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In the past it has been unknown whether complex ratlonal best Chebyshe\ 
approximations (BAs) on the unit disk need be unique. This paper answers this and 
related questions by exhibiting examples in which: (a) the BA is not unique. (b) the 
number of distinct BAs is arbitrarily large. (c) the BA to a real analytic function J‘ 
(i.c., j’(5) = f(z)) among rational functions with real coefficients is not unique. and 
(d) the complex BAs to such a function are better than any approximation with real 
coefficients. Except in case (d). our constructions hold for approximation of 
arbitrary type (m. n) with n > I. Finally. by the same methods we also establish the 
new result that if a function is approximated on a small disk about 0 of radiw; c (or 
on an interval of length E), then as E + 0. the BA need not in general approach the 
corresponding Pade approximant in a sense considered by J. L. Walsh. 

1. INTR~DLJ~TI~N 

Let S denote the unit circle (z: 1z / = 1 }, A the closed unit disk 
{z : /z! < 1 }, and //. 11 the supremum norm )/ 411 = supIEA I$(z)i. Let A = A(d) 
be the set of functions continuous on A and analytic in the interio,r. and for 
arbitrary integers m, n > 0, let R mn c A be the subspace of rational functions 
of type (m, n) with complex coefficients and no poles in A. For simplicity we 
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will also write P, = R,,. Given f E A, a best approximation (BA) to f on d 
in R,,, is a function r* E R,, that satisfies 

The existence of rational BAs on the disk, and more generally on an 
arbitrary compact subset of 1:‘ with no isolated points, was established by 
Walsh in 193 1 1171. The question of urziqueness has been less fully 
understood. In 1934 Walsh showed that on at least some complex domains 
BAs are not unique, by exhibiting an example in which the domain of 
approximation is a crescent-shaped Jordan region or arc that is symmetric 
with respect to the unit circle [ 17, 181. For many years this was apparently 
the only known instance of nonuniqueness in complex rational Chebyshev 
approximation. A more natural domain was added to the collection when 
Gontar 161 and Lungu 110) and Saff and Varga 112, 13, 16 ] found that 
complex rational BAs to a real function on a real interval can be nonunique 
for ail m > 0, II > 1. But the question of whether approximations on the disk 
must be unique has remained open ( 16 I. 

Certain related matters have also remained unresolved. including two 
questions mentioned by Ellacott in 14 I. Let us say that f‘is a real ana(lsric 
function if j”(r) = f(z). that is, if its Maclaurin series has all real coefficients. 
and let A r and RX,,, be the subsets of real analytic functions in A and R,,,,,. 
respectively. Ellacott asks: Arc BAs to real analytic functions unique. if one 
restricts attention to real analytic approximations? Can a real analytic 
function on the disk. in contrast to the situation on the interval. always be 
approximated as well in R;,,,, as in R ,,,, I? 

In this paper we show that the answers to all of the above questions arc 
negative. Thus rational Chebyshev approximation on the disk, despite some 
expectations to the contrary. is apparently fairly typical among nonlinear 
approximation problems, where nonuniqueness is the rule. For other 
examples. best complex rational least-squares approximations on both the 
circle and the interval are nonunique 15. 9 I. and so are real Chebyshe\ 
approximations by sums of exponentials to continuous real functions on an 
interval. if confluent exponents are permitted 11 1. (It is interesting that in the 
latter case, there is a definite limit to the number of distinct BAs of given 
degree that a function can possess 12 I: we will see that this is not the cast 
here.) On the other hand. real rational BAs to a continuous real function on 
a real interval are well known to be unique, and they are characterized by an 
equioscillation condition due to Achieser 11 I 1, 

All of our proofs consist of elementary symmetry arguments. But to make 
sure that the underlying idea is not obscured by details. we will now consider 
the special case of type (0. 1) approximation before turning to general (m. )I) 
in the next section. 
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F~ti. 1. (a) f(z)=2 +z*. r(z)= I/(; -- l.li): (b),f(z)=; +;I. r(z)= l,!(z 1.1) 

Consider the function f(z) = z + zi. As illustrated in Fig. I. f maps S 
onto an oblong loop oriented along the real axis that attains maximum 
modulus at the points A = 1 and B = -1. Now for r E R,,, to be a better 
approximation to f than 0, Y must have positive real part at A and negative 
real part at B. Conversely, if r is any such function, then obviousI) 
~If- ~1.11 < lifil for small enough c > 0. 

