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ABSTRACT Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal
lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of
lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into
monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-
sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C
(0.2 and 0.4 mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to
quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct
steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles
bridged to the interfacial film by Ca21 ions are inserted into defects of a disordered monolayer at low surface pressures.
Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher
surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated
adsorption mechanism takes place.

INTRODUCTION

The pulmonary lung surfactant is a complex lipid-protein

monolayer that lines the alveolar air/liquid interface. This

surfactant is essential for normal breathing because it lowers

the surface tension to about a value of zero and so prevents

the collapse of the alveoli (1). During exhalation, it forms

tightly packed, meandric multilayer protrusions that can re-

versibly respread during inhalation (2–5). Furthermore, the

surfactant constituents are exchanged continuously. The half-

life of different surfactant components is 5–12 h for phos-

pholipids and 6–28 h for surfactant proteins (6). Thus, the

lung surfactant provides a certain stability to ensure a con-

stant coverage of the alveolar interface and confers it with

high flexibility that enables rapid material exchange and

adaptation to folding dynamics.

Analysis of lung lavage has revealed that 85–90% of the

pulmonary surfactant is composed of lipids, especially di-

palmitoylphosphatidylcholine (DPPC), phoshatidylglycerols

(PGs), and other mainly unsaturated phospholipids in addi-

tion to fatty acids, cholesterol, and proteins (7). The net un-

charged and saturated lipid DPPC is primarily responsible for

reducing surface tension and withstanding high surface pres-

sures (8). However, it functions poorly in the lung when used

alone, apparently because it adsorbs slowly to the air/liquid

interface (9). In contrast, negatively charged PGs in the

monolayer and in vesicular structures present in the alveolar

aqueous hypophase are most relevant for monolayer re-

spreading and enhancement of lipid adsorption from vesicles

(10). Also, unsaturated phospholipids have been shown to be

good fluidizers and so spread more rapidly to the air/liquid

interface due to their low phase transition temperature; their

monolayers, however, collapse readily at surface pressures

well below those attained under in vivo conditions (11,12). As

described by the ‘‘squeeze-out’’ theory of lung surfactant

function, fluidizing lipids facilitate the adsorption of surfactant

molecules to the interface and are selectively removed or

squeezed out of the surface layer at higher surface pressure.

Thus, the remaining monolayer is probably enriched in lipids

that promote low surface tension (13,14).

In addition to the unsaturated phospholipids, the two hy-

drophobic surfactant-specific proteins SP-B and SP-C are

thought to be responsible for rapid protrusion formation and

material exchange in the surface layer (13–15). The cysteine-

linked homodimer SP-B is composed of 79 amino acids and

has a molecular mass of 8.7 kDa. It induces bilayer contact

sites and subsequent lipid mixing between bilayers (16,17).

SP-B is a protein in pulmonary surfactant that is, in large part,

responsible for the prevention of pulmonary alveoli collapse.

In addition, its function-determining regions lie in the hy-

drophilic and hydrophobic domains (18). The 4.2-kDa sur-

factant protein SP-C consists of 35 amino acids and is one

of the most hydrophobic proteins known due to its high

content of Val, Ile, and Leu. SP-C stabilizes protrusion for-

mation during exhalation by anchoring the surface mono-

layer and the underlying multilayers with its palmitoyl residues

and a-helix (2,19,20), but it also enhances adsorption of vesicle

lipids (10,21,22). It has also been observed that SP-B or SP-C

present in DPPC, DPPG, or mixed lipid monolayers alter

the thermodynamic properties of the phospholipid mem-

branes (23).
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Adsorption of vesicle lipids to the interfacial monolayer

should occur in distinct steps. Several models have been pos-

tulated to describe the mechanism of lipid adsorption (24–26).

A two-step model was proposed suggesting transport of ves-

icles to the surface followed by fusion with the interfacial

monolayer (27). However, details of the insertion process still

remain uncertain and are a matter of discussion.

In this study, we aimed at further unraveling the mech-

anistic aspects of lipid adsorption and determining the effect

of saturation grade as well as headgroup charge of the phos-

pholipids on the SP-B/SP-C-induced fusion process. Our

results are summarized in a detailed model describing distinct

steps during the adsorption process.

MATERIAL AND METHODS

Materials

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phos-

phoglycerol (DPPG), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

(POPG) were purchased from Avanti Polar Lipids (Alabaster, AL) and used

without further purification. Chloroform and methanol were high-performance

liquid chromatography grade and purchased from Sigma-Aldrich (Steinheim,

Germany) and Merck (Darmstadt, Germany), respectively. The buffer solution

used to hydrate lipid films consisted of N-2-(hydroxyethyl)piperazine-N9-2-

ethansulfonic acid (HEPES) from Merck supplemented with sodium salt of

ethylenediaminetetraacetic acid (Na-EDTA) from Sigma-Aldrich. The sub-

phase buffer contained HEPES as well as calcium chloride dihydrate from

Fluka (Neu-Ulm, Germany). 2-(4,4-Difluoro-5-methyl-4-bora-3a,4a-diaza-s-in-

dacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-

PC) was obtained from Molecular Probes (Eugene, OR). The preparation

of vesicles was carried out with a mini-extruder from Avestin (Liposofast; Ot-

tawa, Canada). The porcine surfactant proteins SP-B and SP-C were purified

from bronchoalveolar lavage fluid by butanol extraction (28). The proteins were

free of contaminants as was evidenced by electrospray ionization mass spec-

trometry. The amino acid sequences corresponded to the expected sequences

according to the Swiss-Prot database.

