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a b s t r a c t

In order to represent temperature-dependent mechanical material properties in a thermomechanical
consistent manner it is common practice to start with the definition of a model for the specific Helmholtz
free energy. Its canonical independent variables are the Green strain tensor and the temperature. But to
represent calorimetric material properties under isobaric conditions, for example the exothermal behav-
iour of a curing process or the dependence of the specific heat on the temperature history, the temper-
ature and the pressure should be taken as independent variables. Thus, in the field of calorimetry the
Gibbs free energy is usually used as thermodynamic potential whereas in continuum mechanics the
Helmholtz free energy is normally applied. In order to simplify the representation of calorimetric phe-
nomena in continuum mechanics a hybrid free energy density is introduced. Its canonical independent
variables are the isochoric Green strain tensor, the pressure and the temperature. It is related to the
Helmholtz free energy density by a Legendre transformation. In combination with the additive split of
the stress power into the sum of isochoric and volumetric terms this approach leads to thermomechan-
ical consistent constitutive models for large deformations. The article closes with applications of this
approach to finite thermoelasticity, curing adhesives and the glass transition.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering, constitutive theories are usually formulated to
represent mechanical material properties under isothermal condi-
tions. In this context, the reader is referred to the articles of Lion
(1997), Boyce et al. (2000), Laiarinandrasana et al. (2009), Miehe
et al. (2009) or Johlitz et al. (2010) in which the temperature-
dependent stress–strain behaviour of elastomers and other poly-
mers under finite deformations is addressed. Since stress- or tem-
perature-induced changes in volume are relatively small under
typical loading states and magnitudes, the stress–strain behaviour
of a large number of polymers can be assumed as nearly isochoric.
Accordingly, under such loadings the effect of the volumetric part
of the constitutive model to the stress–strain response is relatively
small, for example in the case of tensional loadings of tall speci-
mens. In order to identify the material parameters of constitutive
models or to implement them into finite element programs, formu-
lations in which the stress tensor is the dependent mechanical
state variable are required. For this reason, the specific Helmholtz
free energy is usually taken as fundamental thermodynamic poten-
tial in continuum mechanics. It should be mentioned that the iso-
choric specific heat which is needed for the evaluation of the
related differential equation of heat conduction can easily be calcu-
lated from the Helmholtz free energy because it is its thermody-
namically associated caloric quantity. But caused by their high
bulk modulus, the isochoric specific heat cannot be measured for
solids. If, for example, the isobaric specific heat has been measured
in a standard calorimetric experiment but the isochoric specific
heat is needed as input parameter for a finite element program,
the difference between them is frequently ignored because in
many situations it has minor influence to the simulation results.
Following Haupt (2002), in linear thermoelasticity the isochoric
and isobaric specific heats cv and cp are constant material parame-
ters and are connected as follows:

cp � cv ¼
9h0Ka2

q
ð1Þ

The application of (1) is only possible in sufficient small tem-
perature intervals in which cv and cp are nearly constant. In the
case of polymers, the mass density is about q � 103 kgm�3, a typ-
ical value for the bulk modulus is about K � 3000 MPa, the linear
thermal expansion coefficient is of the order of a � 10�4 K�1 and
h0 � 300 K is a rough estimate for the reference temperature. Based
on these values, 9h0Ka2=q � 81 J kg�1 K�1 is calculated. Since
cp � cv depends in a quadratic manner on the expansion coefficient,
a larger value of a � 2 � 10�4 K�1 leads to 9h0Ka2=q �
324 J kg�1 K�1. Assuming cp � 1500 J kg�1 K�1 as a typical value
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for the isobaric specific heat of polymers, the relative difference
(cp � cv)/cp is between 5% and more than 20%. In the case of
mechanically incompressible but thermally expandable materials
like rubber, the term ‘‘isochoric specific heat’’ makes no sense.

In thermochemistry, on the other hand, the caloric material
properties as well as the thermal expansion behaviour are often
in the centre of interest (cf. Kamal et al., 1973; Bauer et al., 2000;
Gutzow et al., 2007; Garden, 2007a,b; Bailey et al., 2008; Richert,
2011 and the citations therein). In order to represent this type of
material behaviour, the specific Gibbs free energy is typically taken
as fundamental thermodynamic potential (cf. Gutzow et al., 2007;
Lion et al., 2011). The main reason for this choice is the fact that
calorimetric and thermal expansion experiments are commonly
carried out under prescribed pressure and temperature histories.
In many commercial differential scanning calorimetry apparatuses,
the pressure is constant and the temperature is a user-definable
function of time. It would be quite strange in this situation to take
the specific Helmholtz free energy as thermodynamic potential be-
cause its associated caloric quantity is the isochoric specific heat. In
the case of isotropic materials under free boundary conditions,
only changes in volume occur when the pressure and the temper-
ature are varying. Therefore, the isochoric part of a three-dimen-
sional constitutive model (cf. Lion et al., 2010; Lion et al., 2011)
has no influence to the caloric response and the thermal expansion
behaviour. Consequently, Gutzow et al. (2007) formulated their
model only for the volumetric material behaviour, i.e. the Gibbs
free energy depends on temperature, pressure and an internal var-
iable which they denoted as order parameter. The application of
the Gibbs free energy approach in the field of three-dimensional
solid mechanics is promising in the case of linear thermoviscoelas-
ticity (cf. Lion et al., 2010) when the mechanical model is solvable
for the stress tensor. But in the case of large deformations or pro-
nounced physical nonlinearities such a formulation would lead to
implicit constitutive equations which are no more solvable for
the stress tensor.

In a recent essay by Hartmann et al. (2013), the field-assisted
sintering of copper and ceramic powder in graphite tools was mod-
elled, simulated and validated. During these processes, the tran-
sient temperature variations can reach several hundred degrees.
In order to develop a realistic constitutive model for such a process,
not only the knowledge about the temperature-dependent
mechanical material behaviour is important but also the consider-
ation of the caloric material behaviour. In the relevant temperature
range, the experimental data of the isobaric specific heat of graph-
ite exhibits an increase of more than 120%. As it is common prac-
tice, the authors developed a constitutive model that is based on
the specific Helmholtz free energy such that the empirical function
which they fitted to the experimental curve of the specific heat has
to be interpreted as isochoric specific heat. This statement be-
comes clearly when the time derivative of the volume strain in
their differential equation of heat conduction is set to zero and
can be justified as follows: Since graphite possesses a relative small
linear thermal expansion coefficient of a � 4.6 � 10�6 K�1, a den-
sity of q � 1850 kgm�3 and a bulk modulus of about
K � 6000 MPa, the value of 9h0Ka2=q � 0:2 J kg�1 K�1 is obtained
for the difference cp � cv when h0 � 300 K is assumed. For this rea-
son, it is not required to distinguish between the isochoric and the
isobaric specific heat in the case of graphite at least under small
temperature changes. Since the terms isochoric and isobaric are
precisely defined, caution is necessary.