From these considerations it follows that 0 is rmt a BA to f in R,,, . The 
demonstration of this is that the function T(Z) = l/(z ~ 1. li), as illustrated in 
Fig. la (the cross indicates the pole, the arrows indicate r/l rl at ,f(A ) and 
f(B)). has the required real parts at A and B. On the other hand. 0 is a BA 
to f in R;,, . For when only real coefficients are permitted, the denominator of 
r and hence r itself must have uniform sign on I- 1. 1 I. in particular at A and 
B, so a correction of the required form is impossible. This is suggested in 
Fig. lb. 

We have shown: there exists a function f in A’ that can be better appros- 
imated in R,, than in Rb,. This answers one of the questions posed by 
Ellacott. The same argument applies to approximation in R,,, for any II > 1. 

Moreover, symmetry implies that if r*(z) is a BA toJ‘with complex coef- 
ficients, then r*(Z) is another one. Thus best clpprosimations in R,,, need t?ot 
be unique. 

Now rotate the figure by 90”, and define f(z) = ; ~ z’. This function 
attains maximum modulus at A = i and B = -i. as illustrated in Fig. 2. As 
before the function f can be approximated better by a function in R[,, with a 
pole near -1 or 1 than by 0. which is the best approximation among 
functions with no poles. Therefore any BA r* must have a pole, which is 
necessarily asymmetrically situated with respect to the imaginary axis. This 
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implies that -r*( ---z) is another distinct BA. and we have shown: hpsf 
approximations of real-arzai)W functions in R :, , need not be unique. 

The organization of the remainder of this paper is as follows. In Section 2 
we establish results (a) (Theorem I) and (b) (Theorem 2) mentioned in the 
abstract for general (m. n). In Section 3 we treat result (c) (Theorem 3). 
Finally. in Section 4. we turn to the question of best approximation on small 
disks and intervals. A variation of our symmetry arguments shows there that 
r* need not approach the Pad& approximant t-l’ as the size of the disk or 
interval decreases to 0 (Theorem 4). This conclusion is counter to what one 
might expect on the basis of a theorem of Chui et al. 13 1 which states that rx 
does approach r” if attention is restricted to real coefficients. We show 
further that both nonuniqueness and the r* -+ rp question are closely 
connected to a normality condition appearing often in Padk approximation 
that requires a Hankel matrix of Maclaurin coefficients to be nonsingular. 

2. NONUNIQUENESS IN R,,,,, 

If K is a positive integer, let wh denote the primitive Kth root of unit) 

(Oh = $7 A. 

We will say that a function QI is K-s~wtnetric if o(w,z) = o(z). Equivalently. 
4 is K-symmetric if its Maclaurin series takes the form 

O(z) = a,, + a,ih i a2;‘h 4 .... (I I 

We will also say that a set M c !I (e.g.. the set of poles of 0) is K-s~wmetric 
if w,M=M. 

In all of the arguments of this section. f, denotes any function with the 
following three properties: 
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(a) f,E A. 
(b) zf,(z) is K-symmetric (i.e., fh(z) = a, z’ ’ t uZzZh ’ + ...). 

(c) f, attains maximum modulus at exactly K points of S. 

These points of extreme modulus will necessarily be just the Kth roots of 
unity times some constant e”, and let us denote them by ([,I. 

[, = eiTtok. O<k<K- 1. 

By (b) and (c) we also have. for some nonzero c E C . 