Vesicle preparation

A DPPC/DPPG mixture with a molar ratio of 4:1 was dissolved in chloro-

form/methanol (1:1, v/v) and dried under a stream of nitrogen at 50�C. The

remaining solvent was removed for at least 3 h at 50�C in a vacuum oven.

The lipid films were hydrated by adding a buffer containing 25 mM HEPES

and 0.1 mM Na-EDTA. The vesicle suspension (5 mM) was maintained at

50�C in a water bath for 10 min and was vortexed for 30 s. The procedure of

heating and vortexing was repeated twice. The resulting multilamellar ves-

icles were converted into small unilamellar vesicles at 50�C by membrane

extrusion using a polycarbonate membrane with a pore diameter of 50 nm.

Kinetic studies

The kinetic experiments were performed using a preformed monolayer

composed of DPPC, DPPG, POPC, or POPG. For lipid/protein films, a

protein content of 0.2 mol % for SP-B and 0.4 mol % for SP-C was chosen in

accordance with previous investigations (2,20,29–31) and because the con-

tent of hydrophobic proteins has been found to be ,1% in lung lavages

(9,22). The monolayer was spread at the air/water interface of a Wilhelmy

film balance with a 25 ml Teflon trough (15.4 cm 3 2.5 cm) by depositing a

few droplets of chloroform/methanol containing the dissolved lipids onto the

aqueous surface. The subphase consisted of 25 mM HEPES (pH 7.0) and

3 mM CaCl2 and was stirred continuously by a magnetic bar. The monolayer

was compressed with a computer-controlled barrier to a defined surface

pressure between 5 mN/m and 45 mN/m. After a constant pressure had been

maintained for 10 min, vesicle suspensions were injected through an injec-

tion port into the subphase with a Hamilton syringe. The final lipid con-

centration in the subphase was 20 mmol/L. Insertion of lipids was studied at

20�C by following the surface pressure change with time at constant total

area over a time period of at least 7000 s (2 h). The insertion velocity was

quantified by determining the initial slope of the pressure-area isotherm.

Kinetic fluorescence microscopy measurements

Fluorescence microscopy images were obtained before and during DPPC/

DPPG 4:1 vesicle insertion into a DPPC/SP-C (0.4 mol % of protein) and

DPPC/SP-B (0.2 mol % of protein) monolayer on a subphase containing 25

mM HEPES and 3 mM CaCl2. The experimental setup consisted of a light

microscope equipped with an XY stage (Olympus BX-FLA; Olympus,

Hamburg, Germany) that was connected to a charge-coupled device camera

(Hamamatsu, Herrsching, Germany). Phospholipid samples used to form the

monolayer were dissolved in chloroform/methanol solvent and doped with

0.1 mol % BODIPY-PC.

RESULTS

The aim of this study was to systematically work out the

influence of saturation grade and headgroup charge of phos-

pholipids on the insertion of vesicular material into surfactant

model systems spread at the air/water interface of a film

balance. We used pure lipid vesicles to mimic the insertion of

new surfactant material into the alveolar surface monolayer

during inhalation. The presence of negatively charged lipid in

the vesicular material and buffered systems containing Ca21

ions in the subphase have previously been reported to be

crucial for successful material insertion (10). Moreover, the

presence of calcium is essential to mimic the physiological

conditions. Unilamellar vesicles were shown to be excellent

membrane models to study transport and insertion processes

in biomembranes (32). Vesicle insertion dynamics was there-

fore determined in this study by using unilamellar vesicles

with a diameter of 50 nm consisting of DPPC/DPPG (4:1, mol

ratio) and surfactant monolayers differing in their lipid and

protein composition.

Protein-free monolayers

First, the insertion kinetics of pure lipid systems varying in

their saturation grade and headgroup charge was studied.

Pressure-time isotherms obtained for DPPC, POPC, DPPG,

and POPG monolayers on a buffered subphase (25 mM

HEPES, 3 mM CaCl2, pH 7) after addition of DPPC/DPPG

4:1 vesicle at 20�C are presented in Fig. 1. All monolayers

were compressed to a defined initial surface pressure before

addition of vesicular material into the subphase. The time of

vesicle injection is marked with an arrow in the figure.

DPPC monolayers were compressed to different initial

surface pressures to study the influence of lipid packing on

the insertion process. No sign of pressure increase after ves-

icle addition was detectable over the entire time range of the
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experiment (Fig. 1 A). However, when unsaturated and un-

charged POPC monolayers were used, a pressure increase of

7–10 mN/m was observable at initial pressures of 10 and 20

mN/m (Fig. 1 B). The velocity of vesicle insertion was cal-

culated to be 0.027 6 0.002 mN/m�s at 10 mN/m and 0.025 6

0.002 mN/m�s at 20 mN/m, respectively. When the POPC film

was compressed to higher start pressures, no pressure increase

was discernible. Instead, surface pressure continuously de-

creased over time, which is indicative of a certain instability of

the POPC system.