These considerations have shown that a temperature- and pres-
sure-dependent free energy of the Gibbs type is advantageous
when isobaric caloric or volumetric thermal expansion data have
to be constitutively modelled. If mechanical stress–strain data
has to be modelled or a finite element implementation has to be
realised, it is more convenient to develop a model which is based
on the temperature- and deformation-dependent Helmholtz free
energy. In order to separate volumetric effects from changes in
shape it is useful to split the deformation gradient into the corre-
sponding contributions. For these reasons, a hybrid free energy
density is proposed which combines all these aspects. In Section
2 of this paper, the fundamentals and the general thermomechan-
ical framework are provided. In Section 3, it is shown how caloric
quantities like the enthalpy rate or the isobaric specific heat can
be taken into account in a stringent manner. Section 4 discusses
different applications of the theory and Section 5 closes with a
discussion.

2. Thermomechanical approach

In order to represent thermomechanical material properties in
nonlinear continuum mechanics the space- and time-dependent
deformation gradient F is a fundamental geometrical quantity (cf.
Haupt, 2002). Its determinant J = det (F) describes the ratio of the
volume elements between the reference and the current configura-
tion. As proposed by Flory (1961), the tensor F can be multiplica-
tively decomposed into pure volumetric and isochoric
contributions:

F ¼ FF̂ ð2Þ

F ¼ J1=31 ð3Þ

F̂ ¼ J�1=3F ð4Þ

The isochoric part F̂ is not influenced by changes in volume and
the volumetric part F does not depend on changes in shape. Based
on the tensors F and F̂, two different Cauchy–Green tensors C = FTF
and Ĉ ¼ F̂TF̂ which are calculated with the total deformation gradi-
ent and its isochoric part are introduced. This motivates the follow-
ing definitions of two Green strain tensors and of the volume
strain:

E ¼ 1
2
ðC� 1Þ ð5Þ

Ê ¼ 1
2
ðĈ� 1Þ ð6Þ

evol ¼ J � 1 ð7Þ

Considering these expressions, the total Green strain tensor E
can be expressed as follows:

E ¼ 1
2
ðJ2=3Ĉ� 1Þ ¼ J2=3Êþ 1

2
ðJ2=3 � 1Þ1 ð8Þ

Since the isochoric Cauchy Green tensor Ĉ is unimodular, the
constraint detðĈÞ ¼ 1 holds for arbitrary deformation histories. Dif-
ferentiating this relation with respect to time, the following
orthogonality relation can be derived:

d
dt

det ĈðtÞ
� �

¼ 0 ) Ĉ�1 � _̂C ¼ 0 ð9Þ

The dot between two second order tensors is the scalar product,
A � B ¼ tr ABT

� �
¼
P3

i;k¼1AikBik, and tr(A) = A11 + A22 + A33 is the
trace of the second order tensor A. In order to separate volumetric
and isochoric effects also with regard to the stress, the Cauchy
stress tensor T is represented as the sum of a spherical and a devi-
atoric part:

T ¼ �p1þ TD ð10Þ

p ¼ �1
3

trðTÞ ð11Þ
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TD ¼ T� 1
3

trðTÞ1 ð12Þ

Motivated by these decompositions, two additional stress ten-
sors are defined. The first tensor is the well-known second Piola–
Kirchhoff stress:eT ¼ JF�1TFT�1 ð13Þ

The second tensor is of the same type but calculated with the
deviator (12) of the Cauchy stress and the isochoric part of the
deformation gradient:

êT ¼ JF̂�1TDF̂T�1 ð14Þ

A short calculation leads to:

eT ¼ �pJ1=3Ĉ�1 þ J�2=3 êT ð15Þ

On the basis of (8) in combination with (13) and (15) the stress
power per unit volume of the reference configuration can be ex-
pressed as follows:

eT � _E ¼ �pJ1=3Ĉ�1 þ J�2=3 êT� �
� d
dt

J2=3Êþ 1
2
ðJ2=3 � 1Þ1

� �
ð16Þ

Differentiating the Green strain tensor on the right-hand side of
(16) under consideration of the product rule, an intermediate re-
sult is obtained:

eT � _E ¼ �pJ1=3Ĉ�1 þ J�2=3 êT� �
� 2

3

_J

J1=3 Êþ 1
3

_J

J1=3 1þ J2=3 _̂E

 !
Expanding this expression and rearranging terms leads to:

eT � _E ¼ � p_J
3

Ĉ�1 � ð1þ 2ÊÞ � pJĈ�1 � _̂Eþ 1
3

_J
J
êT � ð1þ 2ÊÞ þ êT � _̂E

ð17Þ

Considering the relations

Ĉ�1 � ð1þ 2ÊÞ ¼ Ĉ�1 � Ĉ ¼ trðĈ�1ĈÞ ¼ 3

Ĉ�1 � _̂E ¼ 1=2Ĉ�1 � _̂C ¼ 0

êT � ð1þ 2ÊÞ ¼ êT � Ĉ ¼ J trðTDÞ ¼ 0

the right-hand side of (17) can be simplified. The corresponding re-
sult shows that the total stress power is the sum of a pure volumet-
ric and a pure isochoric contribution:

eT � _E ¼ �p _evol þ êT � _̂E ð18Þ

If the strain-dependent Helmholtz free energy density is used as
thermodynamic potential, the Green strain tensor (5) or, alterna-
tively, both the isochoric Green strain tensor (6) and the volume
strain (7) can be used as independent mechanical state variables.
If, on the other hand, the stress-dependent Gibbs free energy den-
sity is used as thermodynamic potential, the Cauchy stress tensor
(10) or, alternatively, the hydrostatic pressure (11) in combination
with the deviatoric stress tensor (12) are the mechanical state vari-
ables. As motivated in the last section, it makes sense to introduce
a hybrid free energy density which should depend on the isochoric
Green strain tensor in combination with the hydrostatic pressure
as mechanical state variables.

In order to define the hybrid free energy function u the volume
strain evol is replaced by the hydrostatic pressure p using a Legen-
dre transformation. It depends on the Helmholtz free energy per
unit mass w, the volume strain (7), the pressure (11) and the mass
density qR of the reference configuration:
u ¼ wþ 1
qR

pevol ð19Þ

For the purpose of formulating thermomechanical consistent
material models on the basis of the hybrid free energy function
u, (18) and (19) have to be inserted into the Clausius–Duhem
inequality (cf. Haupt, 2002). It reads as follows and states that
the rate of dissipation has to be nonnegative:

�qR
_wþ eT � _E� qRs _h�

~qR �~gR

h
P 0 ð20Þ

The variable s is the entropy per unit mass, ~qR the heat flux vector
and ~gR the temperature gradient. The time derivatives in (20) in-
spire that the canonical independent variables of the specific Helm-
holtz free energy are the Green strain tensor and the absolute
temperature, i.e. w = w(E,h, . . .). The dots indicate optional depen-
dences on internal state variables. Inserting (18) and (19) into
(20) the following expression is obtained:

�qR _uþ êT � _̂Eþ evol _p� qRs _h�
~qR �~gR

h
P 0 ð21Þ

The time derivatives in (21) motivate that the isochoric Green strain
tensor, the pressure and the temperature define the canonical vari-
ables of u:

u ¼ uðÊ; p; h; . . .Þ ð22Þ

The dependence of (22) on Ê and p establishes the denotation of
u as hybrid free energy density. In order to model inelastic mate-
rial behaviour, additional arguments are introduced:

u ¼ uðp; Ê; h;Q 1; . . . ;Q n; q1; . . . ; qmÞ ð23Þ

The internal state variables Qk are tensors of the second order,
for example overstresses or inelastic strains. The variables qk are
scalar quantities, for example order parameters or variables
describing the progress of chemical reactions.

