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Let m and h be positive integers. A set A of integers is called a basis of order h 
for Z/(m) if every integer n is congruent to a sum of h elements in A modulo m. 
Let m(h, A) denote the greatest positive integer m such that A is a basis of order 
h for Z/(m). For any k 3 1, define m(h, k) = max,“, =k +, m(h, A). This generalizes a 
function of Graham and Sloane. In this paper, it is proved that, for fixed k 2 4 as 
h + CO, m(h, k) 2 ~(256/125)~~‘~’ (h/k)k + O(h’-‘), where ak = 1 if k = 0 or 1 
(mod 4) $ if k = 2 (mod 4) and g if k = 3 (mod 4). A lower bound for m(h, k) is 
also obtained for fixed h. Using these results, new lower bounds are proved for the 
order of subsets of asymptotic bases. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let m and h be positive integers. A set A of integers is called a basis of 
order h for the finite cyclic group Z/(m) if every n is congruent to a sum 
of h elements in A modulo m. Let m(h, A) denote the greatest positive 
integer m such that A is a basis of order h for Z/(m). For any k B 1, define 

A basis A = {a,, a,, . . . . u,} of order h for Z/(m) is called extremal if 
m(h, A) = m(h, k). 

Graham and Sloane [S] studied this extremal function in the case h = 2 
and other related functions (see also Guy’s problem book [7]). They 
connected the function m(2, k) to a class of graphs called harminious 
graphs. Graham and Sloane [5] also calculated m(2, k) for 1 < k < 9. More 
exact values of m( h, k) can be found in [ 81. 

Distributed loop networks are an important type of computer network 
(see Bermond, Comellas, and Hsu [ 11, and ErdGs and Hsu [3]). Recently, 
Hsu and Jia [S] showed that the extremal function m(h, k) has applica- 
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tions to the construction of distributed loop networks. It follows from their 
results that 

for all h 2 2, 

m(h, 3) > hh’ + O(h2) as h-+co. 

In this paper, we prove the following theorems. 

(2) 

THEOREM 1. Forfixedka4 as h-roe, 

where 

if kz0 or 1 (mod4) 

if k=2 (mod4) 

if k s 3 (mod 4). 

TEOREM 2. For fixed h 2 3 as k + co, 

m(h, k) 2 Bh (;yhi3’ (;)h+O(kh-l), (3) 

where 

if h z 0 or 1 (mod 3) 
‘hz{; if h=2(mod3). 

In this paper, we also establish a relation between this problem and the 
order of subsets of asymptotic bases. A set A of nonnegative integers is 
called an asymptotic basis of order h if every large integer is a sum of h 
elements in A. Let g(A) denote the least such positive integer h. It is clear 
that a subset of an asymptotic basis is not necessarily an asymptotic basis 
again. For any h > 2 and k 2 1, define 

G,(h)= max 
g(--f)<h 

;tt dA\F). 
g(A\F) < a0 

ErdCis and Graham [4] proved that 

641/41/l-9 
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The lower bound of Grekos r61 and the upper bound of Nash [ll] are - - 
the best estimates for G,(h) so far: 

fh2 + O(h) < G1 

Nathanson [12] proved that 

G,(h) 2 
> 

k+l 

+l -1, 
h 

l-l k+l 

where h > k. Recently, Jia [9] proved that, for fixed k > 1, 

dI)+h’+h. 

G,(h),(k+l)(~)*(~~+‘+O(h’) (as h+co). 

Using Theorem 1, we prove that, for fixed k > 4 as h + co, 

Theorem 2 provides a new lower bound for G,(h) for fixed h. 

2. PR~~FOF THEOREM 1 

In order to prove Theorem 1, we need the following lemmas. 

LEMMA 1. Foranyh,~2,h2>2,andk,>1,k,>1,wehave 

m(h, +h,, k, +kd>m(h,, k,)m(h,, W 

Proof: Suppose that 

m(h,, A,) = ML k,) = m,, 

where 

for s = 1,2. Let n be any integer. Since A i is a basis of order hI for Z/(m,), 
we see that 

n = aIi, + . . . + alih 1 (mod m 1 1, 

n = a,i, + ... +alih, + qm, 
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for some integer q. It follows from the fact that A1 is a basis of order h2 
for Z/(m,) that 

q 3 ay, + - * . + a2j,, (mod ~~1, 

i.e., 

4 = ay, + . . . + a2jh2 + pm2 

for some integer p. Therefore, 

n E ali, + .*a +alih,+mla2j,+ ... +mla2jh 2 (mod 111rm2). 

Define 

A =A1 u {mla21, . . . . mla2k2}; 

then n E (h, + h2)A (mod m,m,), where hA denotes the set of all sums of h 
not necessarily distinct elements in A. Lemma 1 now follows from the 
observation that IAl = k, + k, + 1 and A is a basis of order hl + h2 for 
Z/h m2). 