Monolayers of DPPG that were compressed to initial

surface pressures between 20 and 45 mN/m did not exhibit a

significant pressure increase after vesicle injection. They

remained stable over the entire timescale of the experiment.

Unlike DPPC, a pressure increase of ;15 mN/m was ob-

served at an initial pressure of 10 mN/m with an insertion rate

of 0.023 6 0.001 mN/m�s. In the case of POPG, a pressure

increase at initial surface pressures of 10 mN/m and 20 mN/m,

comparable to those of the POPC system, were visible. The

pressure increase was in the range of 8–12 mN/m, and the

insertion velocity was 0.024 6 0.001 mN/m�s at 10 mN/m

and 0.027 6 0.001 mN/m�s at 20 mN/m. Interestingly, POPG

monolayers were more stable than those of fluid POPC at an

initial pressure of 35 mN/m and did not show any sign of

pressure decrease over time.

In summary, saturated lipid monolayers did not display

any pressure increase after addition of vesicles to the sub-

phase in the absence of surfactant proteins. One exception

was DPPG compressed to an initial pressure of 10 mN/m.

Unsaturated monolayers, however, were characterized by a

significant pressure increase at low initial pressures (,30

mN/m) after vesicle injection. There was no observable

pressure increase only when POPC and POPG monolayers

were compressed to initial surface pressures of 30 mN/m and

above. In fluid systems, negatively charged monolayers

seemed to convey enhanced monolayer stability.

SP-C-containing monolayers

Surfactant specific proteins SP-B and SP-C play an important

role in the dynamics of lung surfactant (33). They promote

absorption of lipids from membrane suspensions to pure or

monolayer-covered air/water interfaces (10,34,35) and induce

controlled squeeze-out of surface material during monolayer

compression (2,20). In our experiments, we wanted to de-

termine the influence of lipid saturation grade and headgroup

charge on surfactant protein-induced material insertion. First,

pressure-time isotherms of DPPC/DPPG 4:1 vesicle insertion

into DPPC, POPC, DPPG, and POPG monolayers containing

0.4 mol % SP-C on a buffered subphase at 20�C were mon-

itored (Fig. 2).

In contrast to the pure DPPC system, a pronounced pres-

sure increase was already observed in the presence of SP-C at

a start pressure of 10 mN/m (Fig. 2 A). Below this pressure,

no significant pressure increase was detectable. Pressure-time

isotherms of DPPC/SP-C monolayers obtained at initial

pressures between 10 mN/m and 20 mN/m first showed a lag

phase with a very slow pressure increase after vesicle injec-

tion. The initial insertion velocity at start pressures of 10, 15,

and 20 mN/m were 0.010 6 0.001 mN/m�s, 0.026 6 0.001

mN/m�s, and 0.048 6 0.001 mN/m�s, respectively. As soon

as a critical pressure between 20 mN/m and 25 mN/m was

exceeded during the time course of the experiment, insertion

velocity increased to ;20–30-fold and led to a sigmoidal

curve progression. When monolayers were already com-

pressed to initial pressures of 25 mN/m and above, pressure-

time isotherms were characterized by an immediate expo-

nential pressure increase after addition of vesicular material.

FIGURE 1 Pressure-time isotherms of (A) DPPC, (B)

POPC, (C) DPPG, and (D) POPG monolayers compressed

to different initial surface pressures after injection of DPPC/

DPPG 4:1 vesicles into the subphase containing 25 mM

HEPES, 3 mM CaCl2 (pH 7) at 20�C. The arrows indicate

the time of vesicle injection.
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Initial insertion velocities were then at 0.080–0.150 mN/m�s.

All pressure-time isotherms of the DPPC/SP-C system (ex-

cept the one at a start pressure of 5 mN/m) attained a stable

equilibrium pressure of 50–52 mN/m.

The insertion process observed for POPC/SP-C systems is

characterized by an exponential rather than a sigmoidal

pressure increase with pressure changes ranging from 4 mN/m

(at an initial pressure of 30 mN/m) to 12 mN/m (at an initial

pressure of 10 mN/m). Determination of reproducible initial

insertion velocities was hampered due to high monolayer

instability. In addition, equilibrium surface pressures reached

at the end of the insertion process were different for every

initial surface pressure tested. Only the POPC/SP-C iso-

therms at 35 mN/m and 40 mN/m reached an equilibrium

pressure of 50–52 mN/m. As was the case for pure POPC

films, reduced monolayer stability led to occasional pressure

drops during the measurement.

The isotherms of DPPG/SP-C monolayers most interest-

ingly exhibited a biphasic pressure increase at initial pres-

sures of 5–20 mN/m (Fig. 2 C). The first phase was

characterized by a pressure increase up to a value of 35 mN/m.

The insertion velocities were in the range of 0.194 6 0.002

mN/m�s (at an initial pressure of 5 mN/m) and 0.130 6 0.003

mN/m�s (at an initial pressure of 20 mN/m). After a lag phase

of 100–150 s, an acceleration of the insertion process was

detectable, leading to a second pressure increase up to a final

equilibrium surface pressure between 46 mN/m and 53 mN/m.

Above an initial pressure of 25 mN/m, only a monophasic

behavior was observable. The insertion velocities found for

DPPG/SP-C systems at initial pressures above 25 mN/m

were ;2.5 times higher than those obtained for lower start

pressures and up to 5 times higher compared to the insertion

velocities of DPPC/SP-C isotherms at start pressures of 25–

45 mN/m.

