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a b s t r a c t

The typical AI problem is that ofmaking a plan of the actions to be performed by a controller
so that it could get into a set of final situations, if it started with a certain initial situation.

The plans, and related winning strategies, happen to be finite in the case of a finite
number of states and a finite number of instant actions.

The situation becomes much more complex when we deal with planning under
temporal uncertainty caused by actions with delayed effects.

Here we introduce a tree-based formalism to express plans, or winning strategies, in
finite state systems in which actions may have quantitatively delayed effects. Since the
delays are non-deterministic and continuous, we need an infinite branching to display
all possible delays. Nevertheless, under reasonable assumptions, we show that infinite
winning strategies which may arise in this context can be captured by finite plans.

The above planning problem is specified in logical terms within a Horn fragment of
affine logic. Among other things, the advantage of linear logic approach is thatwe can easily
capture ‘preemptive/anticipative’ plans (in which a new action β may be taken at some
moment within the running time of an action α being carried out, in order to be prepared
before completion of action α).

In this paper we propose a comprehensive and adequate logical model of strong
planning under temporal uncertainty which addresses infinity concerns. In particular,
we establish a direct correspondence between linear logic proofs and plans, or winning
strategies, for the actions with quantitative delayed effects.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and motivating examples

Linear logic has been shown to be an adequate tool for sorting out planning problems in deterministic as well as in
non-deterministic domains [19,20,15].

The main advantage of linear logic approach is a direct and transparent correspondence between proofs for Horn linear
logic sequents and plans for AI planning problems. In many cases this allows us to decrease significantly the combinatorial
costs associated with searching large spaces [15,16].

The complexity results of [15,16] rely upon the assumption that the actions in question cause only instant effects, so that
is the duration of the actions equals zero.

In this paper we address the planning problems under temporal uncertainty about the effects of actions [2,10] where
the time duration does matter. Adding such a ‘real time’ direction makes the planning problemmuch more complicated. In
particular, plans become winning strategies, and the planning objective is to find a plan that is guaranteed to achieve the
goal even within the ‘‘worst-case scenario’’.
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The aim of the paper is to provide a strict correspondence between proofs and plans even within this temporal setting.
We will illustrate peculiarities and subtleties of the problem with the following simplified version of an example

from [10]:

Example 1.1. Assume that a ship is scheduled to leave its original seaport (call it ‘there’) to be serviced at ‘here’. The
move takes two to five days.

The ship can be serviced either on a normal dock (then she will stay docked two to three days), or on an express dock
(then she will stay docked at most one day). But the express dock should be reserved two days in advance, and must be
taken exactly two days after the moment the reservation has been made.

The question is to make a plan of actions to guarantee that, under any circumstances, the ship will be serviced within
seven days? �

The positive answer to Example 1.1 is given, for instance, with the following plan:

l1: At the initial moment 0, let the ship be bound for ‘here’. Go to l2.
l2: If the ship comes in ‘here’ at some moment t2 less than 4 time units, go to l3.

Otherwise, go to l4 (‘‘If Plan A fails, go to Plan B’’).
l3: At this moment t2, put her in the normal dock to be serviced. Go to l′3.
l′3: Having serviced the ship by some moment t ′2, stop.

(In total, it takes at most t ′2 ≤(t2+3)≤7 days)
l4: At moment t1 such that t1 = 4, make a reservation for the express dock. Go to l5.
l5: When the ship eventually comes in ‘here’ at some t2, go to l6.
l6: At moment t3 such that t3 = t1+2, put her in the express dock to be serviced. Go to l′6.
l′6: Having serviced the ship by some moment t ′3, stop.

(In total, it takes at most t ′3 ≤(t3+1)≤(t1+3)≤7 days)

(1)

Remark 1.1. Solving planning problems, we have to address the following issues:

(a) ‘‘The guaranteed success, not simple reachability/compatibility’’
Following the recommendations of the above plan (1), one can never be punished, since the plan represents awinning

strategy that envisages all possible delays on the road from the initial situation to a final one.
In particular, at every point, the plan provides all preconditions for the corresponding action to be enabled at the

given point.
On each of the execution branches, its timestamps form a non-decreasing sequence, with providing compatibility of

the time constraints along the branch.
(b) ‘‘Preemptive/anticipative actions are vital’’

In our example, line l4 recommends to choose some moment t1 within the waiting time for the ship’s move from
‘there’ to ‘here’ and tomake a reservation for the express dock in advance before the ship’s move has been actually
completed.

Moreover, we can show that any winning solution to Example 1.1 must include such a ‘preemptive/anticipative’
action: in the case of delays around 6 time units we would have failed if we had allowed the reservation action only
after the abovemove action had been fully completed.

(c) ‘‘The lock-unlock discipline’’
For each action α, the pairs of events ‘‘start an action α’’ and ‘‘the action α is completed’’ form in time a sequence of

non-overlapping pairs.
In addition to that, the above plan is perfect from the garbage collection point: however the termination step we get,

each of the actions involved has been already completed.

2. Real time

We are dealing with the following mathematical model.
A global continuousmeasurable quantity time is assumed in which events occur in irreversible succession from the past

through the present to the future.
The time advancewill be specified with the following ‘Tick’ axioms:

T(t) ⊢ T(t+ε) (2)

where T(t) denotes ‘‘Time is t’’, and ε is an arbitrary positive real.
Time delays are generally qualified in terms of time intervals such as: ‘‘It takes two to five days.’’ Therefore, wewill invoke

the following basic facts related to time intervals.
As atomic formulas we consider (t ′ ≤ t+h), and (t ′ < t+h), and (t ′ = t+h), etc. where t and t ′ are time variables,

measured in time units, and h is a real constant , measured in time units. These atomic formulas may be combined by
‘product’ ⊗ and ‘disjunction’ ⊕.
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Fig. 1.A step of awinning strategy.We assume that v0 is labelled by a triple of the form (s, goα, τ ), whichmeans that actionα is fired in state s atmoment τ ,
and α’s performance takes 2–5 time units.

