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Abstract 

This paper proposes employment of artificial neural network techniques to develop in-network "intelligent computation" and 
"adaptation" capability for wireless sensor networks to improve their functionality, utility and survival aspects. The goal is to 
introduce computational intelligence capability for the wireless sensor networks to become adaptive to changes within a variety 
of operational contexts and to exhibit intelligent behaviour. The characteristics of wireless sensor networks bring many 
challenges, such as the ultra large number of sensor nodes, dense deployment, changing topology structure, and the most 
importantly, the limited resources including power, computation, storage, and communication capability. All these require the 
applications and protocols running on wireless sensor network to be not only energy-efficient, scalable and robust, but also 
"adapt" to changing environment or context, and application scope and focus among others, and demonstrate intelligent 
behaviour. Feasibility of the proposed approach is demonstrated through a simulation-based case study which entailed a 

-organizing map neural network which was embedded across a wireless sensor 
network. 
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1. Introduction 

Wireless sensor networks (WSN) are an emerging technology due to recent advancements in very small-scale 
manufacturability and high-scale integration of various electronic components in a single packaging.  A typical 
sensor node (or mote) is a standalone package of electronics necessary to hold a number of sensors, an embedded  
microcontroller, a power unit that has limited capacity, which may or may not be renewable, and a radio trans-
receiver at its core.  Typical size of a sensor node is anywhere from a matchbox to a coin, but is expected to shrink 
dramatically in the next decade with the exciting promise of nanotechnology manufacturing and fabrication.   

Current and projected application of wireless sensor networks encompasses a wide variety of domains, which 
have been traditionally challenging to access due to many reasons including potential harm to humans, being at 
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remote sites or being distributed over very large areas, and being subject to harsh geo or meteorological 
circumstances among others.  Monitoring environment (pollution in a lake or river), forest fires, volcanoes, 
battlefield troop movements, human body, monitoring structural health of high-rise buildings or bridges, smart home 
automation, and the last but not the least, smart renewable energy grid monitoring and control are among the 
countless potential applications. 

Given the nature of applications for wireless sensor networks, typical deployment scenario in many cases entails 
scattered random placement of hundreds or thousands of such nodes in a given geographic area through either 
dropping aerially from a flying craft or spreading from a moving land vehicle.  Resultantly, the set of sensor nodes 
form an ad hoc wireless computer network.  Often such nodes and the network are expected to operate for a period 
of at least one to two years using the on-board power source depending on the nature of the application without any 
outside maintenance or repair access since such access may simply be not feasible or practical.   

Wireless sensor networks are conceived to be deployed and expected to operate autonomously for a number of 
years particularly in non-hospitable environments without human involvement. Various factors including geography, 
climate, and human-induced intentional or non-intentional interference in the electromagnetic spectrum will 
adversely affect the deployed network, and hence requiring a good level of adaptability to changing circumstances.  
A wireless sensor network is a dynamic system in the sense that it goes through changes over time, which have 
important consequences on the operation and requirements of the network. Some of these changes may include 
revisions to mission or functionality at different scales; changes in static or dynamic node composition; energy 
consumption profile of nodes and the network over time; destruction or death of certain nodes; and transient effects 
that may temporarily hinder a node, a cluster of nodes, or a sub-network to function within its normal operating 
framework. 

There are a set of inter-related optimization processes, i.e. minimum energy, data loss, reliability, robustness, 
etc., in place during the design and operation of wireless sensor networks. In the typical design and development for 
wireless sensor networks, a specific set of protocols for medium access, localization and positioning, time 
synchronization, topology control, security and routing are identified based on the current configuration of the 
network, the requirements of the application and the topology of their deployment. However, poor performance or 
unexpected behavior may be experienced for all kinds of reasons following deployment, such as sudden death of 
sensor nodes, unsatisfactory implementation of application logic, topology changes and mutated network conditions.  
For instance, it is conceivable that adaptive protocol selection or switching schemes may be developed, which might 
respond more optimally to changes that affect the wireless sensor network over time. This leads to the necessity of 
changing the software behavior at both the protocol and application layers after the network has been deployed.  