The pressure-time curves obtained for POPG/SP-C mono-

layers revealed that pronounced vesicle insertion only oc-

curred at initial surface pressures above 15 mN/m (Fig. 2 D).

At pressures below 15 mN/m, only a slight increase of 8 mN/m

was observed within 7000 s. At initial pressures of 15 and 20

mN/m, a long lag phase followed by a fast pressure increase

was observed when a critical pressure of 20–25 mN/m was

surpassed in the course of the experiment. Insertion rates

were in the range of a biphasic insertion process; however,

this was visible only after an initial pressure of 25–35 mN/m.

The first pressure increase went up to a value of 35 mN/m,

whereas the second one ended at an equilibrium pressure of

48–51 mN/m. Overall, the POPG/SP-C curves reached their

end pressure last compared to all other examined systems

containing SP-C.

Fluorescence images were taken of a DPPC/SP-C mono-

layer compressed to an initial pressure of 15 mN/m to obtain

information on the processes taking place at the air/water

interface during vesicle insertion and the topological char-

acteristics of the monolayer at different points of the pres-

sure-time curve (Fig. 3). The arrows in the figure indicate the

pressure regions from which fluorescence images were ob-

tained. Before vesicle injection, only kidney-shaped, regular

domains were visible (Fig. 3 A). After addition of vesicles to

the subphase, already existing domains assumed a rounder

shape and new smaller domains appeared in the monolayer

during the lag phase (Fig. 3 B). When the insertion process

suddenly accelerated at 25 mN/m, a significant decrease in

domain size was observable, leading to a regular domain

pattern at the inflection point of the isotherm (Fig. 3 C). When

the equilibrium pressure was reached, the monolayer seemed

to consist of fused homogenous domain structures (Fig. 3 D).

In summary, insertion of DPPC/DPPG vesicles was

clearly induced by SP-C. All binary lipid/protein mono-

FIGURE 2 Pressure-time isotherms of (A) DPPC/SP-C,

(B) POPC/SP-C, (C) DPPG/SP-C, and (D) POPG/SP-C

monolayers with 0.4 mol % SP-C compressed to different

initial surface pressures after injection of DPPC/DPPG 4:1

vesicles into the subphase containing 25 mM HEPES, 3

mM CaCl2 (pH 7) at 20�C. The arrows indicate the time of

vesicle injection.
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layer—except for the POPC/SP-C mixture, which was too

unstable—reached an equilibrium surface pressure of 48–51

mN/m. An interesting feature was the appearance of a two-

step insertion process only in the presence of PGs and only

under conditions with obviously defined molecular packing

densities, that is only at ,25 mN/m in the presence of satu-

rated DPPG and only at .25 mN/m in fluid POPG layers.

Negatively charged lipids again stabilized the monolayer,

as was already the case in the protein-free systems.

SP-B-containing monolayers

To determine the influence of SP-B on insertion of DPPC/

DPPG 4:1 vesicles into surfactant monolayers containing 0.2

mol % SP-B, lipids differing in headgroup charge and satu-

ration grade pressure-time isotherms were measured (Fig. 4).

Vesicle insertion into DPPC/SP-B monolayers was ob-

servable at all investigated initial pressures between 5 and

45 mN/m (Fig. 4 A). At start pressures of 5–15 mN/m, curve

progression was biphasic. The first phase of vesicle insertion

was characterized by an exponential pressure increase of

15–20 mN/m. After a lag time of at least 200 s, the second

phase began, leading to another exponential increase up to an

equilibrium pressure of 48–52 mN/m. At initial pressures

above 25 mN/m, only a monophasic insertion process was

identified. All curves reached an end pressure of ;48–52

mN/m. Compared to the SP-C- containing system, 6–28-fold

higher insertion velocities at initial pressures of 5–20 mN/m

were determined; they ranged from 0.085 mN/m�s to 0.301

mN/m�s at 5 mN/m and 20 mN/m, respectively. At initial

pressures above 25 mN/m, however, vesicle insertion into

DPPC/SP-B monolayers differed only by a factor of 0.8–2.9

from DPPC/SP-C monolayers and was in the range of 0.104–

0.278 mN/m�s.

POPC/SP-B systems proved to by highly unstable, which

is the reason that insertion velocities could not be quantified

(Fig. 4 B). Still, a pronounced SP-B-induced insertion of

vesicular material was observable, which ended at different

equilibrium pressures. At an initial pressure of 5 mN/m, the

POPC/SP-B isotherm rose to an end pressure of 22 mN/m,

whereas the curve initially compressed to 10 mN/m showed

an end pressure of 40 mN/m.

The insertion of vesicular material into DPPG/SP-B

monolayers was characterized by a monophasic insertion

process with high insertion velocities that depended on the

FIGURE 3 Pressure-time isotherm of a DPPC/SP-C mono-

layer with 0.4 mol % SP-C compressed to 15 mN/m after

injection of DPPC/DPPG 4:1 vesicles into the subphase

containing 25 mM HEPES, 3 mM CaCl2 (pH 7) at 20�C.

Arrows indicate the points on the isotherm at which fluores-

cence images A–D were taken.