As a concrete example. throughout this section one can take ,f, to be 

fn(z)=zh~ ’ +;?A ‘, 

in which case the constants are eiT = I and c = 2. 
We begin with some easy lemmas. For an arbitrary function r E R,,,,,, 

there is no simple test to determine whether or not r is a BA tofh : ,the local 
Kolmogorov condition is necessary but not sufficient for this, while the 
global Kolmogorov condition (or Meinardus-Schwedt condition) is sufficient 
but not necessary [S]. However, in the special case r = 0. the two conditions 
coalesce and one has the following: 

LEMMA 1. Let R denote R,,, or a subset of it (such as R:,,,) that is 
closed under multiplication bj) real scalars. The zero Jiimction is a BA to.fh in 
R if and on[l, if there e.yists no r E R satisjj,ing 

Relczr(z)I > 0 for z=&, O<li<Kpm I. (2) 

Proof: Equation (2) is a specialization to the present context of the con- 
dition 

Rel.S(z) r(z)1 > 0 v z E s s.t. If( = ~I./+ (3) 

which can be established by the usual derivation of the Kolmogorov criterion 
for linear approximation [ 1 I. Theorem 181. In brief. if IIf, ~ rI1 < iif, 11 for 
some r E R. then obviously r must satisfy (3). Conversely. if r satisfies (3). it 
is easy to show IIJ, - cry/ < /I fh I/ f or all sufficiently small t’ > 0. I 

The next lemma states that the K-rotations of a BA tof, are also BAs, up 
to a multiplicative constant. This observation has nothing to do with the fact 
that /I Ii is the Chebyshev norm. and for an application of the same idea in a 
least-squares approximation context. see [ 5, p. 54 1. 
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LEMMA 2. If r* is a BA to f, , then so is the Junction ?” deJined b.~l 
F*(z) = wKr*(ofi z). 

Proof: Since z&(z) is K-symmetric we have z&(z) = UJ~Z~~(LU~Z). hence 
./i(z) = %MWAZ)T from which we compute IIf, -- p* II = 
IIf, - w*(w)II = ll9&(~,4 - w%w)II = ilh - y*l/. I 

The third lemma has more substance, and is essentially half of the nonuni- 
queness argument. 

LEMMA 3. If n > 1. then 0 is not a BA to f, in R ,,,,,. 

Pro05 Let 0 E S be any number with u # ii. V li. We claim that for all 
sufficiently small c > 0, the function r E R,,, G R,,,, defined bq 

r(z) = c ‘/(z ~~ (I + c)u) (4) 

satisfies (2) of Lemma 1. To establish this. it is enough to take f: = 0, 
because the pole at a( 1 + F) remains bounded away from each ck as c --t 0. 
Thus if s denotes the Moebius transformation s(z) = z/(z - a). it will suffice 
to show that s maps S into Re z > 0. 

In fact. s maps S onto the line Re z = 4. To see this. note that s maps the 
straight line through u, 0, -u onto 1,;. Therefore it must map S. which 
intersects that straight line at u and -u with right angles, onto a generalized 
circle orthogonal to 7 at z = 4 that passes through 00. namely, the line 
Rez=i. 1 

Our final lemma provides the other half of the argument. 

LEMMA 4. Suppose In. II > 0 and K > 171 + 2. Then 0 is a HA to ,/, 
among fitnctions irr R,,,,, whose set of poles is K-s!~nunetric. 

Proof: Following Lemma I, consider a function r in this subset of K,,,,,. 
which we can write r(z) = p(i)/9(z) with p E P,,, and 9 E P,,. where p and 9 
have no common factors. The K-symmetry of the poles of r implies that 9 is 
a K-symmetric function, and. in particular. 9(ii) has the same value for all X. 
which we can take to be 1 by dividing both p and 9 by this number. 

Equation (2) of Lemma I thus reduces to the Kolmogorov criterion for 
the numerator p: does a polynomial p E P,,, exist for which 

Relczp(z)l > 0 for z-=<,.O~k~K-- I’! (5) 

Since the polynomial czp(z) has degree at most /H t 1 I ti. its value at 
z = 0. namely. 0, is given by a discrete mean value over the points CA. 
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By taking the real part we obtain 

0 = $ 7:’ Re(ci, p([,)l. 
k?Il 

which contradicts (5). This implies that the polynomial in question cannot 
exist, and the lemma is proved. I 

Our first two main results are now straightforward consequences of the 
lemmas. The first theorem shows that for any m > 0 and n 3 1. there exist 
functions whose BAs in R,, are not unique. 

THEOREM 1. Suppose m > 0. n 2 1. K > m + 2. Then the BA to f, it1 
R,,, is nonunique. 

