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Abstract 

The reduction of anthropogenic carbon dioxide (CO2) in the atmosphere is crucial for mitigating the climate change. 
CO2 capture and storage (CCS) is considered as one of the most promising options for carbon reduction. The main 
means is injection of CO2 into structural reservoirs in deep, permeable geologic formations. The aim of this paper is 
to identify the main research needs and gaps in trapping mechanisms of geological carbon sequestration. Trapping 
mechanisms for geological sequestration include hydrodynamic trapping, solubility trapping, and mineral trapping. 
The properties of the CO2-water/brine system as well as the hydrodynamics, geophysics, and geochemistry of the 
reservoir rock/fluid system are discussed.  

© 2013 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Kenneth 
Reifsnider and Anil Virkar. 
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1. Introduction 

Climate change is one of the most significant challenges of our time. Carbon dioxide (CO2) and other 
greenhouse gas emissions are believed to be the cause of the major concern. The IEA study indicates that 
CO2 emissions will increase by 130% by 2050 in the absence of new policies or supply constraints as a 
result of increased fossil fuel usage [1]. Carbon capture and storage (CCS) is considered as one of the 
most promising options and the only technology available to mitigate atmospheric emissions of CO2 from 
large-scale fossil fuel usage [1, 2]. Deep saline aquifers, depleted oil and gas fields, and unminable coal 
seams are the primary targets for the geological storage of CO2. 

In recent years, fundamental research has focused increasingly on the short and long term effects of 
CO2 injection into reservoirs to assess the feasibility of CO2 storage on a commercial scale. Sequestration 
processes involve different trapping mechanisms according to the hydrodynamic, physical and chemical 
conditions in the formation. It is common to divide these mechanisms into four different categories: 
hydrodynamic trapping, residual trapping, solubility trapping, and mineral trapping. 
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Another major concern of all storage options is the sealing efficiency of low-permeable sequences 
(caprock) overlying potential storage reservoirs. It has been suggested that any technology used to 
geologically store CO2 underground should store it for a minimum of 1000 years with a leakage rate of 
less than 0.1% per year [2 4]. The sealing capacity and long-term integrity of caprock, considering 
different kinds of mechanisms, is therefore an important issue for site approval and public acceptance [5]. 
Four different ways in which caprock can fail have been identified: diffusive loss through the caprock, 
leakage through pore spaces when capillary breakthrough pressure has been exceeded, leakage through 
faults or fractures, and well leakage when wells are degraded or inappropriately abandoned. The 
caprock-sealing mechanisms are recently reviewed by Song and Zhang [6], and thus not discussed in this 
paper. 

This paper addresses the mechanisms of CO2 trapping in the geological formations. In doing so, it both 
highlights key research findings and critical gaps in the current literature. For each mechanism, a brief 
introduction, a description of the main mechanisms or dominant factors, and its effects for storage are 
presented. In the end, a comprehensive conclusion as well as a summary of research gaps and needs is 
given. 

2. Trapping mechanisms 

In terms of the pore space utilization, CO2 is preferably injected in a supercritical state (scCO2). This is 
because scCO2 is denser than gaseous CO2 [7]. scCO2 may undergo a phase change due to changes in 
pressure and/or temperature. Depending on the reservoir conditions, CO2 can be stored as compressed gas, 
as liquid, or in a supercritical phase. Most of the injected CO2 will reside in a mobile phase of CO2, free 
to move laterally or migrate vertically towards the caprock. Trapping of CO2 as residual gas occurs when 
formation water encroaches or invades the CO2 plume [8]. It will also dissolve partially into the aqueous 
phase, leading to solubility trapping, and it can react with native minerals, resulting in mineral trapping. 
These trapping mechanisms are discussed in the following subsections.  

2.1. Hydrodynamic trapping 

Hydrodynamic trapping refers to that CO2 is trapped as supercritical fluid or gas under a 
low-permeability caprock. Carbon dioxide, being less dense than the formation fluid, will rise buoyantly 
until it encounters a caprock that has a capillary entry pressure greater than the buoyancy or 
hydrodynamic force. CO2 will accumulate in such a structural or stratigraphic feature that has both 
vertical and lateral seals. Trapping by such a seal is called structural or stratigraphic trapping, or 
hydrodynamic trapping. This mechanism is very important in that it is a prerequisite for any storage site 
because it prevents the leakage of CO2 through the caprock during the time required for other trapping 
mechanisms to come into effect [9].  