The goal of the project reported in this paper 
e wireless sensor networks for significantly-enhanced autonomous behaviour and 

operation.  The expectation from an adaptive and intelligent WSN is that it can readily take into consideration the 
changes dictated by the dynamic nature of operational and application aspects, and accordingly adapt to changing 
conditions, circumstances, mission, and operational demands following the deployment.  The desirable adaptation 
capability can be introduced through embedding an artificial neural network, which can be instantiated to any 
specialized form such as feedforward, self-organizing or recurrent, in fully parallel and distributed mode within the 
wireless sensor network. 

2. Proposed Design 

We are proposing embedding artificial neural networks into wireless sensor networks in parallel and distributed 
computation mode.  Wireless sensor networks (WSN) are topologically similar to artificial neural networks.  A 
WSN is constituted from hundreds or thousands of sensor nodes or motes each of which typically has substantial 
computational power (through the onboard microcontroller).  An artificial neural network (ANN) is composed of 
hundreds or thousands of (computational) nodes or neurons, each of which is assumed to possess or require only 
very limited computational processing capability.  This topological similarity can be the basis to benefit the 
adaptation and operational aspects of WSNs through leveraging the existing neural network theory in its entirety for 
all practical purposes.  Since a wireless sensor network with thousands of motes or nodes is a distributed system 
with parallel computing ability, a fusion with another parallel and distributed system, the artificial neural network, is 
a natural consequence.  In fact there is one-to-one correspondence, in that, a sensor mote can act like or implement a 
neural network neuron or node, while wireless links among the motes are analogous to the weighted connections 
among neurons. Fusing WSNs with ANNs sets the stage for WSNs suddenly to possess considerably substantial 
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computational intelligence to be able to address a very comprehensive portfolio of problems both at the protocol and 
application layers -   

The computational power of artificial neural networks is well-documented in the literature and for a 
comprehensive spectrum of problem domains.  Classification, function approximation or regression, optimization, 
clustering, system identification, and prediction (i.e. time series) are among the leading applications. Artificial 
neural networks have emerged as a practical technology for function approximation based on a large set of available 
examplar patterns [1].  Artificial neural networks (ANN) are universal approximators that can be trained on a data 
set to map multi-dimensional nonlinear functions [2].  In fact, ANNs offer a powerful and general framework for 
representing non-linear mappings from multi-input to multi-output variables, where a number of adjustable 
parameters control the form of the mapping [3].  ANNs are particularly attractive since much of univariate 
approximation methodologies fail to generalize well to higher dimensional spaces: splines and wavelets perform 
well in regression and signal analysis if the dimensionality of the input space is no more than three [4-6]. There is 
substantial body of knowledge pertaining to the function approximation capabilities of artificial neural networks.  It 
was theoretically established (along with substantial empirical evidence) that a one-hidden layer feedforward 
network, whose neuron output functions are sigmoidal (i.e. neuron input is mapped to output through a sigmoid-
shaped function), is capable of approximating an arbitrary (continuous) function [1,7-9].   

Feedforward neural networks including multilayer perceptron (MLP) and radial basis function (RBF) realizations 
are well-known for classification and function approximation, while recurrent neural networks like the time-delay 
neural networks or Elman neural networks are useful for time series forecasting or prediction.  For optimization and 
associative memory applications, Hopfield-style networks including mean-field annealing and Boltzman machine 
are employed.  There are ANN algorithms appropriate for (unsupervised or semi-supervised) clustering applications 

-organizing map and its many variants such as the family of adaptive resonance theory (ART) 
neural networks and linear vector quantizer among many others.  In conclusion, ANNs are able to address many 
fundamental problems in computing and as such offer a generic computing tool that is highly versatile, and 
possesses substantial utility for a comprehensive set of problem domains.   

