that a significant pro-

portion of IgE antibody is generated from ongoing naı̈ve

and/or memory B cell activation and differentiation into

IgE-producing plasma cells and implies that IgE antibody

levels could be significantly reduced by inhibiting new

IgE production, such as by targeting the cytokines IL-4
Figure 2
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and IL-13 to inhibit IgE class switch recombination or by

targeting IgE-switched B cells directly. In addition, this

model also implies that a significant proportion of long-

term IgE memory could be eliminated by targeting IgE-

switched memory B cells, although the IgG1 memory B

cells that contribute to IgE memory would not be affected

by this approach.

Studies in mice and monkeys have shown that

deficiency or neutralization of IL-4, IL-13, or the re-

ceptor IL-4Ra that is shared by both IL-4 and IL-13,

inhibits IgE production [24–27], but only a few studies

have assessed the effect of neutralization of IL-4/IL-13

during an ongoing or established IgE response [28]. A

study in a cynomolgus monkey model of IgE responses

to Ascaris suum antigen showed that treatment with

anti-IL-13 antibodies over an 8-week period that

included an Ascaris challenge resulted in a reduction
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in Ascaris-specific IgE titers below pre-treatment levels,

although no significant changes in total IgE levels were

observed [25].

Multiple groups have directly targeted IgE-switched B

cells using antibodies that bind either specifically to the

membrane IgE BCR or to both membrane and secreted

IgE [12,29–37], with several groups demonstrating in
vivo activity of these antibodies [12,33–37]. Early stu-

dies showed that polyclonal and monoclonal anti-mouse

IgE antibodies could inhibit primary and memory IgE

responses, but did not prevent the development of IgE

memory [35,36]. More recently, an antibody specific for

mouse membrane IgE, which could trigger apoptosis of

IgE B cells in vitro, inhibited IgE production when

administered to mice preventively, but not when

administered during an ongoing IgE response [34].

However, memory IgE responses in mice treated with

this antibody during initial immunizations were signifi-

cantly reduced long after treatment was stopped,

suggesting that the antibody may have prevented the

development of IgE memory B cells [34].

Antibodies targeting the M1 prime domain of human

membrane IgE, which could trigger apoptosis and

mediate antibody-dependent cell-mediated cytotox-

icity of IgE B cells in vitro, inhibited both primary

and memory IgE responses in M1 prime GFP knockin

mice [12]. When administered during an ongoing IgE

response in a mouse model of allergic asthma, these

antibodies reduced antigen-specific IgE levels to levels

comparable to those in naı̈ve mice and far below the

levels present at the initiation of treatment [12]. These

antibodies also inhibited human IgE production in

immunodeficient mice that were reconstituted with

human immune cells [12,29]. In a different study,

anti-IgE antibodies that bound both serum and mem-

brane IgE were engineered for increased binding to the

inhibitory IgG receptor FcgRIIb [33]. By binding both

membrane IgE and FcgRIIb simultaneously  on IgE-

switched B cells, these antibodies inhibit membrane

IgE signaling. When administered either preventively

or during an ongoing IgE response in mice expressing a

human FcgRIIb receptor or in immunodeficient mice

reconstituted with human immune cells, these anti-

bodies reduced IgE levels by greater than 90%. This

in vivo activity required the co-engagement of mem-

brane IgE with FcgRIIb.

Interestingly, two groups have reported high expression

of membrane IgE on IgE plasma cells in mice [17��,18��],
and therefore therapies that target membrane IgE-

expressing cells may directly target not only IgE-switched

B cells, but also IgE plasma cells. However, none of the

studies discussed above determined the direct effect of

the membrane IgE-targeted therapeutics on IgE plasma

cells.
www.sciencedirect.com 
Effects of antibodies targeting IL-13, IL-4Ra,
and the M1 prime domain of human
membrane IgE on IgE production in clinical
studies
It has been difficult to study IgE production in humans

due to the low abundance of IgE-switched cells and

technical limitations in identifying them. The limited

available data on human IgE responses is largely consist-

ent with what has been observed in mice. For instance,

significant seasonal increases and decreases in allergen-

specific and total IgE levels in allergic individuals, con-

sisting of as much as two-fold changes observed over the

course of several months, is reminiscent of the transient

IgE responses observed in mice [38–40]. However,

reports of long-term helminth-specific IgE [41] or the

transfer of allergen-specific IgE to non-atopic recipients

of bone marrow transplants [42,43] indicate that, in con-

trast to mice, there may be a significant contribution of

long-lived IgE plasma cells to IgE production in humans.