For such trapping mechanisms, the trapping efficiency is determined by the structure of the 
sedimentary basins, which have an intricate plumbing system defined by the location of high and low 
permeability strata that control the flow of fluids throughout the basin. There are numerous variations of 
structural and stratigraphic traps, or combinations of both structural and stratigraphic traps that can be 
physical traps for geological CO2 storage. Common structural traps include anticlinal folds or sealed fault 
blocks (Fig. 1). CO2 can fill to the spill point until the breakthrough pressure is exceeded. 

Structural or stratigraphic traps are mostly found in reservoirs that have held oil and gas for millions of 
years. In these reservoirs, storage capacity mainly depends on the volume of pore space. Hydrodynamic 
trapping has been recognized in saline aquifers of sedimentary basins that have extremely slow flow rates. 
A volume of carbon dioxide injected into a deep hydrodynamic trap may take millions of years to travel 
by buoyancy forces up dip to reach the surface before it leaks back into the atmosphere. For this traps, 
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storage capacity is affected by both the volume of pore space and the reservoir permeability [11]. CO2 
sequestration by this physical trapping mechanism depends greatly on the sealing capacity of caprock, 
making it a big challenge for site selection [6]. 

 
Fig. 1. Examples of (a) structural and (b) stratigraphic traps for CO2 (modified from [10]) 

2.2. Residual trapping 

When CO2 is injected into the reservoir, it first displaces brine in a co-current fashion. But when the 
injection is stopped, due to the density difference between CO2 and brine, the fluids flow in a 
counter-current fashion so that CO2 migrates up towards and the brine flows downwards. Thus the wetting 
phase (brine) enters the pores by less-wetting phase (CO2). In such a process, the brine displaces CO2, 
leading to a significant saturation of CO2 becoming trapped in small clusters of pores, see Fig. 2. The 
disconnected CO2 is then trapped as an immobile phase. This trapping mechanism is called the residual 
trapping or capillary trapping.  
 

Fig. 2. Schematic of the trail of residual CO2 that is left behind because of snap-off as the plume migrates 
 upward during the postinjection period [12] 

 
The capillary trapping mechanism has a huge impact on the migration and distribution of CO2 which, 

in turn, affects the effectiveness of the other trapping mechanisms. This has been shown with both 
experiments and numerical modeling results. Suekane et al. [13] experimentally evaluated the maximum 
trapped CO2 saturation for typical conditions of aquifers at a depth from 750 m to 1 000 m. The trapped 
gas saturation is in the range from 24.8% to 28.2% for Berea sandstone core, despite the variation of CO2 
density, viscosity and interfacial tension. In addition, there are several simulation investigations 
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conducted to estimate the effect of capillary trapping. Two main approaches have been used in these 
studies of residual trapping behaviors [13]. The first isolates the effects of changes in relative 
permeability curves, calculating how trapped gas saturation change when the end point values such as 
critical gas saturation, residual gas saturation, wetting behavior, and irreducible water saturation are 
varied [12, 14 16]. Among these results, it is found that the residual trapping can limit significantly the 
movement of injected CO2, resulting in a significant fraction of CO2 trapping using a hysteresis model. 
They concluded that the effect of residual gas on CO2 storage can be very large. The second approach 
makes use of various ratios of vertical to horizontal permeability (kv/kh), injection rates, formation 
pressure and temperature for a given set of relative permeability curves [17 19]. They found that the 
injection rate, heterogeneity, and the ratio of viscous to gravity force have the most significant impacts on 
the final immobilized saturation. Increasing the viscous to gravity force ratio and increasing the 
heterogeneity will enhance the sweeping efficiency, resulting in more CO2 trapping as residual gas.  

2.3. Solubility trapping 

Solubility trapping refer to dissolution of CO2 in formation fluid. CO2 would migrate upwards to the 
interface between reservoir and caprock after injection and then spread laterally under caprock as a 
separate phase. When CO2 contacts with the ambient formation brine and hydrocarbon, mass transfer 
occurs with CO2 dissolving into the brine until an equilibrium state is reached. The solubility of CO2 in 
water is dependent on the salinity, pressure and temperature of the formation water [20]. At the interface 
of free gas phase and formation water, CO2 dissolves into water by molecular diffusion. The water in 
contact with CO2 will be saturated with CO2 and a concentration gradient of CO2 would establish 
spatially. This process is very slow because the molecular diffusion coefficient is very small. It will take 
thousands of years for CO2 to be completely dissolved in brine [21]. 