LEMMA 2. m(h, 4) 3 &h4 + O(h3). 

This is a special case (k = 4) of Theorem 1. Since its proof is quite long, 
we leave the proof to the last section of this paper. 

Now we are ready to prove Theorem 1. 

Proof of Theorem 1. If k 5 0 (mod 4), then k = 4q. Suppose that 

h=qu+v, where 0 < v < q. 

If h 3 h’, then m(h, k) > m(h’, k). It follows from Lemmas 1 and 2 that 

m(h, k) 2 m(qu, 4q) 

2 m(u, 4) . ..m(u. 4) 
4 
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It is obvious that 

m(h, l)=h+ 1 for all h. 

Therefore, from (l), (2), and (4), we have that, for 1~ o < 3, 

(4) 

(5) 

where 

if v=l 

if u=2 

if v=3. 

Now suppose that 

k=u+u, where uzO(mod4) and 1~0~3. 

Let h = qk + r, where 0 6 r < k. Then it follows from (5) and Lemma 1 that 

m(h, k) a m(h -r, k) 

= m(qu + qv, u + 0) 

2 m(qu, u) dqv, u) 

256 ‘I4 > 
/ 

i( ) 125 
q”+O(q”-‘) .{a,q”+O(q”-‘)) 

I 

=~“(~)“:“(~)“‘“+~(q”+u-l) 

=cio(~),,4J (;r+O(h*-I), 

where c(, (V = 1,2, 3) are defined as above. The proof of Theorem 1 is 
complete. 

3. PROOF OF THEOREM 2 

Let A be a finite set of nonnegative integers. Let n(h, A) denote the 
largest n so that every integer in (0, 1, . . . . n} is a sum of h elements in A. 
Define 
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It is easy to see that m(h, k)>+(h) for all h>,2 and ka 1. Mrose [13] 
proved that 

n,(2) > fk2 + O(k). 

Windecker [14] proved that 

n,(3) 2 $k3 + O(k2). 

Therefore, we have the following lemma. 

LEMMA 3. For k large, 

m(l,k)=k+l, 

m(2, k) > $k2 + O(k), 

m(3, k) > &k3 + O(k’). 

Proof of Theorem 2. Fix h 2 3. Let k be a large positive integer. 
Suppose that 

h=3q+r, where 0 < r < 2, 

k=ph+u, where O<u<h-1. 

Noting Lemmas 1 and 3, we have that 

m(h, k) >, m(h, k-o) = m(3q + r, 3pq + pr) 

2 m(%,3p9) m(r, pr) 

2 (m(3,3~)Y m(r, pr) 

where Ph is defined as in Theorem 2. The proof of Theorem 2 is complete. 
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4. ORDER OF SUBSETS OF ASYMPTOTIC BASES 

First we prove the following theorem. 

THEOEM 3. For fixed k 2 4 as h + 00, 

where ak is defined as in Theorem 1. 

Proof: We need to construct a basis A of order at most h which 
contains a k-element subset F so that the order of A\F as an asymptotic 
basis is equal to 

Let h be a large positive integer. Let 

h 
‘= k+l l-l and h’= uk. 

SUppOSe that Ak = (a,, aI, . . . . ak} is an extremal basis of order h’, i.e., 

m(h’, Ak) = m(h’, k) = m. 

We may assume, without loss of generality, that 0 = a, < a, < ... < ak. 
Define 

F={ ua,, ua2, . . . . uuk}. 

Let A = D v F. where 

and 

D= {id, id+ lIi=O, 1,2, . ..}. 

d= um(h’, k). 

It is clear that 

g(A\F) = g(D) = d - 1 = ak (~~k’4’(&)l+‘+O(hk). 

Now we show that A is of order h. Let n be a large positive integer. 
Suppose that 

n=qu+r, where O<r<u. 
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Since A, is a basis of order h’ for Z/(m(h’, k)), we see that 

q = ai, + . * * + Uih (mod m(h’, k)). 

Hence, for some p, 

n = pum(h’, k) + r + uuiI + . . . + za.zih 

=pd+l~l+z4ail+ ... +ua,.. 

Noting that 

l+r+h’<u+uk= 
1 1 

& (k+l)<h, 

we see that A is an asymptotic basis of order h. The proof of Theorem 3 
is complete. 

In a recent paper, Jia [lo] also proved that, for any fixed h > 2, 

k (4 
h-l 

2 h-l 
2kh-’ 

+o(kh-2)Wh)<(h-l)!+O(kh-2). 

The following improvement of the lower bound for G,(h) is immediate 
from Theorem 2 and Lemma 4 below. 