In addition, studies of patients with asthma and allergic

rhinitis have described significant local IgE production in

nasal and bronchial mucosal tissues [44], which has not

been reported in mice.

Recently, therapeutic agents that target IgE production

have been assessed in small Phase I and Phase II clinical

studies (Table 1). These agents include therapeutics that

target IL-4 (altrakincept), IL-13 (lebrikizumab,

GSK67586, IMA-638, IMA-026, tralokinumab), IL-4Ra

(dupilumab, AMG-317, pitrakinra), and membrane IgE

(quilizumab). In reviewing the clinical data, it should be

noted that differences in the effects of these therapeutic

agents on IgE production may result from differences in

the potencies of the various therapeutics against their

respective targets, differences in therapeutic exposure

due to different routes of administration and/or dosing

frequencies, as well as differences in the characteristics of

the patient cohorts in each clinical study.

The effect of neutralizing IL-13 and/or IL-4 on IgE

production in humans has been assessed in a number

of different clinical studies. Treatment with lebrikizu-

mab, an anti-IL-13 monoclonal antibody, reduced total

serum IgE levels by approximately 20% in patients with

asthma [45�,46,47]. In these studies, proximal biomarkers

of IL-13 blockade (e.g. FeNO and CCL17) revealed near-

maximal inhibition of IL-13 activity following a single

dose, whereas serum IgE levels declined more slowly

during the 3–6 month treatment period. Since the half-

life of serum IgE in humans is very short (approximately

1–2 days), these results are consistent with a slow decline

in serum IgE upon the turnover of short-lived IgE plasma

cells downstream of the inhibition of IL-13-induced IgE

class switching. These studies also suggest that at least

20% of total serum IgE in these patients was generated

from ongoing IgE B cell responses (which can be driven

by both IL-4 and IL-13). By contrast, the anti-IL-13
Current Opinion in Immunology 2014, 31:8–15
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Table 1

Summary of clinical studies.

Target Therapeutic Molecule Asthma patient

population

Treatment

duration

IgE reduction relative

to pre-treatment

(mean %)

Reference

IL-4 Altrakincept

(nebulized)

Soluble IL-4Ra

protein

Moderate 12 weeks No effect [50]

IL-13 Lebrikizumab Anti-IL-13 antibody Mild; no ICS 13 weeks 24% [47]

Lebrikizumab Anti-IL-13 antibody Mild-moderate; no ICS 12 weeks 12% [46]

Lebrikizumab Anti-IL-13 antibody Moderate-severe,

uncontrolled

24 weeks 22% [45�]

GSK67586 Anti-IL-13 antibody Severe, uncontrolled 12 weeks No effect [48]

IMA-638,

IMA-026

Anti-IL-13 antibodies Mild; no ICS 1 month No effect [49]

Tralokinumab Anti-IL-13 antibody Moderate-severe,

uncontrolled

13 weeks No data available [55]

IL-13 and IL-4 AMG-317 Anti-IL-4Ra antibody Moderate-severe 12 weeks 49% (mean)

7% (median)

[52�]

Dupilumab Anti-IL-4Ra antibody Moderate-severe,

uncontrolled; ICS taper

12 weeks 37% [53�]

Pitrakinra

(nebulized)

IL-4 variant protein Atopic asthma 1 month No effect [51]

Membrane IgE

(M1 prime

domain)

Quilizumab Anti-M1 prime

antibody

Mild; no ICS 12 weeks 19% [54��]
monoclonal antibodies IMA-638, IMA-026, and

GSK67586 failed to demonstrate effects on serum IgE

in clinical studies [48,49], but differences in antibody

potencies, antibody exposure, and/or clinical study design

may have contributed to the lack of effect as compared to

lebrikizumab.