FIGURE 4 Pressure-time isotherms of (A) DPPC/SP-B,

(B) POPC/SP-B, (C) DPPG/SP-B, and (D) POPG/SP-B

monolayers with 0.2 mol % SP-B compressed to different

initial surface pressures after injection of DPPC/DPPG 4:1

vesicles into the subphase containing 25 mM HEPES, 3

mM CaCl2 (pH 7) at 20�C. The arrows indicate the time of

vesicle injection.
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pressure to which the monolayer was first compressed and

that were in the same range as in DPPG/SP-C systems.

Insertion velocities constantly increased from 0.100 mN/m�s
at a start pressure of 5 mN/m to 0.292 mN/m�s at an initial

pressure of 30 mN/m (Fig. 4 C). All isotherms ended at

equilibrium pressures of 40–45 mN/m, which were signifi-

cantly lower than the ones found for the corresponding SP-C

system or the DPPC/SP-B mixture. The presence of nega-

tively charged DPPG, therefore, seems to destabilize the

monolayer at higher surface pressures; this can also be seen

from the continuous decrease in pressure with time after the

equilibrium surface pressure is reached.

Vesicle insertion into POPG/SP-B systems is character-

ized by an immediate exponential pressure increase at all start

pressures tested between 5 mN/m and 35 mN/m (Fig. 4 D).

Equilibrium pressures, however, demonstrate a high degree

of fluctuation and vary from 28 mN/m (at a start pressure of

5 mN/m) to 43 mN/m (at a start pressure of 35 mN/m). In-

sertion velocities are in the range of 0.046–0.089 mN/m�s.

The fluorescence images taken during material insertion

into DPPC/SP-B surface layers reveal a very regular pattern

of round domains before vesicle addition to the subphase

(Fig. 5 A). The first phase of material insertion is character-

ized by an increase of some of the domains under concomi-

tant change in domain form from round to kidney-shaped

(Fig. 5 B). During the first lag phase at 40 mN/m, a contin-

uous decrease in domain size is observable (Fig. 5 C). At equi-

librium pressure, contrast was weak due to self-quenching.

Apart from this, the overall appearance of monolayer topology

did not change significantly to that observed at 40 mN/m

(Fig. 5 D).

The kinetic results of SP-B-containing surfactant model

systems demonstrate that SP-B also mediates vesicle inser-

tion into preformed monolayers at the air/water interface.

Insertion velocities are clearly higher than the ones found for

lipid/SP-C mixtures, especially at surface pressures below 25

mN/m. Above this pressure value and in the presence of DPPG

insertion, rates were similar to those of SP-C-containing systems.

Interestingly, the effect of negatively charged lipids was

contrary to the one found for SP-C-containing systems. Bi-

phasic material insertion was only observed for the DPPC/

SP-B mixture, whereas two insertion steps were only visible

in the presence of PG in SP-C/lipid layers. In addition, PG-

containing SP-B monolayers did not withstand or reach

high surface pressures of 50 mN/m. Surface layers contain-

ing POPC generally proved to be highly unstable in the

presence of SP-B and SP-C, which indicates the significance

of saturated lipids and negatively charged PGs for surfactant

function.

DISCUSSION

Lung surfactant dynamics implies two primary processes: 1),

the insertion of new surfactant material from the hypophase

into the monolayer lining the alveolar interface and the

material squeeze-out for recycling; and 2), the folding and

respreading of the meandric surface layers during the

breathing cycle. The formation of protrusions from surfactant

layers during exhalation was first postulated by von Nahmen

et al. (2) upon visualizing three-dimensional structures in

Langmuir-Blodgett films of DPPC/DPPG/SP-C monolayers

with scanning force microscopy. One year later, Schürch

et al. (3) provided proof of multilamellar structures in vivo by

transmission electron microscopy of guinea pig lung prepa-

rations. The importance of monolayer fluidizing components

such as unsaturated POPC and POPG for surfactant dynamics

also has been discussed in the context of protrusion formation

(4). Unsaturated lipids should enable a fast and especially

reversible deconvolution during inhalation because of their

nonideal packing and low phase transition temperature

(11,12). The squeeze-out theory postulates that fluidizing

lipids facilitates the fast adsorption of new material out of the

hypophase but that the lipids are easily squeezed out of the

surface layer during exhalation. At this stage, only lipids

remain in the surfactant layer; these lipids form stable films at

high surface pressures and are effective surface tension-

reducing agents (13,14,36). In SP-B-containing surfactant

model systems, discoidal lipid-protein structures were iden-

tified at high surface pressures with scanning force micros-

copy (20). These SP-B-specific protrusions are considered

important for material recycling and surface refinement

during the breathing process.

Saturated lipids such as the uncharged DPPC adsorb only

very slowly from the hypophase to the monolayer at the air/

FIGURE 5 Pressure-time isotherm of a DPPC/SP-B mono-

layer with 0.2 mol % SP-B compressed to 15 mN/m after

injection of DPPC/DPPG 4:1 vesicles into the subphase

containing 25 mM HEPES, 3 mM CaCl2 (pH 7) at 20�C.

Arrows indicate the points on the isotherm at which fluores-

cence images A–D were taken.
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water interface (9). It is therefore doubtful that this lipid alone

supports the dynamic insertion processes in lung surfactant.