Attributes of the proposed WSN-ANN architecture with respect to scalability and complexity are of fundamental 
interest. Specifically, these attributes include ability of the WSN-ANN to scale with the problem size, the 
computational complexity in space and time, and the communications or messaging complexity. It is relevant to note 
that computational complexity aspects of neural networks is a domain that is largely incomplete and fragmented 
although there have been noteworthy advances during the last decade [10-15].  There are too many and diverse 
neural network paradigms and countless parameters to consider for a unified and coherent treatment of the subject, 
which therefore led to only a limited number of computational complexity analyses for specific instances of neural 
network algorithms and associated learning or training processes.    

The time complexity of the proposed computing system is determined by a number of factors depending on the 
type of the neural network.  There are typically two distinct phases that must be considered: training the neural 
network, which bears a substantial time cost in some cases and the follow-up deployment whose time cost tends to 
be negligible compared to that of the training.  As an example, for feed-forward multi-layer neural networks, the 
training time is mainly dictated by the convergence properties of the specific problem being addressed, which also 
affects the topology of the neural network.  The convergence properties of multi-layer feedforward networks vary 
dramatically from one problem domain to another.  The empirically specified convergence criterion, i.e. one being 
cumulative error satisfying a user-defined upper bound, also plays a significant role in the time complexity.  There 
will also be on-board processing time associated with implementing the neuron dynamics signal processing which is 
negligible compared to other cost elements, and hence may and will be ignored for the rest of the discussion.  All of 
these costs are already inherent in the neural network algorithm regardless of its hardware realization on a specific 
platform.  There is however a new cost component due to implementation of the neural network algorithm on a 
wireless sensor network.  It is expected that there will be delays injected into the learning or training process due to 
the need to exchange neuron output values among the motes (neurons) through the wireless medium as managed by 
an appropriate medium access control (MAC) protocol since medium access collisions will necessarily occur and 
have to be dealt with.  What this means is that the MAC protocol and the messaging requirements of a specific 
neural network as indicated by its inter-neuron connectivity attributes will play a role in the finalization of the time 
cost assessment.  Therefore, it is reasonable to suggest that the time complexity will vary dramatically based on the 
problem domain, the network type and architecture, parameter settings and others. 

Space complexity associated with the WSN-ANN computation is expected to be minimal.  In a wireless sensor 
network, there is no need to create a global or network-wide weight matrix for the neural network!  Instead, each 
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neuron stores its own weight vector locally on the mote it resides.  Wireless communication channels serve as 
connections among a transmitting neuron and receiving neurons, and therefore eliminating the need to create and 
store a single network-wide weight matrix that is typically huge in size.  All that is needed is the local (or 
distributed) storage of weight vectors.  Another vector needs to be created locally (say within the read-write memory 
of microcontroller on-board a mote) to store output values of neurons which are connected to a given neuron.  If the 
worst-case (or maximum) connectivity is N, which cannot be larger than the total number of neurons in the neural 
network, then the space or memory cost is O(2×N) real numbers.  This translates into y×2×N bytes under the 
assumption that each real number requires y (a small positive integer) bytes in some digital representation scheme.  
Typically, for many neural network algorithms, a neuron connects to a number of other neurons which is much 
smaller than the total number of neurons in a given network.  Accordingly, the memory (or space) cost is not 
expected to be significant. 

The communication complexity arises due to the requirement for wireless communications to exchange neuron 
output values among the neurons, each of which is embedded within a different mote across the WSN toplogy. 
Typically a given mote will exchange messages with a small number of other motes (compared to the total number 
of motes in the WSN) which are possibly k-hop neighbors, where k is a small positive integer, since multi-hop 
communications is preferable to direct mode (single-hop) for a number of reasons including, but not limited to, 
energy savings.  The total number of messages to be exchanged will depend on a number of factors.  For instance if 
the neural network is a multilayer perceptron with a backpropagation-type learning algorithm, the training mode 
would require a number of iterations for weight updates (until a convergence criterion is met).  During training, first 
outputs of neurons in a given layer are communicated (through the wireless channel) to the neurons in the next layer.  
Subsequently outputs of neurons from the next layer need to be communicated (again through wireless channel) to 
neurons in the previous layer for weight updates.  This forward-backward signaling continues until a convergence 
criterion is satisfied, which is problem and neural network instance dependent among others. In conclusion, it is 
clear that the communication cost (messaging complexity) is the most limiting constraint on the real-time 
computation, scalability, and power consumption aspects of WSNs.   