Proof. By Lemma 4. 0 is a BA to f, among functions in R,, with K- 
symmetric pole sets. On the other hand, by Lemma 3, it is not a BA in all of 
R ,nn. This implies that any r* off, must have a pole distribution that is not 
K-symmetric. Therefore the function ? * defined by i*(.z)=~~r*(w~z) is 
distinct from r*. On the other hand, by Lemma 2, r^* is also a BA to f,. fl 

In the special case m = 0, we can take K = 2, and the above argument 
shows that the BA of type (0, n) to any odd function f E A is nonunique. 
unless J” attains maximum modulus at more than two points on S. Thus 
nonuniqueness in rational approximation on the disk is by no means 
confined to pathological examples. 

In Theorem 1 there is no condition relating K and n. By making K large 
enough, we obtain examples for any m 3 0 and 17 > 1 in which the number of 
BAs is arbitrarily large. 

THEOREM 2. Suppose m > 0 artd 17 > 1, and let K > m t 2 be an integer 
tvith no divisors j in the range 2 < j < 17. Then f, has at least K distinct BAs 
in R m,l. 

Proof. We have seen in the last proof that a BA rt must have a pole set 
that is not K-symmetric, which means. in particular. it must have at least one 
pole. On the other hand, since rz E R,,, it can have at most n of them. Let r 
be the number of poles of r,*. The hypothesis implies that v and K are 
relatively prime, and it is obvious hat this implies that all of the funcions r,? 
defined by 

r,:(z) = w,r,*(u’,z). O<j<K-1. 

must have distinct pole sets. By Lemma 2, these are all BAs to f, in R,,, . 1 

This proof shows in fact not only that f, has at least K distinct BAs, but 
that the number of them is an integral multiple of K. Note that it does not. 
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however. exhibit a function that has an infinite number of BAs, although 
Ruttan has shown that such a situation can occur in complex rational 
approximation on an interval 1 16 /. 

By essentially the same argument as the one above. it is not hard to 
construct functions that have nonunique BAs for many (m. n). For example, 
any function f E A of the form 

f(Z) = U,Z $ UiZi + CJ>Z’ + U,>_-” C . . . . CJi > 0. 

has nonunique BAs of all orders (m, n) with n 3 1 and m # 1. 3, 7. 15,... We 
do not know whether there exist functions whose BAs of all orders with 
n > I are nonunique. 

3. NONUNIQUENESS IN RF,,,, 

As in Section 1, let A r and RX,,, denote the subsets of real analytic 
functions in A and R,,,. respectively. In this section we are concerned with 
BAs to j-E A’ out of R’,,,, which we will again denote by Y”. Existence of at 
least one such BA is guaranteed by the theory of Walsh / I7 1. 

Let .fL denote any function that satisfies 

(a’) J‘i EA’, 

(b) :1’:(z) is K-symmetric. 

(c) ,/“L attains maximum modulus at exactly K points ii;,, of 5’. 

(d) I @ ![&I. 

Note the presence of the new condition (d). In the theorem below h’ IS cv~en. 
so (d) implies also -1 @ {i,}. Since f i E ‘4 r, the points of extreme modulu\ 
of .fk on S will be the “skew Kth roots of unity” & c- (VI: ’ ’ ‘. 0 b X < k’ 1. 
The fact .rI E 4’ also implies that the constant L’ of Section 2 i5 real. WC 
now show that for any m > 0 and n > 1. there exist functions whose BAs in 
R’,, are not unique. 

Proq/: First we observe that 0 is not a BA to f‘; in R/,,,,. i;)r 111 ttlc proof 
of Lemma 3 we have already constructed a better approximation. nameI\. 
the function r E RI,,,, given by (4) with 0 := I or G _ I. 

On the other hand. Lemma 4 shows that 0 is a BA to J‘L among function\ 
in R x, )I with K-symmetric pole sets. A fortiori. 0 is a HA among functions 
rE R’ ),,,, with the property that ZY(Z) is K-symmetric. Our proof‘ will proceed 
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by showing that the assumption that Y* is unique implies that ZY*(Z) is K- 
symmetric after all, a contradiction. We argue by induction. showing that 
zr*(z) is 2,‘.symmetric successively for j = 0, l..... J. 