When diffusive CO2 dissolves in brine, it slightly increases the brine density. The dissolution would 
increase the density of brine up to approximately 1% compared with the original formation brine [14, 22]. 
The heavier brine on the top of aquifer would flow downward due to gravity. Such convection enhances 
the mixing of CO2 and brine and stimulates the diffusion process, following more dissolution of CO2. The 
dissolution reduces CO2 upward mitigation as well as increases the storage capacity. The crucial problem 
about the dissolution-diffusion-convection (DDC) process is the time and length scales of the onset of 
convection. Some approaches have been used for studying the onset of CO2 convection in reservoir: 
amplification theory [23], global stability (energy) method [24], linear stability analysis [24, 25], and 
non-modal stability theory [26].  

Modeling studies reveal that the DDC process can help to increase storage capacity in reservoir [27, 28]. 
Laboratory studies have been conducted that confirmed qualitative and quantitative aspects of it [29, 30]. 
Furthermore, as DDC process makes more CO2 dissolve in brine, it is reasonable to expect that DDC may 
reduce the migration of CO2 through caprock. It may be significant in storage capacity estimation and 
caprock sealing analysis. 

2.4. Mineral trapping 

Mineral trapping refers to the incorporation of CO2 in a stable mineral phase via reactions with mineral 
and organic matter in the formation. Over time the injected CO2 will dissolve into the local formation 
water and initiate a variety of geochemical reactions. Some of these reactions could be beneficial, helping 
to chemically contain or “trap” the CO2 as dissolved species and by the formation of new carbonate 
minerals; others may be deleterious, and can actually aid in the migration of CO2. It is important to 
understand the overall impact of these competing processes. However, these processes will also be 
dependent upon the structure, mineralogy and hydrogeology of the specific lithologies concerned [31]. 
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Espinoza et al. [32] summarized representative chemical reactions and typical reaction rates in the 
literature, see Table 1. 

 
Table 1. Mineral reactions with CO2-acidified water 

Mineral Typical reaction Reaction rate (mol m-2s-1) 

Silicates [33] 
SiO2(s)+2H2O  H4SiO4 

H++H3SiO4
- 

H++H2SiO4
2-  

1.26 10-14 [36] 

Aluminosilicates [34] Anorthite: 
CaAl2Si2O8(s)+8H+  Ca2++2Al3++2H4SiO4 
Kaolinite: 
Al2Si2O5(OH)4(s)+6H+  2Al3++2H4SiO4+H2O 

Anorthite: 1.2 10-5 
Oligiocalse: 1.2 10-8 
Albite: 3.6 10-9 
Kaolinite: 10-14 10-15 [37] 

Carbonates [35] 
CaCO3(s)+H+  Ca2++HCO3

- 
CaCO3(s)+CO2+H2O  Ca2++2HCO3

- Calcite: 1.6-3.2 10-5 [38] 

 
The reaction rate of minerals in CO2-water depends on temperature, pressure, pH, and concentration of 

other species. Besides the aqueous reaction, water-wet scCO2 and dry scCO2 reactions may occur when a 
large amount of dry scCO2 flows through the reservoir. In this case, gradual displacement and dissolution 
of residual pore water occur and the rock comes into direct contact with dry scCO2. Initial studies on dry 
scCO2 or wet scCO2 reactions have been conducted [39, 40]. The mineral dissolution is a very slow 
process as the reaction rates are usually very low and mineral trapping would only become significant at a 
geological time scale.  

2.5. Summary 

2.5.1. Relevant terminology 

There are different relevant terminologies associated with CO2 sequestration mechanisms. Definition 
for each one may be a little different in different literature, see Table 2. 

 
Table 2. Mainly relevant terminology definition in the literature 

Terms Definition and references 

Static trapping Mobile CO2 is trapped in stratigraphic and structural traps, or in man-made caverns [41]. 

Structural trapping Structural traps refer to geological media which precludes the upward and lateral movement of CO2 
induced by crust movement (faults and folds) [41]. 

Stratigraphic trapping Stratigraphic traps refer to geological media which precludes the upward and lateral movement of CO2 
induced by depositional and/or diagenetic processes [41]. 

Hydrodynamic 
trapping 

(1) The buoyant CO2 is kept underground by an impermeable caprock [9]. 
(2) The injected CO2 is primarily trapped as a gas or supercritical fluid. CO2 will rise up due to 
buoyancy effect until it approaches the seals [42]. 