The communication requirements among the motes to exchange updated neuron output values for a highly-
connected neural algorithm becomes significant at some point as the scale of the problem and the associated neural 
network increases.  This suggests that the real-time computation property is preserved as the scale of the problems 
increases up to the point when communication bottleneck becomes a determining factor.  Therefore, due to parallel 
and distributed processing ability, the proposed WSN-ANN design offers the potential to deliver real-time 
computation of solutions for a larger upper bound on the size of the problem than those systems that lack the parallel 
and distributed processing capability. 

Any artificial neural network algorithm can be embedded within a WSN.  A non-exhaustive sample of ANN 
algorithms which can be embedded within a WSN include feed-forward architectures like multi-layer perceptron 
(MLP) and radial basis -organizing map 
(SOM), linear vector quantizer (LVQ) and similar, associative memory neural networks including Hopfield 
associative memory, bi-directional associative memory (BAM), adaptive resonance theory (ART) nets and its many 
derivatives, and recurrent neural networks including Elman, Jordan, Hopfield, and simultaneous recurrent neural 
nets (SRN), and time delay neural networks (TDNN).  In fact, VLSI implementations of the entire suite of ANN 
algorithms are already developed in Cichocki et al. [16], which demonstrates feasibility in general and which we 
will be able to readily leverage to map any type of neural net algorithm to an arbitrary topology of a wireless sensor 
network. 

There are three classes of problems, which the proposed WSN-ANN design addresses.  These problems are 
protocol-level, sensing-based applications including function approximation, estimation, detection, tracking, and 
localization; and those for generic computations. 

At the protocol level, a sample of the problems that can be addressed include clustering or independent set, 
minimum connected dominating set computation for topology control; maximizing data flow for  multiple source-
destination pairs in routing [17]; data aggregation as an optimization protocol in data-centric and content-based 
networking [18-21]; multi-lateration through localized (distributed) solution of the so-called normal equation for the 
linear least squares problem, which may be addressed by means of QR factorization among many other options; and 
localized solution of proximity graphs including relative neighborhood graph (RNG), Gabriel graph (GG), Delaunay 
triangulation (DT), spanning trees (ST), Voronoi diagram, and influence graphs, etc. [22]. 

At the application level, application support and in-network processing are essential elements of a field-deployed 
WSN.  The list of problems being addressed by the proposed WSN-ANNs cover a large spectrum and a 
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representative sample is discussed here to indicate the potential of employing neural networks for localized or  
distributed  computations of solutions for these problems.  In many cases where measured values are correlated in 
space and time, which is typical for wireless sensor network applications, the optimal tree for collecting all the data 

-path tree [23].  Hopfield-type 
neural networks are well known for being able to address such problems which belong to the general class of static 
(vs. dynamic) combinatorial optimization problems.  In the network coding domain, the well-known graph theoretic 
max-flow/min-cut problem emerges [24], which is another optimization problem for which a number of neural 
network algorithms have been proposed for computation of optimal solutions.  Distributed computation of fast 
Fourier transform within the context of WSN has been proposed in [25], and this yet is another venue for which 
neural network algorithms have been proposed and applied.  The problem of target detection and tracking involves a 
number of subtasks including detection, target localization, classification, and tracking.  The neural network 
literature is rich with many neural algorithms devised to address the requirements of all these subtasks associated 
with target detection and tracking.  Boundary or contour (edge) detection problems are also widespread in many 
WSN applications.  Effective neural network algorithms have been proposed to address the distributed or localized 
computation of solutions for these problems.  Another problem that is within the realm of ANN-based function 
approximation is the field sampling, i.e. estimating a scalar field. 