Case j = 0. Trivial, because any function is l-symmetric 

Casejf l,O<j<J-- 1. Let us write ,U = 2’ for abbreviation. :If --Y*(Z) 
is flu-symmetric, the Maclaurin series of Y* has the form 

r*(z) = a,zP ’ + aZzZLLm ’ i- aJzju ’ + . . . . ai E s-, 

Now (@2w)@ = -1, and therefore by applying Lemma 2 to r*, K/2p times 
in succession, we obtain a new function ?* E RX,,,, 

F*(z) = -a, z" ' + a2-_"' ' -a,z’” ’ t . . . . 

which must also be a BA to f k. If r* is unique, then r^* must be the same as 
r*, so the coefficients of odd index in this expansion are 0. and we have 

r*(z) = aIzZu ’ + a,zJum ’ + . . . . 

Thus zr*(z) is 2p-symmetric. which completes the induction step. 1 

As in Section 2, there is some flexibility in this proof; we could for 
example take K to be any number containing some power of 2 larger than n 
as a factor. and then count poles. However. it appears that no argument of 
this type will establish the existence of more than two BAs to a given 
function. Thus the question of whether a large number of distinct real 
analytic BAs can occur must remain open. 

On the other hand, it is easy to see that result (d) of the abstract, which 
we proved in Section 1 for type (0. n). 17 > 1. holds for type (~7. 1). m > 0. 
also: [ff satisfies (a’), (b), (c)f or an el’en integer K > 2m. and if 1 E {ii }. 
then J’can be better approximated in R,,,, than in RL,,, For again 01 is not a 
BA from R,,,, (by Lemma 3). but 0 is best in R:,,,. as can be seen as, follows: 
Assume r E R:,, is better and has a finite pole z(, > 0. say. Then we (can write 
r(z) = p(z)/q(z) with q(z) = it ’ - zh ’ and p E P,,, h? I. Note that 
q(<,) > 0. 0 < k < K ~ 1. so Re[ zp(z) 1 has constant sign on {i,}, which. as 
in the proof of Lemma 4, contradicts the discrete mean value theorem. By 
the same argument, 0 is best in R’,,,. Hence, 0 is best in R:,,, . 

4. PADS AND BEST APPROXIMATION 

ON SMALL DISKS AND INTERVALS 

If m, n > 0 are given and f is analytic at the origin, the Pade approximant 
of type (m, n) to f is the unique rational function rp of type (m. n)., analytic 
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at the origin, whose Maclaurin series matches that off to as many terms as 
possible. Thus rp is in a sense the optimal approximation to f at the point 
z = 0. A natural question posed by Walsh 118) is: if for each t‘ > 0. t-k is a 
BA to f on CA, must one have Y,* -+ yp as t: -+ O? By Y,” + I’,, we mean that r: 
approaches rp uniformly on any compact subset of I: that contains no poles 
of I”. 

In 1964 Walsh answered this question in the afftrmative for the restricted 
set of functions that satisfy the following normality condition 119 I. Let .f 
have the Maclaurin series j”(z) = a,, + a, 2 $ . . . . and define a, = 0 for h < 0. 

Assumptiorz B. The IZ x II Hankel matrix 

is nonsingular. 

a ,,, ,/ 4 / , u,,,’ 
H = _, _ ‘- ’ 

a ” LZ,,,. I? I ,,I i 

Assumption B appears frequently in the theory of Pade approximation. fog 
it is readily seen that the coefficients of I.~ satisfy a linear system of 
equations involving the matrix H. 

Walsh’s result asserts: iff satisfies Assumptiotz B, theta I’; -+ I-” (IS I: + 0. 
But Walsh did not determine whether Assumption B is actually needed for 
this conclusion to be valid. It is easy to imagine that it might not be, for in 
1974 Chui et al. published a result to the effect that in real approximation on 
a small interval (0. F: 1, r,* + r” for an)! f (3 /. (We will return to their result 
below.) 

Nevertheless, a variation of our symmetry arguments shows that 
Assumption B is essential after all. Following Section 2. let J, be any 
function that satisfies the conditions 

(a) f, EA. 
(b) zjJz) is K-symmetric. 

(c’) “f-LA “(0) # 0. f:‘” “(0) # 0. 