Calculating the time rate of (23) and inserting the outcome into
(21) the following expression is derived:

êT � qR
@u
@Ê

� �
� _̂Eþ evol � qR

@u
@p

� �
_p� qR sþ @u

@h

� �
_h

� qR
@u
@Q k

� _Q k þ
@u
@qk

_qk

� �
�
~qR �~gR

h

P 0 ð24Þ

In order to satisfy this inequality for arbitrary values of the time
derivatives of Ê, p and h, three potential relations and a residual
inequality are obtained:

êT ¼ qR
@u
@Ê
þUĈ�1; evol ¼ qR

@u
@p

; s ¼ � @u
@h

ð25Þ

�qR
@u
@Q k

� _Q k þ
@u
@qk

_qk

� �
�
~qR �~gR

h
P 0 ð26Þ

The additional term in the potential relation for the stress ten-
sor should be commented: If the five independent components of
the isochoric strain rate tensor _̂E are varied arbitrarily, it cannot
be concluded that êT � qR@u=@Ê ¼ 0 when the non-negativity of
the rate of dissipation is required. Owing to _̂E ¼ 1=2 _̂C and the
orthogonality relation Ĉ�1 � _̂C ¼ 0 (see (9) for details) the logical
consequence is êT � qR@u=@Ê ¼ UĈ�1 with an arbitrary scalar U.
It can be easily determined when the deviator of the Cauchy stress
is calculated via (14) and (25):

TD ¼ 1
J

F̂êTF̂T ¼ 1
J

qRF̂
@u
@Ê

F̂T þU1
� �

ð27Þ



Fig. 1. Heat flux and normal vector of a test specimen in a calorimeter.
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The requirement that the right-hand side of (27) has to be a
deviator leads to the solution

U ¼ �1
3
qR F̂

@u
@Ê

F̂T
� �

� 1 ¼ �1
3
qR

@u
@Ê
� Ĉ ð28Þ

and finally to the following relation for the isochoric second Piola
Kirchhoff stress:

êT ¼ qR
@u
@Ê
� 1

3
@u
@Ê
� Ĉ

� �
Ĉ�1

� �
ð29Þ

The model structure which is based on the hybrid free energy
density defined by (19) leads to potential relations for the isochoric
part of the second Piola Kirchhoff stress tensor, the volume strain
and the specific entropy. In order to calculate the total second Piola
Kirchhoff stress tensor eT via (15) the potential relation for the vol-
ume strain (25) has to be inverted in the following sense:
p = f(evol,h, . . .). The residual inequality (26) has to be satisfied by
the evolution equations for the internal state variables and the
constitutive model for the heat flux.

3. Caloric behaviour of isotropic materials under constant
pressure

In order to simulate the caloric behaviour of a material under
arbitrary temperature histories and spherical states of stress, the
local balance equation of energy must be taken into account. The
representation (18) of the stress power simplifies the consideration
of such conditions and the assumption T = �p1 or TD = 0 in combi-
nation with (14) leads to the following relation:

qR _e ¼ �p_J � divð~qRÞ þ qRr ð30Þ

The scalar e is the internal energy per unit mass and r is the vol-
ume-distributed heat supply. In order to structure the theory, iso-
tropic material behaviour is assumed and the hybrid free energy
function (23) is defined as the sum of a volumetric and an isochoric
part:

u ¼ uvolðp; Ê; h; Q 1; . . . ;Q n; q1; . . . ; qmÞ

þuisoðp; Ê; h; Q 1; . . . ;Q n; q1; . . . ; qmÞ ð31Þ

Since the material is isotropic and the stress state is purely
spherical no changes in shape take place when the temperature
or the pressure are varied, i.e. Ê � 0 holds for all times. For physical
reasons, the isochoric part of (31) vanishes in this situation:

uisoðp;0; h; Q 1; . . . ;Q n; q1; . . . ; qmÞ ¼ 0 ð32Þ

If the specific internal energy is also represented as e = evol + eiso

then eiso = 0 holds as well. Considering this in combination with the
assumption r = 0, the following relations are found:

qR _evol ¼ �p_J � divð~qRÞ ð33Þ

u ¼ uvol ð34Þ

In order to express the volumetric part of the internal energy
density evol by that of the hybrid free energy uvol the following
Legendre transformation is applied:

evol ¼ wvol þ hsvol ð35Þ

Combining (25) with (31) and (32) the volumetric part of the
entropy per unit mass reads as svol = �ouvol/oh. If (7) and (19) are
taken into account, evol can be written as follows:

evol ¼ uvol �
1
qR

pðJ � 1Þ
� �

� h
@uvol

@h
ð36Þ

Differentiating (36) with respect to the time,
_evol ¼
@uvol

@h
_hþ @uvol

@p
_pþ @uvol

@Ê
� _̂Eþ @uvol

@Q k
� _Q k þ

@uvol

@qk

_qk

� 1
qR

_pðJ�1Þ � 1
qR

p_J� _h
@uvol

@h

� h
@2uvol

@h2
_hþ @

2uvol

@p@h
_pþ @

2uvol

@Ê@h
� _̂Eþ @

2uvol

@Q k@h
� _Q k þ

@2uvol

@qk@h
_qk

 !
assuming _p ¼ 0, considering _̂E ¼ 0 and rearranging terms leads to

_evol ¼
@uvol

@Q k
� h

@2uvol

@Q k@h

 !
� _Q k þ

@uvol

@qk
� h

@2uvol

@qk@h

 !
_qk

� 1
qR

p_J � h
@2uvol

@h2
_h ð37Þ

Inserting (37) into (33), the following expression is obtained:

� 1
qR

divð~qRÞ ¼
@uvol

@Q k
� h

@2uvol

@Q k@h

 !
� _Q k

þ @uvol

@qk
� h

@2uvol

@qk@h

 !
_qk � h

@2uvol

@h2
_h ð38Þ

In order to calculate the total heat power PDSC(t) which is trans-
ferred to or emitted from a test specimen with density qR, mass m,
volume V and surface area A, (38) is integrated over its volume. In
Fig. 1, such a situation is sketched in combination with the normal
vector ~NR and the heat flux vector ~qR.