The contribution of IL-4 to IgE production in patients with

asthma is less clear. Blockade of IL-4 using a soluble

recombinant IL-4Ra protein (altrakincept) did not result

in reductions in serum IgE, although this therapeutic was

delivered via nebulization and therefore would have had

only local effects in the lung, with very little systemic

activity [50]. Similarly, blockade of both IL-4 and IL-13

using a nebulized variant IL-4 protein that binds to IL-4Ra

but does not activate signaling (pitrakinra) did not have any

effect on serum IgE [51]. By contrast, blockade of both IL-

4 and IL-13 using monoclonal antibodies against IL-4Ra

(AMG-317 and dupilumab) administered subcutaneously

reduced total serum IgE levels [52�,53�]. Due to differ-

ences in patient populations and study designs, it is not

possible to accurately assess whether blockade of IL-4

activity in addition to IL-13 activity by these anti-IL-

4Ra agents had an incremental effect on reducing serum

IgE compared to IL-13 blockade alone.

Quilizumab is an afucosylated monoclonal antibody

against the M1 prime domain of human membrane IgE

[29], which enables the direct therapeutic targeting of IgE-

switched cells. The effect of quilizumab on IgE production

has been assessed in three independent small phase I and

II studies [54��]. In patients with mild asthma, quilizumab

treatment completely inhibited new allergen-specific IgE
Current Opinion in Immunology 2014, 31:8–15 
production induced by whole lung allergen challenge

[54��]. In addition, quilizumab treatment resulted in a

gradual reduction in total serum IgE levels in healthy

volunteers, patients with allergic rhinitis, and patients with

mild asthma [54��]. The kinetics and extent of serum IgE

reduction were similar following one or several dose admin-

istrations of quilizumab and were also similar to the

reductions in total serum IgE observed upon blockade

of IL-13 or IL-4Ra, consistent with this proportion of total

serum IgE arising from short-lived plasma cells generated

from ongoing IgE B cell responses. The residual total

serum IgE levels that were not affected by quilizumab

treatment may have been produced by long-lived IgE

plasma cells that were not targeted by quilizumab. Inter-

estingly, the reductions in total serum IgE were sustained

at least six months after the last dose of quilizumab,

suggesting that treatment with quilizumab may have abro-

gated some memory IgE responses that were contributing

to ongoing IgE production, which were not regenerated

upon the cessation of quilizumab therapy.

Conclusions
Studies of IgE production using genetically modified IgE

reporter mice have revealed that most IgE in mice is

produced by short-lived IgE plasma cells arising from

ongoing IgE B cell responses. IgE responses in mice are

transient, due to a limited persistence of IgE germinal

center responses and the short life span of most IgE-

producing plasma cells. IgE memory responses remain

poorly understood, and the sources of IgE memory are

controversial, although both IgE and IgG1 memory B cells

have been implicated. Further studies of IgE production in

mice are needed to better define the mechanisms that limit
www.sciencedirect.com
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IgE germinal center responses and predispose IgE-

switched cells to differentiate into short-lived plasma cells,

as well as the sources of IgE memory.

Results of clinical studies of agents targeting IL-4 and/or

IL-13, as well as membrane IgE, indicate that a significant

proportion of IgE in humans arises from short-lived IgE

plasma cells and ongoing IgE B cell responses, similar to

that observed in mice. However, the human clinical

studies also suggest that a major proportion of IgE in

humans, larger than that observed in mice, may arise from

long-lived IgE plasma cells. It should be noted that

differences in mouse models of IgE production compared

to IgE production in humans may account for the differ-

ences in the effects of therapeutics in mice versus

humans. For instance, mouse models of IgE responses

are acute models with defined time points of immuniz-

ation and therapeutic intervention. By contrast, patients

treated with therapeutics have longstanding IgE

responses arising from multiple previous allergic chal-

lenges, which may result in different proportions of short-

lived versus long-lived plasma cells and differences in the

extent to which therapeutic agents can reduce existing

IgE levels. In addition, most mouse models employ one

specific antigen/allergen for immunization and exposure,

whereas allergic individuals typically have many different

IgE specificities, some or all of which may contribute to

disease pathogenesis.

Although the results of the clinical studies indicate that

IL-13 plays an important role in IgE class switch recom-

bination to generate IgE in humans, the contribution of

IL-4 to IgE production remains to be clarified. Further

studies are also needed to better understand the fre-

quency and drivers of IgE class switching in humans,

as well as the contribution of short-lived versus long-lived

plasma cells to the total serum IgE pool in allergic

patients, especially those with very high levels of IgE.

In addition, studies are needed to define whether there

are differential contributions of IgE generated from short-

lived versus long-lived plasma cells, or from IgE produced

in different anatomical locations, to disease pathogenesis

in humans. An increased understanding of IgE production

in health and disease may lead to new therapies for the

treatment of allergic diseases.
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