Negatively charged lipids, however, evidently accelerate

vesicle adsorption (10) and are assumed to play an important

role in respreading of surface-confined multilayers (20,37).

Yet, the exact role of phospholipid headgroup charge and

saturation grade in the material adsorption process has been

only insufficiently elucidated thus far.

The two hydrophobic surfactant proteins SP-B and SP-C

are known to accelerate dynamic folding and material

exchange in the surfactant monolayer (15,34,35,38). SP-B is

thought to present the junction between two adjacent lipid

layers (16,17), whereas SP-C most probably anchors multi-

lamellar structures to the monolayer and accelerates adsorp-

tion of lipid vesicles (2,10,20). Although several protein

functions in lung surfactant are already understood, there is

no detailed knowledge on specific interactions between these

two proteins with individual lipids.

As to the mechanism of the insertion process, the indi-

vidual steps leading to a controlled refinement of the mono-

layer are still not understood in detail. Walters et al. (27)

proposed a two-step model of adsorption describing the

transport of surfactant protein-containing vesicles to the air/

water interface as a first step and the subsequent fusion with

the monolayer as a second step. Calcium ions are supposed to

accelerate the first process by bridging the headgroups of

negatively charged lipids present in both the monolayer and

the vesicles. The second step is presumably promoted by the

presence of fluid lipids because highly curved intermediate

structures are assumed to precede membrane fusion, whereas

lipid charge is negligible (27). These results were supported

by Rodriguez-Capote et al. (39), who also found that a higher

lipid fluidity is beneficial for lipid absorption. Although the

model of Walters et al. (27) is a good working hypothesis,

it still lacks details on structure-function relationships de-

termining individual steps of the insertion kinetics. This ar-

ticle focuses on the insertion of pure lipid vesicles into

protein-containing monolayers. Our results demonstrate ev-

idence of clear-cut differences between SP-B and SP-C and

provide a refined model that encompasses the molecular and

structural characteristics of both hydrophobic surfactant

proteins.

Molecular packing and vesicle insertion

When we studied the protein-free lipid systems, we observed

a significant pressure increase at low initial pressures (,20

mN/m for DPPG and ,30 mN/m for POPC and POPG).

Only DPPC monolayers did not show any sign of vesicle

insertion. These results can be explained by the pronounced

rigidity of DPPC and its ability to form highly stable mono-

layers. As was hypothesized previously, DPPC alone seems

to be too rigid to enhance a dynamic material exchange

(3,40). The pressure increase after vesicle injection in the

unsaturated POPC and POPG monolayers at 10 mN/m and

20 mN/m and in the saturated and negatively charged DPPG

surface layers at 10 mN/m is indicative of a considerate

material insertion. It may be a consequence of the conical

shape of DPPG, POPC, and POPG (4,41,42), which could

lead to the formation of defects in the monolayer. Fig. 6

shows this hypothesis and provides a convincing model for

the observed pressure increase in extremely fluid mono-

layers. Ca21 ions most likely attach subphase vesicles to the

interfacial monolayer via Ca21 bridges. Low lipid packing

densities in the monolayer and disordered chain orientation

due to the presence of unsaturated acyl chains could then

facilitate the insertion of new material from the subphase.

Adsorption of vesicle lipids would only occur as long as lipid

molecular packing is low and would level off as headgroup

spacing decreases. In the case of POPC and POPG, the

limiting pressure for defect-induced material insertion would

be 30 mN/m. In DPPG monolayers, however, vesicle inser-

tion only occurs at initial pressures below 15 mN/m and leads

to a final pressure of 25 mN/m.

FIGURE 6 Insertion of vesicle lipids into protein-free

surface layers. Calcium ions probably induce attachment of

vesicles to the surface monolayer by bridging negatively

charged lipid phosphate groups. Flip-flop of vesicle lipids

could occur in monolayer regions characterized by low

lipid packing density and/or disordered chain orientation.
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The comparable pressure differences between the start and

end pressures obtained for the unsaturated systems suggest

that only a certain amount of subphase material enters the

surface film. The adsorbed amount of material seems to be

higher in the saturated DPPG system than in the two unsat-

urated ones, which is rather surprising because saturated acyl

chains should promote the formation of tightly packed

monolayers. Possibly, the presence of calcium ions in the

subphase leads to a disturbed packing arrangement where

DPPG-Ca21 complexes are most likely to coexist with un-

bound DPPG molecules. The negative headgroup charges

obviously stabilize the monolayers at high surface pressures,

as can be seen from the POPG isotherm at 35 mN/m com-

pared to the curve of POPC.

SP-C-induced vesicle insertion

More complex insertion kinetics are observable as soon as the

four tested lipid systems are doped with 0.4 mol % SP-C.

When only neutral lipids are present in the monolayer, a

monophasic insertion process is visible with a sigmoidal or

exponential curve progression depending on the initial

pressure. It seems that rapid material insertion only occurs

when a defined threshold pressure value is exceeded; this is

true particularly for lipid/protein mixtures containing satu-

rated lipids or PGs. When negatively charged lipids were

mixed with SP-C, insertion velocities increased considerably

and, surprisingly, a biphasic insertion mechanism was iden-

tified. Insertion velocities depended on the saturation grade

and compression state of the monolayer. In the case of

DPPG-containing systems, the biphasic process appeared at

initial pressures below 25 mN/m; in POPG mixtures, how-

ever, an inverse behavior was found, namely the appearance

of two insertion steps at initial pressures higher than 25 mN/m.