Capillary trapping (1) It means the trapping by capillary forces in the pores on the trailing edge of the mobile CO2 plume 
(typically) [43]. 
(2) CO2 phase is disconnected into an immobile (trapped) fraction (or called residual trapping) [12]. 
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Residual trapping (1) CO2 can be stored as an immobile form in deep saline aquifers due to the petrophysical property of 
flow phases. CO2 will be left behind as trapped (residual) saturation [14]. 
(2) CO2 is trapped in the pore space at irreducible gas saturation in which case CO2 is immobile 
because of the interfacial tension between CO2 and formation water [41]. 
(3) It means the trapping by capillary forces in the pores on the trailing edge of the mobile CO2 plume 
(less commonly) [43]. 
(4) Residual trapping happens when water is imbibed behind the migrating CO2 plume, and is caused 
by gas-water relative permeability hysteresis [44]. 
(5) Formation of disconnected blobs of CO2 phase is held by capillary forces [45] 

Solubility trapping 
(dissolution trapping) 

(1) CO2 dissolves in water and/or oil [42]. 
(2) CO2 dissolves in formation water, residual oil, or mixing with residual gas [43]. 
(3) CO2 dissolves in hydrocarbons or water contained in subsurface formations [44]. 
(4) CO2 dissolves in brine as aqueous species [45]. 

Mineral trapping (1) CO2 reacts with minerals and organic matters in the geologic formations to become a portion of the 
solid matrix [42]. 
(2) CO2 is trapped by precipitation of carbonate-bearing mineral phases, such as calcite, magnesite, 
siderite, and dawsonite [43]. 
(3) CO2 is trapped by the mineralization process of mineral dissolution and precipitation [44]. 
(4) CO2 is trapped by precipitation of dissolved carbonate anions and metal cations as solids [45]. 

Physical trapping (1) CO2 is immobilized as a free gas or supercritical fluid and a process depends on the available 
storage volume [41]. 
(2) Physical trapping (structural and stratigraphic trapping) refers to the buoyant phase trapped below a 
seal or within a structure that has vertical and lateral permeability barriers [43]. 

Chemical trapping CO2 adsorbs onto organic materials contained on coals and shales, or dissolves in subsurface fluids 
(solubility and ionic trapping) [41]. 

 
2.5.2. Time scale 

The timescales associated with each of the sequestration mechanisms are very different [46]. 
Hydrodynamic trapping occurs during the injection and would be a perquisite for other trapping 
mechanisms. For this trapping mechanism, the caprock integrity and high capillary pressure are the key 
factors. During and after a short term of injection, capillary trapping occurs when the displacement 
happens. In short to mid-term, CO2 dissolves in brine and the solubility trapping occurs. In geological 
time, CO2 would be trapped by mineralization. The timescales for the four trapping mechanisms are as 
follows: 

hydro capi solu reac .t t t t  

2.5.3. Spatial scale 

CO2 plume distribution changes with time when different trapping mechanisms dominate. During the 
hydrodynamic trapping, CO2 accumulates under the low permeability seal and migrates laterally along it. 
Capillary trapping occurs all along the flow pathway, especially when the pathway has a very small pore 
or throat. Solubility trapping can be found at the interface of gas phase and brine along the flow pathway 
and under the caprock. Mineral trapping changes with the mineral distribution. The identification of 
dominating trapping mechanisms and CO2 plume distribution at different time is of great importance for 
both the storage capacity estimation and the risk assessment.  
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3. Research gaps and research needs 

Hydrodynamic trapping, capillary trapping, solubility trapping, and mineral trapping are four main 
trapping mechanisms of geologic CO2 sequestration. Some studies have been done to investigate these 
mechanisms. But there are still some relevant topics that should be further investigated: 

The capillary pressure of caprock and the week point of the seal should be well investigated as it 
decides directly the injection pressure and then the storage capacity of hydrodynamic trapping. 

The relationship between geochemical reactions and their impact on porosity and permeability should 
be investigated in the context of CO2 storage. 

Capillary pressure curves and relative permeability curves should be obtained by CO2 flow 
experiments whereas such curves were usually transferred from Hg-porosimetry or hydrocarbon systems.  

Experimental methods need to be developed for imaging rocks for reconstructing three dimensional 
geometrics, with which flow, mineral reactions, and transport in such rocks can be studied. 

Continuous effort should be invested in determining adequate kinetic rates under storage relevant 
conditions and characterizing reactive surface areas as well as in developing methods on how to upscale 
laboratory results. 

A procedure has to be developed or improved to measure saturation and pH in rocks under in-situ 
conditions in percolation experiments. 

Efforts should be made to develop adequate equations of state and solubility models when other 
gaseous compounds are included. 
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