As axioms of real timewe take basic valid sequents over these combinations of atomic formulas such as:

((2≤ρ ≤3) ⊗ (2≤ t2 <4) ⊗ (t7 = t2+ρ)) ⊢ (0< t7 ≤7).

The ‘disjunctive case’ may be invoked as:

(ρ ≤5) ⊢ ((ρ ≤4) ⊕ (4<ρ ≤5)).

More generally, as atomic formulas we take

(ρ ∈E),

where ρ is a time variable, measured in time units, and E is a set taken from a given class of subsets of the ‘time scale’ Time.
We will assume that this class is closed under the set union (Fig. 1).

Definition 2.1. As axioms of real timewe will take:

(a) The valid sequents of the form:

((ρ1 ∈E1) ⊗ (ρ2 ∈E2) ⊗· · ·⊗ (ρℓ ∈Eℓ) ⊗ (t = h(ρ1, ρ2, . . . , ρℓ))) ⊢ (t∈E). (3)

where ρ1, ρ2, . . . , ρℓ are distinct time variables, and h(ρ1, ρ2, . . . , ρℓ) is a term over variables ρ1, ρ2, . . . , ρℓ and real
constants (measured in time units).

(b) The valid sequents of the form (m≥1):

(ρ ∈E) ⊢ ((ρ ∈E1) ⊕ (ρ ∈E2) ⊕· · ·⊕ (ρ ∈Em)). (4)

In fact, the latter reads that E ⊆ E1∪E2∪· · ·∪Em.

3. Real-time systems: trajectories

Given an action system, a trajectory F can be conceived of as a mapping

F : Time → STATE,

showing a possible course of events in the system: F (t) is the total state observed in the system at moment t .
A common feature of real-time systems is that their laws are not sensitive to the choice of a starting moment, which

implies invariance under time translation: t → t+δ. In its turn, the invariance under time translation provides the
conservation of energy in the systems. This fact can be understood as a consequence of Noether’s theorem [21] that proves
that any system will have constant energy, whenever its laws are invariant under shifts in time.

In particular, for such systems, only finitely many events may occur within a bounded time interval.
The effect is that, for the systems with a finite number of states, we can confine ourselves to piecewise constant

trajectories F . Moreover, any event there can be conceived as the instant change in the states at some moment t followed
by a certain time advance, if necessary.

4. Plans. Winning strategies

For AI systems with pure deterministic instant actions, a plan P is defined as a chain of the actions leading to the goal
[22,10].

Dealing with the actions with quantitatively delayed effects, we are involved in a certain game against Nature: In order to
succeed, we have to respond properly to each of the possible quantitative delays on the road from the initial situation to a
final one.

Accordingly, we extend their definition to finite tree-like plans P , which are supposed to develop (inherently infinite)
winning strategies: Within such a strategy, each vertex v prescribes the performance of a certain action α for a given state S
at a given moment t , the vertex v has an infinite number of the outgoing edges that show all possible delays of displaying
the effect caused by the α.
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Definition 4.1. LetW be an initial state, and Z1, Z2, . . . , Zk be final partial states. Let a task be tomake a plan leading fromW
to either of the final situations within a given time interval A0 to B0.

A winning strategy W for this task is defined as a rooted tree all of its branches are finite and in which

(a) Each vertex v is labelled either by a triple of the form (S, goα, τ ) or by a triple of the form (S, endα, τ ) or by a triple
of the form (S, flashα, τ ), where
• S is a total state of the system in question;
• for α being an instant action, we use flashα meaning ‘‘α has been performed’’;
• for α being an action with delays, we use goα standing for ‘‘α is fired’’, and endα meaning ‘‘α is completed’’;
• τ is a timestamp, the moment when the corresponding event goα or endα or flashα happens.
Besides,
(a1) The root is labelled by a triple of the form (W , goα, 0), or (W , flashα, 0), where W is an initial state, 0 is the

initial moment.
(a2) For any edge (v, w), where v is labelled by a triple of the form

(S, ∗α, τ )

and w is labelled by a triple of the form
(S ′, ∗β , τ ′),

the following holds: S ′ is the result of the event ∗α applied to S, and τ ′
≥τ .

Along each of the branches of the tree, these timestamps τ the vertices are labelled by form a non-decreasing
sequence of reals.

(a3) Each terminal vertex is labelled by a triple of the form (S, endα, τ ) or (S, flashα, τ ), such that state S includes
one of the final Z1, Z2, . . . , Zk, and A0 ≤τ ≤B0.

(b) For any vertex v labelled by a triple of the form

(S, goα, τ ),

its outgoing edges are labelled by nonnegative real numbers r , the possible delays of the effect caused by the action α
in v.

Suppose that this α changes some state s into a state s′, and α’s performance takes a to b time units.
Then, first, S must be of the form1 s ⊗s, which provides the enabling conditions for α, and, secondly, for each real r

between a and b, there exists an outgoing edge (v, wr) labelled by the r .
In addition, on each branch starting from the wr , there exists a vertex u labelled by a triple of the form

(s′ ⊗s, endα, τ +r)

such that no intermediate vertex between v and u is labelled by a triple of the form (S, goα,τ), or (S, endα,τ).
Thus r is the time distance between v (where α has started) and u (where α has been completed), even if the u

has happened strictly below wr : the case where, for instance, some ‘preemptive/anticipative’ action β has happened at
the wr .2

(c) A non-terminal vertex v labelled by a triple of the form (S, endα, τ ), or (S, flashα, τ ), has exactly one outgoing edge
(v, w), this edge remains unlabelled.

Remark 4.1. For the sake of notational uniformity, we will use the following notational conventions.
First, we will label all non-labelled edges of W with 0.
For a branch b of length ℓ leading from the root to a vertex v, this v can be uniquely identified by the sequence of reals

the consecutive edges of b are labelled by:

ρ0, ρ1, . . . , ρℓ−1.