Therefore, it seems that, in the presence of PGs, molecular

packing densities have a considerable effect on the insertion

mechanism and probably induce a change in protein confor-

mation that significantly enhances material absorption.

We summarized the results obtained from our kinetic

measurements in a mechanistic model, which is shown in

Fig. 7. From fluorescence measurements performed during

the adsorption of vesicle lipids, we concluded that material is

first inserted in the fluid regions of the monolayer, because

new domains grow in the fluorescent phase representing

DPPC in the liquid-expanded state (12). This adsorption step

could be similar to the one discussed for the protein-free

systems, if we assume that SP-C increases the amount of

defects in the monolayer and effectively reduces lipid

packing density in the fluid phase (Fig. 7 A). As vesicle

insertion proceeds and lateral pressure in the monolayer in-

creases, it becomes obvious that SP-C takes a more active

role in the adsorption process. SP-C is assumed to be

squeezed out of the monolayer upon its compression (30).

It is therefore most likely that protrusions formed in this way

accelerate material insertion with SP-C connecting neigh-

boring membranes (Fig. 7 B). In this manner, the a-helix

could penetrate vesicular membranes and disrupt their bilayer

structures. Possibly, lipid acyl chains could then change their

orientations by hydrophobic interactions with the a-helix and

perform an SP-C-mediated flip-flop (Fig. 7 C). The presence

of negatively charged lipids probably modulates monolayer

arrangement and influences the surface pressure at which SP-C

is squeezed out of the monolayer. The time constants of the

two processes—the molecular packing-induced insertion and

the SP-C-triggered adsorption of vesicle lipids—are very

likely sensitive to electrostatic interactions and perhaps even

specific lipid/protein interactions. Lipid packing density also

modulates insertion kinetics. If monolayer stability is too

low, as is the case in extremely fluid POPC/SP-C systems,

material insertion probably only occurs due to disordered

molecular packing and not via the protein-induced adsorption

mechanism. Surface films, therefore, must exhibit a mini-

mum stability if SP-C induces rapid material insertion. Fur-

ther increase in molecular packing by compressing the

monolayer above a threshold value of 25 mN/m obviously

leads to acceleration of the protein-induced insertion process

so that only one insertion step is visible.

SP-B-induced vesicle insertion

Surfactant model systems containing 0.2 mol % SP-B are

characterized by insertion rates that are significantly higher

than the ones found in the corresponding SP-C mixtures—

especially at surface pressures up to 25 mN/m. The only

exception was found for DPPG-containing systems. In these

systems, insertion velocities were in the pressure range of

5–25 mN/m, which is almost identical to the velocities of

DPPG/SP-C monolayers, and only half the value at surface

pressures higher than 30 mN/m. POPC-containing monolayers

could not be quantified due to high film instability, as was also

the case in POPC/SP-C systems.

Even though SP-B effectively induces material insertion at

lower surface pressures, a considerable reduction in insertion

velocities is observable in the presence of negatively charged

lipids as soon as a value of 40 mN/m is exceeded. The slopes

of the pressure time curves become less steep above this

threshold value, and the final equilibrium pressures reached

are well below the value of 50 mN/m that is typical for SP-C-

containing monolayers. We could attribute this behavior to

SP-B being squeezed out in the presence of PGs at surface

pressures of 40 mN/m (20,40) if we assumed that the lipid/

protein structures formed in this way were no longer capable

of inducing effective material insertion. Differences in pro-

tein conformation could also explain these differences in

insertion kinetics, especially because the SP-B secondary

structure is believed to be very sensitive to electrostatic lipid/

protein interactions. For instance, it has been reported that

SP-B is less embedded in anionic bilayers than SP-C and

probably adopts a more extended conformation, which leads

to enhanced recognition by antibodies (43).
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In contrast to SP-C, biphasic adsorption of vesicle lipids is

only monitored in DPPC/SP-B monolayers in the absence of

negatively charged lipids and unsaturated acyl chains. This is

in clear contrast to SP-C-containing monolayers that dis-

played a biphasic material insertion exclusively in the pres-

ence of negatively charged lipids. If we assume that two

insertion steps also occur in SP-B-containing systems—the

first one being attributed to a molecular arrangement-induced

insertion and the second to an SP-B-promoted mechanism—

negatively charged lipids could accelerate the protein-de-

pendent step thus far so that the pressure time courses only

appear monophasic. This hypothesis is shown in Fig. 8 in

more detail. Due to its larger molecular dimension, SP-B

would be more effective in generating defects in the mono-

layer. This would explain the significantly higher insertion

rates observed at lower surface pressures (Fig. 8 A). In ad-

dition, SP-B is squeezed out at lower surface pressures than

SP-C, a process that seems to be enhanced by negatively

charged lipids. Therefore, material insertion would also be

initiated at lower pressure threshold values and with higher

rates. Because SP-B is less hydrophobic than SP-C and

possesses seven positive netto charges, we assume that it

promotes a flip-flop of the lipids mainly by its hydrophilic

core (Fig. 8 B). This SP-B-enhanced insertion mechanism,

however, only takes place as long the protein is not com-

pletely squeezed out of the monolayer. As soon as a threshold

value of 40 mN/m is exceeded, PG-induced exclusion of SP-

B/lipid aggregates would lead to a significant slowdown and

final stop of material insertion (Fig. 8 C). At this stage, the

possible function of the protein probably extends to stabilize

the multilayer structures formed by vesicle adhesion and to

generate a surfactant reservoir capable of rapid respreading to

the surface upon inhalation.