THEOREM 4. For fixed h 2 3 US k + 00, 

where Ph is defined us in Theorem 2. 

LEMMA 4. For any h>3 undk>l, 

G,(h) > 2m(h - 1, k) - 1. 

Proof: Suppose that 

A, = (0, a,, . . . . a,c> 

is an extremal basis of order h - 1 for Z/(m(h - 1, k)), i.e., m(h - 1, Ak) = 
m(h - 1, k). Let 

D={id,id+lIi=O,1,2 ,... }, 
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where d = 2m(h - 1, k). Then D is an asymptotic basis of order 

g(D)=d-1=2m(h-l,k)-1. 

Let 

A=Du(2a,+1,...,2a,+1}. 

We need to show that A is an asymptotic basis of order h. Let n be a large 
positive integer. 

If n -h + 1 is even, then 

n-h+1 
2 

= a, + *” +Uih-t (mod m(h - 1, k)), 

where a,, E Ak. Hence, for some q > 0, 

n=qd+ (2ai, + 1) + 0.. + (2a,-, + l), 

thus, n E hA. If n - h is even, then, for some p > 0, 

n-h 
- = pm(h - 1, k) + a, + . . . + a,-, 

2 

This implies 

n=(pd$1)+(2a,+l)+ .+. +(2u,-,+l)~hA. 

Therefore, A is an asymptotic basis of order h, proving the lemma. 

5. PROOF OF LEMMA 2 

Let h 2 105. Define 

h 
t= 5 ; 11 

u=4h-15t+7; 

b=ut+h-4t+2; 

c=bt+2h-8t+4; 

m=ct+3h-12t+5. 

Define A = (0, 1, a, b, c}. We now show that A is a basis of order h for 
Z/(m); i.e., we need to show that hA = Z/(m). 
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Let n be any integer. We may assume without loss of generality that 

b+c<n-cm+b+c. 

The proof divides into the following cases. 

Case 1. Suppose b + c( t + 1) 6 n < m + b + c. Since 

(n-c(t+l)-b)+l+(t+l)<(m-l-ct)+t+2 

=3/z-llt+6 

we see that 

n=(n-c(t+l)-b).l+b+c(t+l)EhA. 

Case 2. Suppose b + cz < n < b + c(z + 1) for z E [ 1, t]. We divide this 
case into the following two subcases. 

Case 2a. b(t + 1) + cz < n <b + c(z + 1). Since h 2 105, we see that 

(n-b(t+l)-cz)+(t+l)+z<c-bt+2t+1=2h-6t+5<h. 

Hence, 

Case 2b. Suppose by + cz < n < b(y + 1) + cz for y E [ 1, t]. Again 
this case can be divided into the following two subcases. 

Case 2bi. at + by + cz 6 n < b( y + 1) + cz. Noting 

(n-aat-by-cz)+t+y+z,<b-at- 1+3t<h, 
we see that 

n=(n-at-by-cz).l+at+by+czEhA. 

Case2bii. a(x-l)+byfcz<n<ax+by+cz for x~[l,t]. Let 
w  = ax + by + cz. Then w-a < n c w. Once again, this case can be divided 
into the following four subcases. 

Case 2bii. 1. w-adn<w+ct-m. Since 

n-(w-a)< {w+ct-m-l}- {w-a} 

=cr-m+a-l<h-3t+l 

<Iz-(x-1)-y-z, 
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we see that 

n=(n-w+a)~1+a(x-l)+by+czEhA. 

Case 2bii.2. w  + ct - m < n < w  + bt - c. Since 

n-(w+ct-m)<{w+-bt-c-l}-{w+ct-m} 

=bt-c-l-ct+m<h-4t 

<h-(x-1)-y-(z+t), 

we have that 

n=(n-w-ct+m)+w+ct (mod m) 

=(n-w-ct+m).l+ax+by+c(z+t)EhA. 

Case 2bii.3. w  + bt - c 6 n < w  + at - b. Since 

n-(w+bt-c)<{w+at-b-l}-{w+bt-c} 

=at-b-1-bt+c=h-4t+l 

<h-(x+(y+t)+(z-l)), 

we see that 

n=(n-w-bt+c).l+ax+b(y+t)+c(z-1)EhA. 

Case 2bii.4. w  + at - b d n < w. Since 

n-(w+at-b)<(w-l)-(w+at-b)=h-4t+l 

<h-{(x+t)+(y-l)+z}, 

we have 

n=(n-w-at+b).l+a(x+t)+b(y-l)+czEhA. 

Therefore, nEhA for any n:b+c<n<m+b+c. Hence A is a basis of 
order h for Z/(m). It is clear that 

m = &h4 + O(h3). 

The proof of Lemma 2 is complete. 
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