THEOREM 4. Suppose m 2 0. tl > 1. K > 2m + 3. f’== J, Then r” = 0. 
hut r,* ii 0 as c + 0. 

ProqJ Observe first that since K ~ I i tn. the Maclaurin coefficients of 
,f, satisfy a, = 0 for k < tn, which implies hat the matrix H is singular. Thus 
J;, does not satisfy Assumption B. so the claim does not contradict Walsh’s 
result. The fact rp 3 0 is also a consequence of Us = 0 for k < m. 

To prove that r,* does not approach the zero function as i: --+ 0. it is 
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enough to show that not all poles of r$ converge to 00 as t: + 0: that is, there 
exists p > 0 such that for all sufficiently small F, rf has a pole in pd. Let the 
given problem be resealed from EA to A by defining for each c > 0 F,(z) = 
.f&(t;z), R,*(z) = r,*(cz). W e will in fact prove the stronger result that RT has 
a pole in pA for some p, which amounts to showing that at least one pole of 
r$ converges linearly to the origin as E + 0. The proof as usual lhas two 
halves: 

(i) 0 is not a BA to F,. in R,,, (for ail sufficiently small t.): 

(ii) 0 is a BA to F, among functions in R,,, with no poles in pA (for 
some suitable fixed p). 

Proqfof (i). The function F, satisfies conditions (a) and (b) of Section 2 
trivially for any c E 10, 1 I. From (c’) it can be seen that for all sufficiently 
small positive c, it also satisfies condition (c). Therefore Lemma 3 applies. 

Proof of (ii). If 0 is not a BA to F, in the class mentioned. then by 
Lemma 1 there exists r E R,, that satisfies (2) but has no poles in pd. Let I 
be written r(z) = p(z)/q(z) in lowest terms, with q(0) = 1. If p is large. q 
must be approximately 1 on A. In particular. for any 8 > 0 we can pick p 
large enough so that necessarily 

which means that (2) implies 

I arglczp(z) I/ < 742 + H for z = in. 0 < k < K --- 1. (6) 

For each k, define uk- So E i.: by C& p([,) = ui + ir,, and in addition. 
define a; = max(0, Us} and G/, = minj0, ui}. Let 0, r. u , o - be the 
corresponding K-vectors. In this notation (6) amounts to the condition 

BUD 1 <tan Q~r,l. O<k<K- 1. 

By summing over k, we obtain 

/Iu Ii, <tan HIlrli, 

(vector l-norms). At the same time, since K > m + 1. our usual meanvalue 
argument from Lemma 4 implies rf ,: un = 0. hence ilu (~, = i /l(7(~, , and 
therefore we have 

(7) 

On the other hand. u and r cannot differ too greatly in norm. The real and 
imaginary parts of czp(z) on S are conjugate trigonometric polynomials in 
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arg z of degree m + 1. with constant terms 0. and therefore they have equal 
L, norms on S. Since K > 2m + 3 = 2(m + 1) + 1, they are moreover the 
unique trigonometric polynomials of degree m + I that interpolate {oii \ and 
1~~ j at the points (arg &}. and the equality of L, norms on S carries over to 
equality of I, norms on / <, }: 

‘y7;l? = !l”‘12. 18) 

(In fact 7 = W,u = - Wi 7, where W, is the so-called Wittich matrix-. with 
// W, I)? = I.) By discrete Hiilder inequalities. we have in general 

iU7111 ,< JK /17112. II42 < l,d/,’ 

and so (8) implies 

ll7l1, < \/‘Kilcil,. (9) 

It is now clear that (7) and (9) will be inconsistent. contradicting the 
assumption that r exists, provided p is taken large enough so that H is small 
enough to ensure 2 fl tan 0 < I. This proves (ii). 1 

Before closing, we will make some remarks on related matters. 