CONCLUSION

In this study, the influence of lipid saturation grade and

headgroup charge on vesicle insertion into surfactant model

systems was systematically studied. The insertion process

was quantified and led to the development of a refined kinetic

model. The results of this study indicate that two steps are

involved in the adsorption of vesicle lipids. First, material

insertion into disordered monolayers occurs at lower surface

pressures. Increased headgroup spacing facilitating material

insertion can be achieved either by unsaturated acyl chains or

by surfactant proteins SP-B and SP-C disturbing molecular

packing in their microenvironment. Because SP-B is larger

than SP-C, it apparently creates more defects in the mono-

FIGURE 7 Insertion of vesicle lipids into SP-C-

containing surface layers. (A) Protein-independent

lipid insertion into defects created by SP-C. (B) SP-C-

induced flip-flop of vesicle lipids mediated by

hydrophobic interactions. The a-helix of SP-C is

inserted into vesicular bilayers, whereas the palmi-

toyl chains remain in the monolayer.
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layer, which leads to higher insertion rates at low initial

pressures. The second process is surfactant protein-induced

and takes place at higher surface pressures. SP-B and SP-C are

successively squeezed out of the monolayer and could act as

docking sites for vesicles from the subphase. In addition, they

could actively promote vesicle fusion by inducing a flip-flop

of lipids to the monolayer. The a-helix of SP-C could enter

the vesicle lipid bilayer, which eventually leads to disruption of

the bilayer structure and enables the acyl chains to change their

orientation by hydrophobic interactions with the a-helix.

In the case of SP-B, the outer hydrophilic and positively

charged areas of the protein might interact specifically with the

negatively charged lipid headgroups. These electrostatic inter-

actions might facilitate the flip-flop of vesicle lipids and thus

promote membrane fusion. Specific surfactant protein/PG in-

teractions are also most likely to exist, because negatively

charged lipids significantly enhance both SP-C- and SP-B-in-

duced material absorption.

This work was supported by the International North Rhine-Westfalian

Graduate School of Chemistry (M.S.) and the Deutsche Forschungsge-

meinschaft as a contribution from the Sonderforschungsbereich (424/B9 to

H.J.G.).

FIGURE 8 Insertion of vesicle lipids into SP-B-

containing surface layers. (A) Defects caused by the

presence of SP-B trigger lipid insertion into the

defective monolayer. (B) SP-B actively mediates

flip-flop of vesicle lipids via hydrophilic interac-

tions. (C) Squeeze-out of lipid/SP-B aggregates

leads to final stop of lipid insertion at surface

pressures exceeding 40 mN/m. Hydrophobic do-

mains of SP-B are colored white, whereas hydro-

philic domains are marked in gray.
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12. Möhwald, H. 1990. Phospholipid and phospholipid-protein monolayers
at the air/water interface. Annu. Rev. Phys. Chem. 41:441–476.

13. Pastrana-Rios, B., C. R. Flach, J. W. Brauner, A. J. Mautone, and R.
Mendelsohn. 1994. A direct test of the ‘‘squeeze-out’’ hypothesis of
lung surfactant function. External reflection FT-IR at the air/water
interface. Biochemistry. 33:5121–5127.

14. Goerke, J. 1998. Pulmonary surfactant: functions and molecular com-
position. Biochim. Biophys. Acta. 1408:79–89.

15. Perez-Gil, J., and K. M. Keough. 1998. Interfacial properties of sur-
factant proteins. Biochim. Biophys. Acta. 1408:203–217.

16. Oosterlaken-Dijksterhuis, M. A., M. van Eijk, L. M. van Golde, and
H. P. Haagsman. 1992. Lipid mixing is mediated by the hydrophobic
surfactant protein SP-B but not by SP-C. Biochim. Biophys. Acta.
1110:45–50.

17. Hawgood, S., M. Derrick, and F. Poulain. 1998. Structure and prop-
erties of surfactant protein B. Biochim. Biophys. Acta. 1408:150–160.

18. Cochrane, C. G., and S. D. Revak. 1991. Pulmonary surfactant protein B
(SP-B): structure-function relationships. Science. 254:566–568.

19. Bourdos, N., F. Kollmer, A. Benninghoven, M. Ross, M. Sieber, and
H.-J. Galla. 2000. Analysis of lung surfactant model systems with time-
of-flight secondary ion mass spectrometry. Biophys. J. 79:357–369.

20. Krol, S., A. Janshoff, M. Ross, and H.-J. Galla. 2000. Structure and
function of surfactant protein B and C in lipid monolayers: a scanning
force microscopy study. Phys. Chem. Chem. Phys. 2:4586–4593.

21. Johansson, J. 1998. Structure and properties of surfactant protein C.
Biochim. Biophys. Acta. 1408:161–172.

22. Curstedt, T., J. Johansson, P. Persson, A. Eklund, B. Robertson, B.
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