In particular, the triple

(S, ∗α, τ ),

the vertex v is labelled by, can be represented as:

(S, ∗α, tρ0,ρ1,...,ρℓ−1).

Remark 4.2. Within Definition 4.1 we interpret the actions with quantitatively delayed effects in terms of a two-player game:
Controller against Mother Nature.

1 Here A⊗B is conceived of as ‘‘A and B co-exist together’’. See formalities in Section 7.
2 This kind of interference (somewhere in between goα and endα) may have happened only for a non-instant action α.

We exclude the case of being delayed indefinitely: any action α having been fired is to be eventually completed, so that on each of the branches pairs of the
form ⟨goα, endα⟩ must occur in a coherent way.
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(1) Controller can perform any move of the form runβ . Here, and henceforth, we will use runβ to denote flashβ (for an
instant action β) or goβ (for a β with delayed effects).

At a given position w, Controller chooses an action β to be executed, and a moment τ ′ to start the execution.
Let v be the father of w. Controller may use the following information: the sequence of the triples that label vertices

on the branch from the root to the v. Among other things, this information provides the list of actions still running at
the moment τ ′.

If v is labelled by a triple of the form:

(S, ∗α, tρ0,ρ1,...,ρℓ−1),

then w is labelled by a triple of the form:

(S ′, runβ , tρ0,ρ1,...,ρℓ−1,ρℓ
),

where

tρ0,ρ1,...,ρℓ−1,ρℓ
= τ ′. (5)

(2) Nature can perform only moves of the form: endα .
At a given position umarked with endα , Nature responds with a delay ρ to determine the moment τ ′ of completion

of the corresponding α, so that τ ′
= τgoα

+ρ.
More formally, let v be the closest ancestor of u labelled by a triple of the form:

(S, goα, tρ0,ρ1,...,ρℓ−1).

Then u is labelled by a triple of the form:

(S ′, endα, tρ0,ρ1,...,ρℓ−1,ρℓ,...,ρk),

where tρ0,ρ1,...,ρℓ−1,ρℓ,...,ρk is defined by the formula:

tρ0,ρ1,...,ρℓ−1,ρℓ,...,ρk = tρ0,ρ1,...,ρℓ−1 + ρℓ. (6)

5. Winning strategies of bounded height

Though a winning strategy W does not contain infinite branches, the strategy W is generally of infinite branching. The
effect is thatwe cannot apply König Lemma to establish a finite bound for its height.Moreover, we can easilymake arbitrarily
long branches by repeatedly applying, for instance, an action that admits infinitesimal delays.

Nevertheless, under practically reasonable conditions—that any non-instant action takes a positive time, we show how
to remove unnecessary repetitions, with resulting in W ′ of bounded height.

Theorem 5.1. Suppose that a system with a finite number of states includes a finite number of instant actions β1, . . . , βℓ and a
finite number of actions α1, . . . , αk with delayed effects, each αi’s performance takes ai to bi time units. Assume that all a1, . . . , ak
are positive.

Let a task be to make a plan leading from an initial W to either of the final situations within a given time interval A0 to B0,
where B0 is finite.

Then any winning strategy W for this task can be adjusted to a winning strategy W ′ of bounded height.

Proof. Let B be an arbitrary branch v0, . . . , vN . The time distance between the timestamps in v0 and vN is bounded by B0.
By K denote the number of vertices on B that are labelled by non-instant actions.
For a fixed non-instant action αj, the pairs of vertices labelled by (S, goαj

, τ ) and (S ′, endαj , τ
′), respectively, form a

sequence of non-overlapping pairs. Taking into account that τ ′
−τ ≥ aj, the number of such pairs does not exceed B0

ε ,
where ε := min{a1, . . . , ak}.

Hence, the total number K of vertices labelled by non-instant actions does not exceed 2kB0
ε :

K ≤ 2kB0
ε .

Now we will consider a segment w1, . . . , wl on branch B such that all its vertices are labelled by instant actions only:

(S1, flashγ1 , τ1), . . . , (Sl, flashγl , τl).

Notice that all these vertices are non-branching.
Assume that l > ℓ·M+1, where M is the total number of states in the system.
Then, for some i and j such that 2≤ i< j≤ l, we have: Si = Sj and γi = γj.
Now we replace the subsegment

(Si−1, flashγi−1 , τi−1), (Si, flashγi , τi), . . . (Sj, flashγj , τj)
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Fig. 2. The winning strategy for Example 1.1. We depict explicitly only parts of the states of the system: oki means ‘‘the ship has been serviced on
docki ’’, reserved stands for ‘‘the express dock is reserved’’, and taken means ‘‘the express dock is taken’’. On the right-hand branch, the events gomove
(at moment t0) and endmove (at moment t2) are attached to non-adjacent vertices. Nevertheless, by definition: t2 = t0+rv0 , in accordance with that rv0 is
the time distance between these two events.

with the following short subsegment:

(Si−1, flashγi−1 , τi−1), (Sj, flashγj , τj).

It is readily seen that a ‘‘compressed’’ strategy remains a winning strategy for our planning task.
By repeatedly applying this procedure, we obtain a winning strategy in which the length of each branch does not exceed

(2kB0
ε + 1)(ℓ·M+1),

which provides a finite upper bound for the height of the whole winning strategy. �

6. Plans as a concise representation of winning strategies

Within a winning strategy W of bounded height, the length of all branches is bounded by a finite number. In the case of
a finite number of states and a finite number of actions, this implies certain similarity between branches and subtrees. We
explore this effect to develop a finite ‘concise’ representation for the winning strategies, see Lemma 12.1.

Example 6.1. By gluing similar pieces, in Fig. 2 we give a ‘concise’ winning strategy for Example 1.1, which yields the
aforementioned plan (1).

In particular, to the left we group together the delays rv0 between 2 and 4, since the corresponding subtrees happen to
be identical but parametrized with the rv0 .