Approximation on small interrals. How does Theorem 5 relate to the 
result of Chui et al. mentioned above’? Suppose J‘(x) is a complex function of 
class C”’ ’ ’ ’ ’ 10, 11. and let r,* be a BA to f in R,,,,, on IO. I:]. First. Walsh 
showed in the early 1970s that his result of 1964 extends to this problem 
too: iff satisfies Assumption B, then r,” + rp as c + 0 1201. The purpose ot 
the paper of Chui et al. 13 I was to extend Walsh’s result by removing the 
hypothesis of Assumption B. However, although their proof does not require 
Assumption B, it assumes that f is real and that r: denotes its (unique) BA 
with real coefficients. In contrast. by an argument much like that above. one 
can readily show for at least some (m, n) that t-F + rP can fail to hold if r: is 
a BA with complex coefficients. even when j” is real. For example. take 
f(s) = x on I--c, E] and (m, n) = (0. 1): then the argument of Fig. ! shows 
that r,” has a pole for every c. but since j’ is linear. the problem j\ scale- 
invariant, so this pole will approach 0 linearly with I:. 

Uniqueness and Assumption B. In all of our examples in wh1c11 r”’ is 
nonunique.fhas failed to satisfy Assumption B. Can it be that Assumption B 
is enough to ensure uniqueness. 7 To see that the answer is no. take 
(m. n) = (0. 1) and consider the function 

f(Z) = rj,/(Z 2) i- Z f i I. 

For any 71 > 0. J’ satisfies Assumption B. but for all sufficiently small rl. a 
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variation of the argument of Fig. 1 shows that any BA has non-real coef- 
ficients and hence is nonunique. 

On the other hand, to the best of our knowledge it is possible that for any 
function satisfying Assumption B, the BA on FA is unique for all sufficiently 
small c. 

Approximate uniqueness and approximate real analyticity. Suppose r” 
has exactly n finite poles and, in addition, the Maclaurin series ofdf and r[’ 
agree through degree m + n but no further. This condition, which implies 
Assumption B, is called Assumption A in [ 141 and 1151, and a number of 
asymptotic results are proved there by the CF method regarding approx- 
imation of such functions on small disks EA. One of these is that BAs are 
“approximately unique”: any two BAs r:. rz satisfy r: - rf = O(C’” “- ‘) 
uniformly on compact sets containing no poles of r” [ 14. Section 6 1. In 
contrast, the construction of Theorem 4 here shows that in the absence of 
Assumption B. r: - rf need not approach zero with F at all. Alternatively. 
Assumption A also implies 11 r: - rf Ilc3 = 0(e2”” In “), while in the absence 
of Assumption B it appears that this must be weakened to O(C~“‘+‘). 

For f E A’, analogous estimates follow from ( 14 1 for how close r: must 
be to RT,,,, in particular to the CF approximant rzf E RL,,,: 11 rf - r:‘ii = 
O(r: m tn-2 ) on compact sets with no poles of P. and IIrF - r’,‘llfJ = 
(qr;2” r 211 + 3 ). Again it seems that without Assumption B. these reduce to c” 
and E”“’ j, respectively. 

In summary, although degeneracy of the Pade approximani. is not 
necessary for nonuniqueness and associated phenomena in complex rational 
approximation, it is evidently a related factor. 

,Yoies added in proo$ (i) Block Strucfure irr the Walsh table. It is well known that if the 

best real approximations {r,,) t o a continuous real function Jon a real interval are arranged 

in a so-called Walsh table indexed by m and 11, then degenerate situations in which a single 

rational function is best for several degrees (m, n) always occur precisely in square blocks. 

except where rz, EC 0 11 II. (An analogous block structure appears in the Pade table.) From 

the example at the end of Section 2 one may however conclude that in a complex approx 

imation such a block structure need not occur. at least in the top row (17 = 0) of the Walsh 

table. Indeed, our arguments show that for each k > 1, the best approximations to j’of types 

@ 1. O)..... (2” ’ r ~ 2.0) are all equal to the polynomial section ofJof degree 2” I. while 

for any n > I the best approximations of types (2’, n)..... (2”’ ’ ~ 2. n) are better. 

(ii) Pade’ and best approxirnalion. Several additional results have been obtained 
concerning the Pade and best approximation questions discussed in Section 4: see 121 1. In 
particular, further examples show that r* 4 rp can occur even for real approximation5 of real 

functions. both on 10. cl and on j--c, I:): the same is also true for the analogously restricted 
best approximation on small disks ~3. Thus the result of 13 1 quoted above is fa1sc. 
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