Applying the Gauss theorem, the left-hand side of (38) can be
rewritten as follows:

� 1
qR

Z
V

divð~qRÞdV ¼ � 1
qR

Z
V

~qR � ~NRdA ¼ PDSCðtÞ
qR

ð39Þ

The minus sign is not adapted to the right-hand side of (39) be-
cause the heat power PDSC(t) should be positive when heat is trans-
ferred to the specimen. In this case, the scalar product ~qR � ~NR

between the heat flux and the normal vector is negative. Assuming
homogeneous conditions, the integration of the right-hand side of
(38) over the volume leads to:Z

V

@uvol

@Q k
� h

@2uvol

@Q k@h

 !
� _Q k þ � � �

 !
dV

¼ V
@uvol

@Q k
� h

@2uvol

@Q k@h

 !
� _Q k þ � � �

 !
ð40Þ

In view of m = qRV the final result of the volume integration of
(38) reads as follows:

PDSCðtÞ
m

¼ @uvol

@Q k
�h

@2uvol

@Q k@h

 !
� _Q kþ

@uvol

@qk
�h

@2uvol

@qk@h

 !
_qk�h

@2uvol

@h2
_h

ð41Þ



Fig. 2. Isobaric specific heat of a carbon black-filled elastomer.
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The right-hand side of (41) can be formulated more clearly
when the volumetric part of the specific enthalpy hvol is intro-
duced. To this end, the Legendre transformation

hvol ¼ evol þ
1
qR

pðJ � 1Þ ð42Þ

is applied and (36) is taken into account:

hvol ¼ uvol � h
@uvol

@h
ð43Þ

Differentiating (43) with respect to time under consideration of
(31), (32), _p ¼ 0 and _̂E ¼ 0 leads to:

_hvol

���
p¼const

¼ @uvol

@Q k
� h

@2uvol

@Q k@h

 !
� _Q k þ

@uvol

@qk
� h

@2uvol

@qk@h

 !
_qk

� h
@2uvol

@h2
_h ð44Þ

Comparing (44) with (41) a well-known result is obtained: the
heat power per unit mass is equal to the material time-rate of the
specific enthalpy under constant pressure (cf. Lion et al., 2011; Lion
et al., 2010; Lion and Yagimli, 2009):

PDSCðtÞ
m

¼ d
dt

hvolðp;0; h; Q 1; . . . ;Q n; q1; . . . ; qmÞ
����

p¼const
ð45Þ

The experimental technique of differential scanning calorimetry
(acronym: DSC) can measure the total heat power PDSC(t) which is
transferred to or emitted from a test specimen under prescribed
temperature histories at constant pressure. In (41), (45), the inter-
nal variables express the influence of process-dependent changes
in the microstructure, in the molecular configuration or the in
chemical structure of the material to the heat exchange with the
environment under isobaric conditions.

In the elementary theory of thermodynamics, the isobaric spe-
cific heat cp per unit mass is defined as the amount of heat DQ
which has to be supplied to the quantity m ¼ 1 kg of a given mate-
rial under constant pressure in order to raise its temperature by
Dh ¼ 1 K:

cp ¼
DQ

mDh

����
p¼const

ð46Þ

Considering the definition (46) the following expression for the
isobaric specific heat is used in this article (cf. Lion et al., 2010; Lion
et al., 2011):

cp ¼
PDSC

_hm
¼ �h

@2uvol

@h2 þ 1
_h

@uvol

@Q k
� h

@2uvol

@Q k@h

 !
� _Q k

þ 1
_h

@uvol

@qk
� h

@2uvol

@qk@h

 !
_qk ¼

_hvol

_h

�����
p¼const

ð47Þ

In (47), also time-dependent changes in the internal variables
contribute to cp. A definition of this form has to be applied, for
example, when the complex frequency-dependent specific heat
has to be calculated (cf. Lion and Yagimli, 2009; Lion et al., 2010)
or when the thermoreversible glass transition is constitutively
modelled (cf. Lion et al., 2012). It should be noted that the applica-
tion of the term ‘‘specific heat’’ and its interpretation become ques-
tionable when exo- or endothermic chemical reactions take place
within the material. In such situations, it makes more sense, to
consider the heat power per unit mass PDSC(t)/m directly which
equals the temporal rate of change in the specific enthalpy as spec-
ified in (45). In traditional textbooks of continuum mechanics (e.g.
Haupt, 2002), only the first term in (47) which contains the second
derivative of the thermodynamic potential with respect to the
absolute temperature is defined as specific heat. This definition
coincides with (47) only when the internal state of the material
does not change during the caloric experiment, i.e. the time rates
of all internal variables have to be zero. Accordingly, the expression

cp ¼ �h
@2uvol

@h2 ð48Þ

is only applicable in the case of perfect thermoelastic material
behaviour without any history effects or structural changes.

4. Examples

4.1. Finite thermoelasticity

Now, the developed theory is applied in the context of finite
thermoelasticity. To this end, the volumetric part of the hybrid free
energy is assumed to be independent on the isochoric strain tensor
and the isochoric part of u is postulated to be independent on the
pressure:

u ¼ uvolðp; hÞ þuisoðÊ; hÞ ð49Þ

In order to determine the function uvol(p,h), the temperature
dependence of the specific heat was measured under constant
pressure. In this situation, only changes in volume take place such
that Ê ¼ 0 and, as a consequence, uiso = 0 holds. In Fig. 2, the iso-
baric specific heat per unit mass of a special type of carbon
black-filled rubber is plotted as a function of the absolute temper-
ature. The test was carried out with a differential scanning calorim-
eter produced by the NETZSCH Company in Selb, Germany. The
temperature rate was 10 K=min. Since the glass transition temper-
ature of this elastomer is at about 210 K the test was driven in the
entropy elastic range in which the specific heat exhibits no rate
dependence. In a first approximation, the isobaric specific heat
can be represented by a linear function of the temperature:

cp ¼ cp0 þ bðh� h0Þ ð50Þ

cp0 ¼ 1620
J

kg K
; b ¼ 3:6

J

kg2 K
; h0 ¼ 300 K

The reference temperature h0 was prescribed and the two other
parameters were identified by standard methods. Fig. 2 shows that
the representation of the experimental curve is sufficient. The
maximum error is about 7%. In order to calculate the volumetric
part of the hybrid free energy, (50) is inserted into (48):

@2uvol

@h2 ¼ � cp0 � bh0

h
� b ð51Þ



Fig. 3. Numerical simulations of the thermoelastic inversion effect at different
stretch values; material parameters: l ¼ 1 MPa, j ¼ 3000 MPa,
a ¼ 6:39� 10�4 K�1, h0 ¼ 300 K.
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The double integration of (51) with regard to the temperature h
leads to

uvol ¼ �ðcp0 � bh0Þðh ln h� hÞ � b
2

h2 þ CðpÞhþ DðpÞ ð52Þ

This expression contains two pressure-dependent integration
constants C(p) and D(p). Since uiso is independent on p as assumed
in (49), they can be determined when the potential relation for the
volume strain (25) is applied:

evolðp; hÞ ¼ qR
@

@p
ðuvol þuisoÞ ¼ qR

@uvol

@p

¼ qRðC
0ðpÞhþ D0ðpÞÞ ð53Þ

Since the mechanical behaviour of elastomers is nearly incom-
pressible in the entropy elastic regime and the thermal expansion
effects are relatively small, the volume strain (53) can be assumed
to depend linearly on both the pressure and the temperature. This
idea motivates the following structure in which a, f and g are addi-
tional material constants:

qRC 0ðpÞ ¼ a; qRD0ðpÞ ¼ fpþ g ð54Þ

If the pressure is zero, (53) and (54) lead to evol(0,h) = ah + g.
The definition of the zero-point evol(0,h0) = 0 leads to g = �ah0

and finally to evol(0,h) = a(h � h0) such that a is the volumetric ther-
mal expansion coefficient. If, on the other hand, h = h0 is assumed,
(53) and (54) lead to evol(p,h0) = fp such that f = �1/j is the nega-
tive reciprocal bulk modulus. Taking this study into account, the
following relations are obtained for the volume strain and the vol-
umetric part of the hybrid free energy density:

evol ¼ aðh� h0Þ �
1
j

p ð55Þ

uvol ¼ �ðcp0 � bh0Þðh ln h� hÞ � b
2

h2 þ C0hþ D0 þ
a
qR
ðh

� h0Þp�
1

2qRj
p2 ð56Þ

C0 and D0 are integration constants. If the isochoric part uisoðÊ; hÞ of
the hybrid free energy is also given, the second Piola–Kirchhoff
stress tensor can be calculated when the definition C ¼ J2=3Ĉ as well
as 15, 29, 49, and (55) are considered:eT ¼ jJðJ � 1� aðh� h0ÞÞC�1