By similar reasons, to the right we group together the delays rv0 between 4 and 5.

Definition 6.1. A planP is a finite rooted binary tree whose vertices are labelled commands, and some of its edges is labelled
by time variables representing the timestamps.
We will use the following labelled commands:

(a) A command of the form:

l: At moment tl, start action αl; go to l′. (7)

Here l′ is supposed to be a unique child of l.
The above tl, the enabling moment of l, is supposed to be explicitly determined by the timestamps labeling some edges

on the branch from the root into l.
The outgoing edge (l, l′) must be labelled by the tl.
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(b) A conditional command of the form:

l: If action αl is completed at some moment tl less than a given bound Tl, go to l′.
Otherwise, go to l′′. (8)

Here l′ and l′′ are supposed to be children of l. The bound Tl is supposed to be explicitly determined by the timestamps
labeling some edges on the branch from the root into l.
(b1) The ‘positive’ outgoing edge (l, l′) must be labelled by the tl.
(b2) No label is attached to the ‘negative’ outgoing edge (l, l′′).

(c) A particular case of the conditional command is of the form:

l: When action αl is completed at some moment tl, go to l′. (9)

Here l′ is supposed to be a unique child of l.
The outgoing edge (l, l′) must be labelled by the tl. (Notice that this tl, the enabling moment of l, is out of our control

here, it is provided by Mother Nature)
(d) A halting command of the form

l: Stop. (10)

Here l is supposed to be a terminal vertex.

Definition 6.2. LetW be an initial state, and Z1, Z2, . . . , Zk be final partial states. Let a task be tomake a plan leading fromW
to either of the final situations within a given time interval A0 to B0.

We say that a planP is a solution to this task if the tree-like strategyW unfolded according toP is awell-definedwinning
strategy for this task.

7. Linear logic as a specification language

There are a number of logical formalisms for handling the typical AI problem of making a plan of the actions to be
performed by a robot so that it could get into a set of final situationsZ , if it started with a certain initial situation W (see, for
instance, [22,19,7,17,15,2,10]).

As a logical formalism to specify and sort out planning problems under temporal uncertainty, we use linear logic
introduced by Girard [11,12] as a resource-sensitive refinement of the traditional logic, see Appendix, Table 2. Allowing
Weakening rule, we obtain affine logic.

In particular, we take advantage of that a linear logic sequent of the ‘static’ form

X ⊢ Y

can be conceived of as an adequate representation of the dynamic correlation between the ‘state’ X before and the ‘state’ Y
after the specified event/action has occurred.

Definition 7.1. An LL theory T is specified by means of a set of its ‘proper axioms’ (we denote this set by AxT ).
An LL-proof within T is defined as a standard linear logic derivation tree, excepting that each of its leaves is either a

standard axiom of the form A ⊢ A or an instance of a sequent taken from AxT .
Similarly, we define AL-proofs within T , with Weakening rule being allowed. Here, and henceforth, we will abbreviate:

AL = affine logic.

8. Specification of states

Definition 8.1. A state s of the system under consideration is represented as an ‘elementary product’:

(P1(s1,1, . . . , s1,k1) ⊗ P2(s2,1, . . . , s2,k2) ⊗ · · · ⊗ Pm(sm,1, . . . , sm,km)) (11)

where P1, P2, . . . , Pm are predicate symbols, s1,1, . . . , s1,k1 , . . . , sm,1, . . . , sm,km are terms.
The fact of being in state s at a givenmoment t is represented as:

T(t) ⊗ (P1(s1,1, . . . , s1,k1) ⊗ P2(s2,1, . . . , s2,k2) ⊗ · · · ⊗ Pm(sm,1, . . . , sm,km)) (12)

where t is a time variable, measured in time units, and T(t) denotes ‘‘Time is t’’.
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9. Specification of actions

Based on dynamic nature of linear logic, we intend to specify actions in the system at hand by means of linear logic
sequents.

Suppose that the effect of a given actionα fired at amoment t is to change some state s into a state s′, andα’s performance
takes a to b time units.

The first naive attempt is to axiomatize this event in a natural Horn-like way:

(T(t) ⊗ s) ⊢ ∃ρ ((a≤ρ ≤b) ⊗ T(t+ρ) ⊗ s′). (13)

The drawback of such a straightforward approach is the lack of capacity to deal directly with preemptive/anticipative
planning , as in Example 1.1. It should be pointed out that one runs into difficulties with the same problemwith other logical
and non-logical approaches, like timed transition systems, timed automata, Markov decision processes, etc. (see Section 14).

Nevertheless, linear logic is capable of coping with the problem in a very natural way.

Definition 9.1. To monitor the delayed effect of the given action α, we invoke a specific ‘time-guarded’ predicate dα(x),
where x is a real number or ∞:
(a) During the performance of α, dα(x) stands for ‘‘The effect of action α will be displayed exactly at moment x’’;
(b) Whereas dα(∞) means that action α is not active for the time being.
(Initially, we set dα(∞) for all actions.)

Definition 9.2. Now we will split the global ‘prolongated’ α’s performance in two instantaneous events as follows:
(a) ‘‘Goα ’’: α is fired at some moment t , with state s being modified into some intermediate states, the expecting time

delay between a and b time units is recorded with dα .
We axiomatize this instant starting event by a Horn-like sequent:

(T(t) ⊗ s ⊗ dα(∞)) ⊢ (T(t) ⊗s ⊗ ∃ρ ((a≤ρ ≤b) ⊗ dα(t+ρ))). (14)
This variable ρ will be referred as a ‘delay variable’.