An ANN that is embedded within a WSN which can be seen as a general-purpose computer that also happens to 
be massively parallel and fully distributed offers vast potential to perform computations of generic nature and high 
utility.  In fact, the WSN-ANN design can solve large-scale problems in real time due to its fully parallel and 
massively distributed architecture.  A non-exhaustive list covers problems from the domains of linear, quadratic, and 
linear complementarity problems; systems of linear equations; least squares problem; minimax (Linfinity-norm) 
solution of over-determined system of (linear) equations, and least absolute deviation (L1-norm) solution of systems 
of equations; discrete Fourier transform; matrix algebra problems including inversion, LU decomposition, QR 
factorization, spectral factorization, SVD, Lyapuno
estimation; graph theoretic problems; and static optimization problems.  In fact, VLSI realizations (within parallel 
and distributed computation framework) of many neural network-based algorithms configured for solutions of a 
very large spectrum of problems are detailed in [16].  It is possible to leverage readily this existing work to 
implement the mapping of these problems to the WSN-ANN architecture.  The set of problems addressed in [16] is 
very diverse, extensive and includes all those mentioned in this paragraph and more. 

3. Simulation Study 

The simulation study is intended to show feasibility of the proposed WSN-ANN design.  The aim is to simulate a 
wireless sensor network embedded with a specific neural network configured for a domain problem of interest in a 
fully-distributed and parallel-computation scenario. The simulation study will demonstrate the application of 

-organizing map (SOM) neural network algorithm to a specific problem domain through its parallel 
and distributed realization on a wireless sensor network. Performance profile of the specific simulation scenario 
including quality of solutions, computational complexity, messaging cost will be monitored and established.  We 
used the probabilistic wireless network simulator PROWLER for simulations.  PROWLER is an event-driven 
simulator for wireless distributed systems and runs under MATLAB whose current target platform is the Berkeley 
MICA motes executing the TinyOS embedded operating system [26]. It is available at 
http://www.isis.vanderbilt.edu/projects/nest/prowler.   

The mapping of a two-layer SOM ANN to a wireless sensor network entails embedding one output-layer neuron 
into a single mote.  This is desirable for fully parallel and maximally distributed computation.  Input layer neurons in 
a two-layer SOM network can also be embedded on a one-neuron-per-a-single-mote basis or a single mote can be 
designated to take over the role of the entire input layer in the SOM.  If a single mote is designated to store and 
supply the entire set of training patterns, then it can also serve as a synchronizer for the phases of overall SOM 
computation, which includes deployment and initialization, training, and unsupervised clustering.  Such a mote will 

a neuron will need to store the weight vector of the associated SOM neuron, compute the output for the same 
neuron, and communicate the neuron output value to the supervisory mote, and update the neuron weight vector if it 
is the so-called best matching unit (BMU) or in the neighborhood of another BMU as determined by the 
neighborhood function. 



411 Gursel Serpen et al.  /  Procedia Computer Science   20  ( 2013 )  406 – 413 

The problem domain of interest is the classification of Iris data set [27] which has four attributes as sepal length, 
sepal width, petal length and petal width. This dataset contains 3 classes of 50 instances each where each class
represents a type of Iris plant. One class is linearly separable from the other two, while the other two are not linearly
separable from each other. A sample pattern from each class is shown in Table 1.

Table 1. Sample pattern for each of three classes in Iris dataset

Sepal length Sepal width Petal length Petal width Class
5.1 3.5 1.4 0.2 Setosa

7.0 3.2 4.7 1.4 Versicolor

6.3 3.3 6.0 2.5 Virginica

The Iris dataset has been processed through the MATLAB SOM toolbox using the som_read_data and 
som_normalize functions [28]. The SOM topology of 10×10 neurons is used for the MATLAB SOM toolbox
solution, and the results after 5 rough training and 5 fine tuning are shown in Figure 1. The quantization and

0.007 and 0.887, respectively. 