þ qRJ�2=3 @uiso

@Ê
� 1

3
@uiso

@Ê
� C

� �
C�1

� �
ð57Þ

The calculation of the second Piola–Kirchhoff stress in closed
form requires to transform the evol = F(p,h) relation to p = f(evol,h).
In the case of a linear equation such as (55) this calculation is easy.

In order to demonstrate that (57) represents reasonable mate-
rial behaviour, the thermoelastic inversion effect (cf. Treloar,
1975; Ogden, 1992) is simulated. To this end, the total length or
the stretch k > 1 of a test specimen under tension is kept constant,
the temperature is varied and the temperature-induced changes in
the stress are calculated. For the function uisoðÊ; hÞ an entropy elas-
tic Neo-Hookean model with the material constant l is assumed:

qRuiso ¼ l h
h0
ðĈ � 1� 3Þ ð58Þ

Considering @=@Ê ¼ 2@=@Ĉ in combination with (13) and (57) as
well as the definition of the left Cauchy–Green tensor B = FFT the
Cauchy stress tensor reads as follows:

T ¼ jðJ � 1� aðh� h0ÞÞ1þ 2J�5=3l h
h0

B� 1
3
ð1 � BÞ1

� �
ð59Þ

Evaluating this relation for uniaxial tension,
F ¼ k~e1 �~e1 þ klatð~e2 �~e2 þ~e3 �~e3Þ; T ¼ r~e1 �~e1 ð60Þ

and calculating J ¼ kk2
lat, two equations to compute the lateral

stretch klat and the stress r are obtained:

r ¼ j kk2
lat � 1� aðh� h0Þ

� �
þ 4

3
kk2

lat

� ��5=3
l h

h0
k2 � k2

lat

� �
ð61Þ

0 ¼ j kk2
lat � 1� aðh� h0Þ

� �
� 2

3
kk2

lat

� ��5=3
l h

h0
k2 � k2

lat

� �
ð62Þ

Rearranging the terms and considering the definition of the first
Piola–Kirchhoff stress tensor TR ¼ JTFT�1 ¼ rR~e1 �~e1 with
rR ¼ k2

latr, the following result is found:

rR ¼ k2
lat 2l h

h0
kk2

lat

� ��5=3
k2 � k2

lat

� �� �
ð63Þ

k2
lat ¼

1
k

1þ 2
3

l
j

h
h0

k2 � k2
lat

kk2
lat

� �5=3 þ aðh� h0Þ

0@ 1A ð64Þ

In order to compute the engineering stress rR for given values of
stretch k and temperature h, (64) has to be solved firstly to calcu-
late the lateral stretch klat. Then, this value is inserted into (63) to
compute rR. Since (64) possesses the general form k2

lat ¼ gðk2
latÞ, it

can be solved numerically with the fixed point iteration:
k2

latðnþ1Þ ¼ gðk2
latðnÞÞ. In order to provide a suitable starting value

k2
latð1Þ ¼ 1=k was applied. The numerical results for the stress rR

as function of the axial stretch and the temperature are plotted
in Fig. 3.

If the prescribed stretch of the specimen is sufficiently small,
the stress is decreasing with increasing temperature. But when
the applied stretch becomes larger, the stress is increasing with
growing temperature. These effects are the result of the influence
of thermal expansion in combination with entropy elasticity.

4.2. Chemical curing reactions and volume changes

In this example, exothermal curing reactions of polymers are
discussed which usually take place in combination with chemical
volume changes. In this case, the general structure of the hybrid
free energy density can be assumed as follows:

u ¼ uvolðp; h; qÞ þuisoðÊ; h; Q 1; . . . ;Q n; qÞ ð65Þ
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The scalar internal variable 0 6 q 6 1 is the degree of cure
which is introduced to represent the temporal evolution of the
chemical curing reaction: q = 0 describes the uncured state of the
polymer and q = 1 is attributed to the completely cured state.
The tensorial internal variables Qk are introduced to model the
thermoviscoelastic mechanical material behaviour of the polymer
for arbitrary curing states. The structure of (65) postulates, that
the volumetric material behaviour is independent on both the iso-
choric Green strain tensor Ê and the viscoelastic internal variables.
In the following discussion, only changes in temperature and pres-
sure are studied such that Ê ¼ 0 and uiso = 0 hold for all times.
Since the changes in volume of solids and liquids are relatively
small, the general structure of (55) can be taken as a basis and ex-
tended by the degree of cure-dependent chemical change in vol-
ume. To this end, two further empirical material constants b1 and
b2 are introduced:

evol ¼ aðh� h0Þ �
1
j

pþ b1qþ b2q2 ð66Þ

The nonlinear dependence of (66) on the degree of cure is moti-
vated by the experimental data plotted in Fig. 4. The material un-
der consideration is an epoxy-based structural adhesive which is
applied in the automotive industry to join components of car
bodies. The dependence of the chemical volume change on the de-
gree of cure has been measured with internally developed testing
equipment and procedures which are based on the principle of
Archimedes in combination with differential scanning calorimetry
(cf. Kolmeder and Lion, 2010; Kolmeder et al., 2011; Yagimli and
Lion, 2011).

In order to compute the volumetric part of the hybrid free en-
ergy on the basis of (66), the potential relation (25) is applied in
combination with the assumption of ouiso/op = 0:

evol ¼ qR
@uvol

@p
¼ aðh� h0Þ �

1
j

pþ b1qþ b2q2 ð67Þ

Integration of (67) leads to the expression

uvol ¼
1
qR

aðh� h0Þp�
1

2j
p2 þ b1qþ b2q2� �

pþ Aðh; qÞ
� �

ð68Þ

in which A(h,q) is an integration constant with regard to the pres-
sure. For physical reasons, this function is represented as follows:

A ¼ qRh0ð1� qÞ þ qRu0ðhÞ ð69Þ
Fig. 4. Chemically-induced change in volume of a structural adhesive; material
parameters: b1 = 0.02, b2 = � 0.045.
The material constant h0 is the total reaction enthalpy per unit
mass of the curing polymer at zero pressure; the temperature-
dependent function u0(h) is related to the isobaric specific heat
of the polymer in the completely cured state. In order to satisfy
the residual inequality (26), the evolution equation for the degree
of cure has to fulfil the following inequality:

�qR
@uvol

@q
_q P 0) ðqRh0 � ðb1 þ 2b2qÞpÞ _q P 0 ð70Þ

A thermodynamic consistent curing model is given by the
expression

_q ¼ qRh0 � ðb1 þ 2b2qÞp
qRh0

f ðq; hÞ ð71Þ

in which f ðq; hÞP 0 is an appropriate temperature- and degree of
cure-dependent curing model (cf. Kamal et al., 1973; Kamal,
1974; Yagimli and Lion, 2011, etc.). In dependence on the sign
and the magnitude of the pressure, the degree of cure and the mate-
rial parameters, the expression qRh0 � (b1 + 2b2q)p in (70) and (71)
can be positive, negative or zero. The interpretation of this term is
as follows: the curing behaviour of a material which exhibits chem-
ical shrinkage, i.e. b1, b2 < 0, can be accelerated when a positive
pressure is applied and is decelerated by a negative pressure. If
swelling takes place, the opposite holds. For the investigated adhe-
sive, the numerical values h0 = 2 � 105 J/kg, qR = 1.1 � 103 kg/m3,
b1 = 0.02 and b2 = �0.045 were experimentally determined such
that qRh0 is of the order of 108 J/m3. If, in a worst-case scenario,
an unrealistic high pressure of 100 MPa in combination with q = 1
is assumed, the term (b1 + 2b2q)p is of the order of 106 J/m3. As
the most important result of this estimation (qRh0 � (b1 + 2b2q)p)/
qRh0 � 1 holds such that (71) simplifies:

_q ¼ f ðq; hÞ ð72Þ

There are many standard methods in the literature how to
determine nonlinear curing models in the general form of (72)
on the basis of differential scanning calorimetry measurements
(cf. Yagimli and Lion, 2011 and citations therein).

Now, the isobaric specific heat is computed. If (68) and (69) are
combined, the final form of the volumetric part of the hybrid free
energy reads as follows:

uvol¼
1
qR

aðh�h0Þp�
1

2j
p2þðb1qþb2q2ÞpþqRh0ð1�qÞþqRu0ðhÞ

� �
ð73Þ

Considering the structure of (65) in combination with (47) the
intermediate result

cp
_h ¼ �h

@2uvol

@h2
_hþ @uvol

@q
� h

@2uvol

@q@h

 !
_q ð74Þ

is obtained which leads to the following expression when (73) is
inserted:

cp
_h ¼ �h

@2u0

@h2
_hþ ðb1 þ 2b2qÞp� qRh0

qR

_q ð75Þ

Taking the discussion with regard to (71) and (72) into account,
the following approximation holds:

cp
_h ¼ �h

@2u0

@h2
_h� h0 _q ð76Þ

Considering (47), the left-hand side of (76), i.e. the term
cp

_h ¼ PDSCðtÞ=m, is the supplied or emitted heat power per unit
mass which can be determined with a differential scanning
calorimeter during the curing reaction. The second term on the
right-hand side of (76) is the time rate of the exothermally emitted
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reaction enthalpy per unit mass. The negative sign expresses the
fact that the specific enthalpy of the polymer decreases during
the chemical reaction. If the glass transition temperature of the
polymer is above the temperature at which the curing process
takes place, the mobility of the molecules is significantly reduced.
In this case, the diffusion of the reactants becomes more and more
constrained such that the reaction rate can become extremely
small or even zero for q0 < 1. In the completely cured state, i.e.
for q = 1 when no diffusion control takes place, the reaction rate
is zero: _q ¼ f ðh;1Þ ¼ 0. In this situation (76) leads to the following
result:

cp ¼ �h
@2u0

@h2 ð77Þ

This relation shows that the function u0(h) determines the iso-
baric specific heat of the fully cured polymer. It should be noticed
that the current approach does not take into account the glass
transition.

In order to visualise some fundamental properties of this ap-
proach, the following nonlinear evolution equation (cf. Kamal et
al., 1973; Kamal, 1974) is assumed to represent the curing reaction
in combination with a constant value cp0 for the isobaric specific
heat:

_q ¼ ðA1 þ A2qaÞð1� qÞb; Aj ¼ Aj0 exp � Bj

Rh

� �
ð78Þ
cp0 ¼ 1620 J=kg K; h0 ¼ 200 kJ=kg; A10 ¼ A20

¼ 4:47� 108 s�1; a ¼ 0:97; b ¼ 1:8
B1 ¼ 99:2 kJ=mol; B2 ¼ 88:6 kJ=mol; R ¼ 8:314 J=mol K

The material parameters were determined to describe the cur-
ing behaviour of the epoxy-based structural adhesive whose chem-
ically induced volume change is presented in Fig. 4. The simulated
responses of the heat power per unit mass PDSC/m were calculated
on the basis of (78) in combination with

PDSC

m
¼ cp0

_h� h0 _q ð79Þ

The curves are depicted in Fig. 5 as function of the temperature
for different constant heating rates. The vertical shift of the curves
in dependence on the temperature rate is caused by the linearly
rate-dependent specific heat term in (79).
Fig. 5. Simulation of the calorimetric responses of an exothermal curing reaction.
4.3. Glass transition induced changes in the volumetric material
behaviour

In this example, the proposed theory is applied to represent the
process-dependence of both the isobaric specific heat and the ther-
mal expansion behaviour of polymers in the vicinity of the glass
transition. For more information with regard to the glass transition,
its interpretation and modelling aspects, the reader is referred to
the review article provided by Jäckle (1986) as well as to Davies
and Jones (1953). In the current work, the usual interpretation of
the glass transition as a kinetic freezing-in thermodynamic non-
equilibrium phenomenon is applied (cf. Garden, 2007b; Lion and
Yagimli, 2009; Lion and Peters, 2010; Lion et al., 2010; Lion et al.,
2011; Tropin et al., 2011; Peters et al., 2011; Richert, 2011, etc.).

If the initial temperature of a glass-forming material is suffi-
ciently high, and it is cooled from this state, the mobility of its mol-
ecules is reduced. If the cooling rate is high enough and the final
temperature is sufficiently low, crystallization is avoided, the
amorphous state is frozen and the material becomes glassy. The
characteristic temperature under which glasses remain stable dur-
ing relevant time scales is the glass transition temperature.