(b) ‘‘Endα ’’: α is completed at the moment t ′ recorded by dα , withs being modified into the proper s′.
We axiomatize this instant finishing event by a Horn-like sequent:

(T(t ′) ⊗s ⊗ dα(t ′)) ⊢ (T(t ′) ⊗ s′ ⊗ dα(∞)). (15)
As for an instant action β , fired at a moment t , that changes some state s into a state s′, we axiomatize its instant event

‘‘Flashβ ’’ by a simple Horn-like sequent:

(T(t) ⊗ s) ⊢ (T(t) ⊗ s′). (16)

Remark 9.1. One can compare our specification approach with the action representation within temporal planners such as
PDDL2.1 [8], LPGP [18], CRIKEY [5].

These systems are based on Nilsson’s STRIPS [22,7], which is the base for most of the languages for expressing automated
planning problem instances.

According to [22,7], each STRIPS actionα is specified in terms of its precondition Pre(α), which consists of atomic predicate
formulas and/or their negations, and two lists of atomic predicate formulas: add-list Add(α) and delete-list Del(α).

The action specification is applied to edit descriptions of situations instead of being used as an axiom in deducing properties
of situations.

Namely, if α’s precondition Pre(α) is met, generating a new situation description from an old one is a matter of deleting
all the atomic formulas taken from Del(α) and adding all the atomic formulas taken from Add(α).

Since the classical STRIPS actions are supposed to be timeless, the main objective of the temporal planners is to specify
actions with the non-zero duration. For these purposes, they introduce something like a durative action operator da (see [5]),
which is a tuple of the form:

da = (C⊢, C↔, C⊣, A⊢, A⊣,D⊢,D⊣, ∆)

where C⊢, C↔, and C⊣ are the sets of atomic predicate formulas that must be true at the start, throughout and the end of the
execution, respectively; A⊢, A⊣, D⊢, and D⊣ specify the add and delete effects at the start and the end of the action, and ∆

is the action duration.
Their aim then is to transform duration actions into classical STRIPS actions with the help of certain techniques such as

compressed actions or specific instant actions (see, for instance, [5]).
Though the compression technique has been widely used within temporal planners, this does not provide either

completeness or soundness (see [6,5]).
Although CRIKEY uses an alternative approach [5], CRIKEY is not a complete planner either: the planner is not guaranteed

to find a solution to certain solvable planning problems expressible in its action language (see details in [6,5]).
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10. Example 1.1: Specification

According to what has been said, the actions in Example 1.1 are axiomatized as follows:

(a) The move action: ‘‘The ship is bound for ‘here’, which takes two to five days,’’ invokes its ‘time-guarded’ predicate
dm(x):
(a1) The starting event gomove occurred at moment t (we abbreviate it as gomove@t) is specified as3:

(T(t) ⊗ there ⊗ dm(∞)) ⊢ (T(t) ⊗ sea ⊗ ∃ρ ((2≤ρ ≤5) ⊗ dm(t+ρ))). (17)

(a2) The finishing event endmove at moment t (abbreviated as endmove@t) is axiomatized as:

(T(t) ⊗ sea ⊗ dm(t)) ⊢ (T(t) ⊗ here ⊗ dm(∞)). (18)

(b) The put1 action: ‘‘The ship is serviced on the normal dock, where she will stay docked two to three days,’’ invokes its
‘time-guarded’ predicate d1(x):
(b1) goput1@t is represented as:

(T(t) ⊗ here ⊗ d1(∞)) ⊢ (T(t) ⊗ dock1 ⊗ ∃ρ ((2≤ρ ≤3) ⊗ d1(t+ρ))) (19)

(b2) endput1@t is specified as:

(T(t) ⊗ dock1 ⊗ d1(t)) ⊢ (T(t) ⊗ ok1 ⊗ d1(∞)). (20)

(c) The reserve action: ‘‘The express dock is reserved in advance,’’ is specified with invoking its ‘time-guarded’ predicate
dr(x):
(c1) goreserve@t is axiomatized as:

(T(t) ⊗ dr(∞)) ⊢ (T(t) ⊗ dr(t+2)) (21)

(c2) endreserve@t is axiomatized as:

(T(t) ⊗ dr(t)) ⊢ (T(t) ⊗ dr(∞)). (22)

(d) The put2 action: ‘‘The ship is serviced on the express dock, where she will stay docked at most one day,’’ invokes its
‘time-guarded’ predicate d2(x):
(d1) endreserve-goput2@t is represented as4:

(T(t) ⊗ here ⊗ dr(t) ⊗ d2(∞)) ⊢ (T(t) ⊗ dock2 ⊗ dr(∞) ⊗ ∃ρ ((0≤ρ ≤1) ⊗ d2(t+ρ))) (23)

(d2) endput2@t is specified as:

(T(t) ⊗ dock2 ⊗ d2(t)) ⊢ (T(t) ⊗ ok2 ⊗ d2(∞)). (24)

The initial situation W in Example 1.1 is specified as:

(T(0) ⊗ there ⊗ d(∞, ∞, ∞, ∞)) (25)

where, for the sake of brevity:

d(x, y, z, u) := dm(x) ⊗ d1(y) ⊗ d2(z) ⊗ dr(u). (26)

The planning goal is to get into the set of final situationsZ represented as:

Z := ∃t ′ ((0≤ t ′ ≤7) ⊗ T(t ′) ⊗ (ok1⊕ok2) ⊗ d(∞, ∞, ∞, ∞)) (27)

(with d(∞, ∞, ∞, ∞) we emphasize that we are looking for perfect plans where each of the actions involved must be
completed up to the final moment t ′).