Fig. 1. Component Maps and U-Matrix Using MATLAB SOM Toolbox for Iris Dataset

From the U-Matrix map in Figure 1, it is easy to see the top three rows form a well-defined cluster, which 
appears to represent the Setosa subspecies. The other two subspecies Versicolor and Virginica are mixed in the other
cluster; the U-Matrix map does not show clear separation of them. The Labeled component map in Figure 1
indicates that they correspond to two different parts of the cluster. The component map of petal length and petal
width as shown by the last two maps in Figure 1 are closely related to each other. Considering the four component
maps with the labeled map in Figure 1 collectively, Setosa has small petals (small petal length seen from component
map of petal width and small petal width seen from component map of petal width), and short and wide sepals (seen
from component map of sepal length and sepal width). From the maps, no noteworthy difference can be observed as
the distinguishing factor when comparing Versicolor with Virginica. In fact, the only distinguishing factor for these
two subspecies is that Virginica has bigger leaves. 

The MATLAB SOM toolbox uses the complete dataset as the training data and also as the test data. To be able to
compare the results with those of the MATLAB SOM Toolbox implementation, no separation of training and test
data is implemented for the PROWLER simulation.  The WSN deployment topology in PROWLER has 10×10
motes (neurons) plus one supervisory mote, which are randomly positioned using a uniform distribution. Parameter
values, errors, and message counts are presented in Table 2. Figure 2 presents the distribution of SOM neurons
based on their responses to patterns presented from three classes. Figure (b) is an alternate representation of Figure
(a) by removing the rectangles representing the motes, and uses square, five-pointed star and circle for Setosa,
Versicolor and Virginica, respectively, and dot for the motes not chosen as the BMU for any data pattern. Two lines
are drawn in Figure 2 (b) to separate the three species.  The Setosa is linearly separated from the other two species,
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while for the two species, there is nonlinear separation boundary with most Virginica (circle) being above Versicolor 
(five-pointed star).

Table 2: Simulation Study Results for Iris Dataset with 5% Message Loss Tolerance

Simulation study parameters Values
Iterations 10
Number of motes 100 (+1 supervisory mote)
Quantization error 0.690
Topographical error 0.288

accuracy 0.973
Incoming message count (average per mote) 90,871
Outgoing message count (average per mote) 12,593
PROWLER simulation time 72.03 hours

Comparing the results of WSN-SOM with those through the MATLAB SOM toolbox, for both of them, Setosa is
clearly separated from the other two, and there is a defined separation line between Versicolor and Virginica.
Smaller quantization error of MATLAB SOM toolbox results indicates that the final weight are more closer to the 
original data,  and the MATLAB SOM toolbox has smaller topographic error which means the topology
preservation is better than WSN-SOM results. The WSN-
better clustering performance than MATLAB SOM toolbox. In conclusion, the evalution of results indicate that the
WSN-SOM computation is comparable to that of the MATLAB SOM.

Fig. 2. (a) Simulation results shown in Prowler GUI (1: Setosa, 2: Versicolor, 3: Virginica, label information sta
has been chosen as BMU for 3 times; one time for Versicolor, and two times for Virginica; (b) WSN-SOM results component map (square:
Setosa, five-pointed star: Versicolor, circle:Virginica, dot: not chosen as the BMU for any training pattern)

4. Conclusions

This paper proposed embedding an artificial neural network within a wireless sensor network to infuse capability for 
adaptation and intelligence.  A wireless sensor network embedded with a neural network can solve a large class 
problems to develop capability to adapt to changes in a dynamic environment or possess computational intelligence
to address challenges during its operational phase following deployment. -
organizing neural network over a wireless sensor  network was simulated using the PROWLER  platform to identify
clusters in the Iris data set.  Solutions computed by the proposed design compared favourably with those reported in 
the literature and those computed through the MATLAB neural network toolbox.  Simulation results indicated the
feasibility of the proposed design.
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