In order to model this type of material behaviour, the hybrid
free energy density is assumed to be as follows:

u ¼ uvolðp; h; dÞ þuisoðÊ; h;Q 1; . . . ;Q n; dÞ ð80Þ

The global structure of (80) is similar to that of (65). However, it
should be mentioned that the variable d has a different physical
meaning than the variable q in (65) and is determined by a totally
different evolution equation. The tensorial variables Qk are intro-
duced to represent the thermoviscoelastic material behaviour of
the polymer and are driven by the isochoric Green strain tensor.
For this part of the model, standard models of finite thermovisco-
elasticity can be applied (cf. Lion, 1997; Reese and Govindjee,
1998; Haupt, 2002, etc.). In order to represent the volumetric
behaviour of isotropic glass-forming materials under temperature-
and pressure-controlled excitations, Ê ¼ 0 and uiso = 0 hold and
the following assumption is made for the volumetric part of the
hybrid free energy density:

uvol ¼ u0 � cp0h0 � s0ðh� h0Þ � ðcp0 � b0h0Þ h ln
h
h0
� h

� �
� b0

2
h2 � 2hh0 � h2

0

� �
þ a0

qR
ðh� h0Þp�

1
2qRj0

p2 þ eðh

� h0Þdþ
d
2

d2 �wdp ð81Þ

It is an extension of (56) by additional terms whose physical
meanings become clear when the volume strain, the isobaric spe-
cific heat, the specific entropy and the evolution equation for d
are calculated. The scalars u0, cp0, s0, b0, a0, qR, j0, e, d, w are mate-
rial constants. Evaluating (25) under consideration of (81) and
uiso = 0 leads to:

evol ¼ qR
@uvol

@p
¼ a0ðh� h0Þ �

1
j0

p� qRwd ð82Þ

svol ¼ �
@uvol

@h

¼ s0 þ b0ðh� h0Þ þ ðcp0 � b0h0Þ ln
h
h0
� a0

qR
p� ed ð83Þ

Considering the residual inequality (26) and the hybrid free en-
ergy (81) a thermodynamically consistent evolution equation for
the internal variable d has to satisfy the condition

�qR
@uvol

@q
_d P 0) �qRðeðh� h0Þ þ dd�wpÞ _d P 0 ð84Þ



Fig. 6. Simulation of the isobaric specific heat of a model material after cooling with
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Accordingly, the evolution of d can be defined as follows:

_dðtÞ ¼ �AðhÞðeðh� h0Þ þ dd�wpÞ with AðhÞ

¼ A0 exp
c1ðh� h0Þ
c2 þ h� h0

� �
ð85Þ

The initial condition is d(0) = 0 and the reciprocal value of A(h) is
a temperature-dependent relaxation time; c1, c2, A0 are material
constants and the ratio A0/A(h) is given by the well-known WLF-
equation (cf. Williams et al., 1955). The isobaric specific heat of this
model can be computed when (47) is applied under consideration
of uiso = 0 and (81):

cp ¼ �h
@2uvol

@h2 þ 1
_h

@uvol

@d
� h

@2uvol

@d@h

 !
_d

) cp ¼ cp0 þ b0ðh� h0Þ þ
dd�wp� eh0

_h
_d ð86Þ

If both the pressure p and the temperature h are arbitrary func-
tions of time, (82) can be used to calculate the volume strain. In or-
der to derive the isobaric specific heat on the basis of (86), p = const
has to be assumed. Since (82), (83), and (86) depend not exclu-
sively on the current values of p and h but also on the history-
dependent internal state variable d, the model is
thermoviscoelastic.

� In the case of infinitely fast changes in pressure or temperature,
(85) leads to _d ¼ 0 such that the internal variable is frozen and
the material remains in the glassy state. If this process starts
from an equilibrium state with p(0) = 0, h(0) = h0 and d(0) = 0,
the internal variable remains zero and the glassy responses of
the model can be obtained from (82), (83), and (86):

eglass
vol ¼ a0ðh� h0Þ �

1
j0

p ð87Þ

sglass
vol ¼ s0 þ b0ðh� h0Þ þ ðcp0 � b0h0Þ ln

h
h0
� a0

qR
p ð88Þ

cglass
p ¼ cp0 þ b0ðh� h0Þ ð89Þ

These relations show that a0 and 1/j0 are the volumetric ther-
mal expansion coefficient and the bulk compliance of the material
in the glassy state; cp0 and b0 are attributed to the isobaric specific
heat in the glassy state.

� In the case of infinitely slow changes in the pressure or the
temperature, (85) leads to the equilibrium response dequil =
�1/d(e(h � h0) � wp) for the internal variable. Hence, the mate-
rial remains in the equilibrium state. Considering (82), (83), and
(86) in combination with p = const for the specific heat calcula-
tion, the final result is:

eequil
vol ¼ a0 þ qR

we
d

� �
ðh� h0Þ �

1
j0
þ qR

w2

d

� �
p ð90Þ

sequil
vol ¼ s0 þ b0 þ

e2

d

� �
ðh� h0Þ þ ðcp0 � b0h0Þ ln

h
h0

� 1
qR

a0 þ qR
ew
d

� �
p ð91Þ

cequil
p ¼ cp0 þ b0ðh� h0Þ þ

dd�wp� eh0

_h
_dequil

¼ cp0 þ b0ðh� h0Þ þ
e2

d
h ð92Þ
The coefficient 1/jequil = 1/j0 + qRw2/d is the compliance of the
material in the equilibrium state; aequil = a0 + qRwe/d is the related
thermal expansion coefficient. Comparing (89) and (92) it is ob-
served that the temperature dependence of the isobaric specific
heat in the glassy range is different from that in the equilibrium
range.

In order to illustrate the thermomechanical response behaviour
of this model, both the isobaric specific heat (86) and the volume
strain (82) were simulated on the basis of (85). To this end, tem-
perature-controlled excitations with piecewise linear sections
and pressure-free boundary conditions were assumed and the fol-
lowing equations were evaluated:

_d ¼ �A0e
c1ðh�h0 Þ
c2þh�h0 ðeðh� h0Þ þ ddÞ ð93Þ

cp ¼ cp0 þ b0ðh� h0Þ þ
dd� eh0

_h
_d ð94Þ

evol ¼ a0ðh� h0Þ � qRwd ð95Þ

The reference temperature is defined as h0 ¼ 373 K and the
material parameters of the above listed equations are as follows:

qR ¼ 1050 kg
m3 ; c1 ¼ 17:4; c2 ¼ 51:6 K; A0 ¼ 0:1 1

s ;

e ¼ 7:9 J
kg K ; d ¼ 79:5 J

kg ; cp0 ¼ 103 J
kg K ;

b0 ¼ 3:6 1
K ; a0 ¼ 6 � 10�4 1

K ; w ¼ 1:1 � 10�5 m2 J
kg N

Their values were estimated such that the model represents the
typical behaviour of polymers near the glass transition.

The evaluation of (93)–(95) was realised with the mathematical
software system MATLAB and for the numerical integration of (93)
the MATLAB solver ode15 s was used. The results of three simula-
tions are presented in Fig. 6 for the isobaric specific heat and in
Fig. 7 for the volume strain. The absolute temperature is plotted
on the horizontal axes. All simulations start in the equilibrium
state of the material which is characterised by sufficient high tem-
peratures or short relaxation times, i.e. by 1/A(hmax)	 1. Hence,
hmax ¼ 400 K was chosen. The related initial condition for the inter-
nal variable (93) is d(0) = �e/d(hmax � h0). In the first segment of
the simulation, the temperature was reduced with a constant rate
just until the lower value of hmin = 330 K was reached. Due to 1/
A(hmin)
 1 the relaxation time of (93) is really large such that
the material is in the glassy range. In the simulations, three differ-
ent cooling rates of 0:1 K=s, 1:0 K=s and 10 K=s were applied to
different cooling rates and a heating rate of 10 K=s.