3 Here sea means ‘‘nowhere’’, the complement to all others possible states of the ship.
4 To contract the number of states, and to show flexibility of our formalism,we combine endreserve and goput2 , with including the end of the reservation

act as a precondition to enable the act of putting the ship in the express dock.
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„”
«“

C0‘‘t0 := 0’’ there

gomove@t0
❄

„”
«“

C1 sea

✟✟✟
✟✟rv0 such that: 2≤ rv0 <4

✟✟✙

„”
«“

C2 sea
❍❍❍

❍❍ rv0 such that: 4≤ rv0 ≤5

❍❍❥

„”
«“

C6sea

‘‘tick’’
❄

„”
«“

C ′

2‘‘t2 = t0+rv0 ’’ sea

‘‘tick’’
❄

„”
«“

C ′

6 ‘‘t1 := 4’’sea

endmove@t2
❄

„”
«“

C3‘‘t6 := t2 ’’ here

goreserve@t1
❄

„”
«“

C7sea
goput1@t6

❄

„”
«“

C4 dock1

rv1 such that: rv1 =2

❄

„”
«“

C7sea

rv4 such that: 2≤ rv4 ≤3

❄

„”
«“

C4 dock1

‘‘tick’’
❄

„”
«“

C ′

7 ‘‘t2 = t0+rv0 ’’sea

‘‘tick’’
❄

„”
«“

C ′

4‘‘t7 = t6+rv4 ’’ dock1

endmove@t2
❄

„”
«“

C8here
endput1@t7

❄

„”
«“

C5 ok1

‘‘tick’’
❄

„”
«“

C ′

8 ‘‘t3 = t1+rv1 ’’ and ‘‘t4 := t3 ’’here
endreserve-goput2@t4

❄

„”
«“

C9dock2

rv7 such that: 0≤ rv7 ≤1

❄

„”
«“

C9dock2

‘‘tick’’
❄

„”
«“

C ′

9 ‘‘t5 = t4+rv7 ’’dock2

endput2@t5

❄

„”
«“
C10ok2

Fig. 3. The game scenario developed in accordance with our winning strategy in Fig. 2. The extended states Ci are given in Example 11.1.

11. Example 1.1: Winning strategies ⇐⇒ LL proofs

Given a planning task, we show how to convert its winning strategies (of a finite height) into linear logic proofs for the
sequent specifying the task.

Example 11.1. By going into smaller details, we transform the winning strategy in Fig. 2 in a game scenario for Example 1.1.
The detailed game scenario is shown in Fig. 3, in which the edges are labelled either by the go/end events of the

corresponding actions, or by time delays r of their effects. Each of the vertices is labelled by an ‘extended’ state Ci in a
style of (33), which contains information about:

• the current moment τ ,
• the state S of the system,
• the status of ‘time-guarded’ predicates dα(x),
• delays rv , and timestamps involved by the moment τ .

We use the following ‘extended’ states Ci within Fig. 3:
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‘‘See (28)’’

(ax-cut)
endput1@t7 C5 ⊢Z

(ax-cut)
T(t2) ⊢ T(t7) C ′

4 ⊢Z
(∃-ax-cut)

goput1@t2 C4 ⊢Z
(ax-cut)

endmove@t2 C3 ⊢Z
(ax-cut)

T(0) ⊢ T(t2) C ′

2 ⊢Z
C2 ⊢Z

Fig. 4. The E-Horn proof for C2 ⊢Z; cf. the left branch in the tree in Fig. 3.

‘‘See Fig. 4’’ ‘‘Like Fig. 4’’

(⊕-ax-cut)
(2≤ rv0 ≤5)⊢((2≤ rv0 <4)⊕(4≤ rv0 ≤5)) C2 ⊢Z C6 ⊢Z

(∃-ax-cut)
gomove@0 C1 ⊢Z

C0 ⊢Z
Fig. 5. The E-Horn proof for C0 ⊢Z; cf. the tree in Fig. 3.

(1) C0 = (T(0) ⊗ there ⊗ d(∞, ∞, ∞, ∞))
(2) C1 = (T(0) ⊗ sea ⊗ (2≤ rv0 ≤5) ⊗ d(0+rv0 , ∞, ∞, ∞))
(3) C2 = (T(0) ⊗ sea ⊗ (2≤ rv0 <4) ⊗ d(rv0 , ∞, ∞, ∞))
(4) C6 = (T(0) ⊗ sea ⊗ (4≤ rv0 ≤5) ⊗ d(rv0 , ∞, ∞, ∞)) Notice that C1 ≡ (C2 ⊕ C6).
(5) C ′

2 = (T(t2) ⊗ sea ⊗ (t2 = rv0) ⊗ (2≤ rv0 <4) ⊗ d(t2, ∞, ∞, ∞))
(6) C3 = (T(t2) ⊗ here ⊗ (t2 = rv0) ⊗ (2≤ rv0 <4) ⊗ d(∞, ∞, ∞, ∞))
(7) C4 = (T(t2) ⊗ dock1 ⊗ (2≤ rv4 ≤3) ⊗ (t2 = rv0) ⊗ (2≤ rv0 <4) ⊗ d(∞, t2+rv4 , ∞, ∞))
(8) C ′

4 = (T(t7) ⊗ dock1 ⊗ (t7 = t2+rv4) ⊗ (2≤ rv4 ≤3) ⊗ (t2 = rv0) ⊗ (2≤ rv0 <4) ⊗ d(∞, t7, ∞, ∞))
(9) C5 = (T(t7) ⊗ ok1 ⊗ (t7 = t2+rv4) ⊗ (2≤ rv4 ≤3) ⊗ (t2 = rv0) ⊗ (2≤ rv0 <4) ⊗ d(∞, ∞, ∞, ∞))

Notice that C5 ⊢Z is derivable by rules taken from the system in Definition 13.1:

((t7 = t2+rv4) ⊗ (2≤ rv4 ≤3) ⊗ (t2 = rv0) ⊗ (2≤ rv0 <4)) ⊢ (0≤ t7 ≤7) C5 ⊢Z (E-axiom)

C5 ⊢Z (ax-cut) .
(28)

Here C5 = (T(t7) ⊗ ok1 ⊗ (0≤ t7 ≤7) ⊗ d(∞, ∞, ∞, ∞))
andZ := ∃t ′ ((0≤ t ′ ≤7) ⊗ T(t ′) ⊗ (ok1⊕ok2) ⊗ d(∞, ∞, ∞, ∞))

(10) C ′

6 = (T(t1) ⊗ sea ⊗ (t1 =4) ⊗ (4≤ rv0 ≤5) ⊗ d(rv0 , ∞, ∞, ∞))
(11) C7 = (T(t1) ⊗ sea ⊗ (rv1 =2) ⊗ (t1 =4) ⊗ (4≤ rv0 ≤5) ⊗ d(rv0 , ∞, ∞, t1+rv1))
(12) C ′

7 = (T(t2) ⊗ sea ⊗ (t2 = rv0) ⊗ (rv1 =2) ⊗ (t1 =4) ⊗ (4≤ rv0 ≤5) ⊗ d(t2, ∞, ∞, 6))
(13) C8 = (T(t2) ⊗ here ⊗ (t2 = rv0) ⊗ (rv1 =2) ⊗ (t1 =4) ⊗ (4≤ rv0 ≤5) ⊗ d(∞, ∞, ∞, 6))
(14) C ′

8 = (T(t4) ⊗ here ⊗ (t4 =6) ⊗ (t2 = rv0) ⊗ (rv1 =2) ⊗ (t1 =4) ⊗ (4≤ rv0 ≤5) ⊗ d(∞, ∞, ∞, t4))
(15) C9 = (T(t4)⊗dock2 ⊗ (0≤ rv7 ≤1)⊗ (t4 =6)⊗ (t2 = rv0)⊗ (rv1 =2)⊗ (t1 =4)⊗ (4≤ rv0 ≤5)⊗d(∞, ∞, t4 + rv7 , ∞))
(16) C ′

9 = (T(t5) ⊗ dock2 ⊗ (t5 = t4+rv7) ⊗ (0 ≤ rv7 ≤ 1) ⊗ (t4 = 6) ⊗ (t2 = rv0) ⊗ (rv1 = 2) ⊗ (t1 = 4) ⊗ (4 ≤ rv0 ≤

5) ⊗ d(∞, ∞, t5, ∞))
(17) C10 = (T(t5) ⊗ ok2 ⊗ (t5 = t4 + rv7) ⊗ (0 ≤ rv7 ≤ 1) ⊗ (t4 = 6) ⊗ (t2 = rv0) ⊗ (rv1 = 2) ⊗ (t1 = 4) ⊗ (4 ≤ rv0 ≤

5) ⊗ d(∞, ∞, ∞, ∞)).
Notice that C10 ⊢Z is also derivable by rules taken from the system in Definition 13.1.

Furthermore, in accordance with a general recipe of Theorem 12.1, which recommends, in particular, a proof construct of
the form (34):

T(τ ) ⊢ T(τ1) Cw1 ⊢Z (ax-cut)T(τ ) ⊢ T(τ2) Cw2 ⊢Z
(⊕-ax-cut)

(a≤ρℓ ≤b) ⊢ ((ρℓ ∈E1)⊕(ρℓ ∈E2)) Cw1 ⊢Z Cw2 ⊢Z
(∃-ax-cut)

goα@τ Cw ⊢Z
Cv ⊢Z

we can easily convert the game scenario in Fig. 3 into a proof for the task sequent (see Figs. 4 and 5). �

Example 11.2. In its turn, the plan proposed in Example 1.1 can be directly extracted from the proof given in Fig. 5 for the
‘task sequent’:

(T(0) ⊗ there ⊗ d(∞, ∞, ∞, ∞)) ⊢Z
where Z := ∃t ′ ((0≤ t ′ ≤7) ⊗ T(t ′) ⊗ (ok1 ⊕ ok2) ⊗ d(∞, ∞, ∞, ∞)) �
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12. LL proofs ⇐⇒ winning strategies

Given a systemwith a finite set of actions with delayed effects, letW be an initial state, and Z1, Z2, . . . , Zk be final partial
states. Let Task be to make a plan leading fromW to either of the final situations within a given time interval A0 to B0.

We encode this Task as a sequent of the form:

(T(0) ⊗ W ⊗


α

dα(∞)) ⊢ ∃t ′ ((A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z
⊕

⊗


α

dα(∞)) (29)

where Z
⊕

= (Z1 ⊕ Z2 ⊕ · · · ⊕ Zk), and each action α is supplied with its ‘time-guarded’ predicate dα(x).

Lemma 12.1. Any winning strategy W of bounded height can be represented in a finite concise form W .

Proof. Let W be a winning strategy of height h.
First step.We extract its timeless skeleton W ′ by removing all timestamps τ from the labels on the vertices and all ‘delay’

labels r on the edges. Within W ′, all edges have no labels, and each vertex v is labelled by a pair of the form

(S, ∗α).

Now running from the leaves of W ′ to its root, we construct a finite version, call it W , that represents the whole W ′. Any
vertexv in W will be formed as a set of vertices taken from W ′ in the following way:
(a) Suppose the terminal vertices w1, w2, . . . are sons of the same vertex v.

Since the number of states is finite and the number of actions is finite, the number of w1, w2, . . . with different
labels must be finite. Then we glue together the terminal vertices with identical labels, resulting in a finite number of
equivalence classes w1,w2, . . . ,wk. We will consider these vertices as the sons of a vertexv, an exact copy of v.

(b) Let a vertex v in W ′ have subtrees T1, T2, . . . , such that their finite representatives T1,T2, . . . have been already
constructed.

Since the number of states is finite and the number of actions is finite, the number of T1,T2, . . . with different
labels must be finite. Then we glue together the identical subtrees with identical labels, resulting in a finite number
ofT 1,T 2, . . . ,T k. We will consider these trees as the subtrees of a vertexv, an exact copy of v.
Second step. Running from the root of W , to its leaves, we restore the timed information but in a ‘parametrized’ form,

resulting in the finite concise representation of the original W . (Cf. Example 6.1.)
We will use notational conventions from Remarks 4.1 and 4.2.
Starting from the root to the leaves, for each level ℓ we introduce a parameter ρℓ.
Assume a vertexv on level ℓ be labelled by a pair of the form (S, ∗α).
We will expand the pair to a triple of the form

(S, ∗α, tρ0,ρ1,...,ρℓ−1),

where tρ0,ρ1,...,ρℓ−1 is a function over parameters ρ0, ρ1, . . . , ρℓ−1. Wewill label an outgoing edge (v,w)with an expression
of the form

‘‘ρℓ ∈Dw̃;ρ0,ρ1,...,ρℓ−1 ’’,

where Dw̃;ρ0,ρ1,...,ρℓ−1 is a set of reals parametrized with ρ0, ρ1, . . . , ρℓ−1.