Fig. 7. Simulation of the volume strain of a model material after cooling with
different cooling rates and a heating rate of 10 K=s.
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transfer the material from the equilibrium to the glassy state. After
this, a reheating with a rate of 10 K=s was simulated just until hmax

is reached again. For the physical interpretation of the simulated
behaviour of specific heat and thermal expansion in the vicinity
of the glass transition, the reader is referred to the associated liter-
ature and the citations therein (cf. Greiner and Schwarzl, 1986; Jäc-
kle, 1986; Richert, 2011; Peters et al., 2011; Lion et al., 2011, etc.).
The non-symmetric response behaviour of the specific heat during
cooling and heating as well as the dependence of the maximum of
cp in the reheating segment on the previous cooling rate as de-
picted in Fig. 6 are known since many decades (cf. Wunderlich et
al., 1964; Richert, 2011). The dependence of the volume strain on
the temperature process as plotted in Fig. 7 is discussed, for exam-
ple, in Greiner and Schwarzl (1986) or Peters et al. (2011).
5. Discussion

In this article, a hybrid free energy density uðÊ; p; h; . . .Þ is de-
fined and exemplarily applied to model particular properties of
elastomers, curing adhesives and glass-forming materials. The
term ‘‘hybrid’’ means that it depends on the spherical part of the
stress tensor, i.e. on the pressure, and on the isochoric part of the
strain tensor which possesses five independent components. It
should be mentioned that the mechanical state variable of the
Gibbs free energy density gðeT; h; . . .Þ is the total stress tensor
whereas the specific Helmholtz free energy w(E, h, . . .) depends
on the total strain tensor (cf. Haupt, 2002, etc.). Therefore, the total
number of independent scalar mechanical arguments is identical in
all formulations.

When the stress-dependent specific Gibbs free energy is used as
thermodynamic potential, the associated caloric quantity is the
isobaric specific heat or, alternatively, the time rate of the specific
enthalpy at constant pressure. If the function gðeT; h; . . .Þ is given,
the related caloric quantity can be simply derived by partial differ-
entiations in combination with some algebra. As a significant ben-
efit of this approach, the isobaric caloric quantities can be easily
measured with the standard technique of differential scanning cal-
orimetry and this data can be used for the parameter identification.
Since the specific Gibbs free energy depends on the stress tensor,
the thermodynamically conjugated mechanical variable is the
strain tensor. It can be directly computed when g is differentiated
with respect to the stress. Mechanical material models, in which
the strain tensor is the dependent variable, are uncomplicated to
use only when they can be solved for the stress tensor. In the case
of infinitesimal strains, such a model has been proposed by Lion
et al. (2010) to represent the thermoviscoelastic behaviour of
glass-forming materials. But in the case of finite strains or pro-
nounced physical nonlinearities, formulations which are based on
the specific Gibbs free energy generally lead to mechanical mate-
rial models which are no more invertible with regard to the stress
tensor.

If the strain-dependent Helmholtz free energy density
w(E,h, . . .) is used as thermodynamic potential, the associated calo-
ric quantity is the specific heat at constant volume. In contrast to
the specific heat at constant pressure, the isochoric specific heat
of solids or liquids cannot be measured with standard calorimetric
techniques. If, in spite of this circumstance, experimental data of
the isobaric specific heat should be used for the parameter identi-
fication, it has to be calculated from the specific Helmholtz free en-
ergy. The fact, that this calculation is relatively expensive is an
additional aggravating factor. Such a calculation was performed
by Lion and Peters (2010) for the complex isobaric and isochoric
specific heats in the case of a model of linear thermoviscoelasticity.
Since the thermodynamically associated mechanical variable of the
strain is the stress tensor, mechanical material models for any type
of elastic or inelastic material behaviour are usually formulated on
the basis of the specific Helmholtz free energy (e.g. Reese and Gov-
indjee, 1998; Haupt, 2002; Peters et al., 2011, among others which
are not cited here). The stress tensor can be directly calculated by
differentiation of w(E,h, . . .) with regard to the strain. This concept
is applicable for infinitesimal deformations as well as for finite
strains and leads to the natural formulation of mechanical material
models in which the stress tensor is a functional of strain and
temperature.

As a matter of fact, the specific Helmholtz free energy has pro-
found benefits with respect to the representation of mechanical
material properties and the Gibbs free energy has essential advan-
tages to represent the caloric material behaviour. In order to com-
bine the advantages of both energy functions, a hybrid free energy
density is proposed in this article. The idea is based on the additive
decomposition of the stress power (18) into the sum of isochoric
and volumetric terms in combination with the Legendre transfor-
mation (19) and the evaluation of the Clausius–Duhem inequality
(21). The main result is the following energy function together
with its potential relations:

u ¼ uðÊ; p; h; . . .Þ with êT ¼ qR
@u
@Ê
� 1

3
@u
@Ê
� Ĉ

� �
Ĉ�1

� �
;

evol ¼ qR
@u
@p

; s ¼ � @u
@h

In the case of isotropic materials which are loaded with arbi-
trary pressure and temperature excitations only changes in volume
take place such that Ê ¼ 0 and êT ¼ 0 hold. Based on the potential
relations for the volume strain and the specific entropy in combi-
nation with the balance equation of energy, the calorimetric re-
sponse of the model and the volume strain can be calculated. The
experimental investigations which are needed to identify the re-
lated material parameters can be carried out with standard tech-
niques such as differential scanning calorimetry (DSC),
thermomechanical analysis (TMA) and tests under hydrostatic
pressure to measure the bulk modulus. This model structure per-
mits a comparatively simple identification of the bulk behaviour
of the material under pressure or temperature excitations. If the
hybrid free energy is assumed to be the sum of volumetric and iso-
choric terms as postulated in (31) the isochoric part of u can be
identified on the basis of temperature-dependent mechanical tests.
Since there are numerous constitutive models and mechanical
testing techniques in this context, the current article does not dis-
cuss this aspect.
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In three examples, it has been shown that the approach which is
based on the hybrid free energy density in combination with the
additive split u = uvol + uiso can be easily applied to represent
the thermomechanical bulk behaviour of polymers. In order to de-
rive an explicit expression for the stress tensor in the form of (15) it
is necessary that the constitutive relation for the volume strain
evol = F(p,h, . . .) can be rearranged in the form of p = f(evol,h, . . .). If
this inversion is impossible or too difficult, for example due to
physical nonlinearities, the original relation evol = F(p,h, . . .) has to
be solved numerically.

6. Conclusions

In the future, the promising theory which has been developed in
this article should be applied in the context of constitutive model-
ling and experimental testing of thermomechanical and caloric
material properties of polymers. Differential scanning calorimetry
in combination with thermomechanical analyses and hydrostatic
compression tests are necessary to determine the volumetric part
of the constitutive model. As a key result of this work, experimen-
tal data of isothermal or non-isothermal calorimetric tests, for
example the temperature dependence of the isobaric specific heat
or the exothermal heat generation of a curing reaction, can be di-
rectly used to identify the temperature-dependent functions of
the volumetric part of the material model. In comparison with con-
stitutive approaches which are based on traditional formulations
with the Helmholtz or the Gibbs free energy density, the concept
of the hybrid free energy density simplifies the representation of
caloric and thermomechanically coupled material properties under
complex states of stress and strain and varying temperature. It also
leads to a better understanding of the term ‘‘specific heat’’ in con-
tinuum mechanics.
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