(a) The root of W , which is on level 0, is labelled by a pair of the form (W , runα). We expand this pair to the triple

(W , runα, 0).

(b) Given w and ρ0, ρ1,. . . , ρℓ−1, we introduce Dw̃;ρ0,ρ1,...,ρℓ−1 by induction on ℓ.
Letv0,v1,v2,. . . ,vℓ,vℓ+1 be the branch that leads from the root to w. For any sequence of reals r0, r1, r2, . . . , rℓ−1

taken from Dṽ1;, Dṽ2;r0 , Dṽ3;r0,r1 ,. . . , Dṽℓ;r0,r1,...,rℓ−2 , respectively, we find v∈vℓ that is uniquely identified in the
original W by the sequence of edge labels r0, r1, r2, . . . , rℓ−1, and define Dw̃;r0,r1,...,rℓ−1 as:

Dw̃;r0,r1,...,rℓ−1 := {r | for some w∈w, the edge (v, w) in W is labelled by r}. (30)

(c) Suppose a vertex w on level ℓ+1 is labelled by a pair of the form (S ′, runβ).
We expand this pair to the triple

(S ′, runβ , tρ0,ρ1,...,ρℓ−1,ρℓ
),

where tρ0,ρ1,...,ρℓ−1,ρℓ
is defined as the following function over ρ0, ρ1,. . . , ρℓ−1, ρℓ.

Letv0,v1,v2,. . . ,vℓ,vℓ+1 be the branch that leads from the root to w.
For any sequence of reals r0, r1, r2, . . . , rℓ−1, rℓ taken from Dṽ1;, Dṽ2;r0 , Dṽ3;r0,r1 ,. . . , Dṽℓ;r0,r1,...,rℓ−2 , Dṽℓ+1;r0,r1,...,rℓ−2,rℓ−1 ,
respectively, we find the vertex w∈w that is uniquely identified in the original W by the sequence of edge labels
r0, r1, r2, . . . , rℓ−1, rℓ. This w is labelled by a triple of the form (S ′, runβ , τ ′).

Then we set:

t r0,r1,...,rℓ−1,rℓ = τ ′. (31)
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(d) Suppose a vertexv on level ℓ has been already labelled by a triple of the form

(S, goα, tρ0,ρ1,...,ρℓ−1),

andu is a descendant ofv labelled by a pair of the form (S ′, endα), such that no intermediate vertex betweenv andu is
labelled by (S ′′, endα).

Then we labeluwith a triple of the form

(S ′, endα, tρ0,ρ1,...,ρℓ−1,ρℓ,...,ρk),

where tρ0,ρ1,...,ρℓ−1,ρℓ,...,ρk is defined by the formula:

tρ0,ρ1,...,ρℓ−1,ρℓ,...,ρk = tρ0,ρ1,...,ρℓ−1 + ρℓ. (32)

By construction, any branch of length ℓ in the original W is correctly represented within W by taking the corresponding
values r0, r1, r2, . . . , rℓ−1 for parameters ρ0, ρ1, ρ2, . . . , ρℓ−1. Hence, this finite concise W is a correct representation for the
original W . �

Theorem 12.1 (Soundness and Completeness). Given a system with a finite set of actions α with delayed effects, let W be an
initial state, and Z1, Z2, . . . , Zk be final partial states. Starting from W, the task Task is to achieve either of the final situations
within a given time interval A0 to B0.

Let Th be an affine logic theory that includes as its proper axioms the Horn-like specifications of all actions α, and the
appropriate axioms of real time (see Definition 2.1).
Then a sequent of the form (29):

T(0) ⊗ W ⊗


α

dα(∞)


⊢ ∃t ′


(A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z

⊕
⊗


α

dα(∞)


is provable in Th if and only if there exists a winning strategy W of bounded height for Task.

Moreover, there is a direct correspondence between Th-proofs for this sequent and winning strategies (in a finite concise form)
that are solution to Task.

Proof.
(A) ‘‘Strategies H⇒ Proofs’’.

We assume that W is represented in a finite concise form by construction in Lemma 12.1.
With each vertex u at level ℓ labelled by (S, ∗α, τ ), we associate an ‘extended’ state Cu:

Cu =


T(τ ) ⊗ S ⊗


α

dα(xα) ⊗

ℓ−1
i=0

(ρi ∈Di)


, (33)

that contains information about:

• the current moment τ ,
• the state S of the system,
• the status of ‘time-guarded’ predicates dα(x),
• delays ρi involved at the current moment τ (cf. Example 11.1).

Running from the leaves of this concise version to its root, by induction we assemble a Th-derivation for each of the
Cu ⊢Z , whereZ is the right-hand side of (29).

We will consider here a representative case, which captures main induction subtleties.
Suppose a vertex v on level ℓ is labelled by a triple of the form (S, goα, τ ), where action α, fired at moment τ , changes

the state S into a state S ′, and the expecting time delay is ρℓ between a and b (see Definition 9.2).
Suppose that v has exactly two sons: w1 and w2, labelled by (S ′, ∗β1 , τ1) and (S ′, ∗β2 , τ2), respectively. The edges (v, w1)

and (v, w2) are labelled by ‘‘ρℓ ∈E1’’ and ‘‘ρℓ ∈E2’’, respectively, which means that E1 ∪ E2 contains all possible delays of
action α.

Let v0, v1, v2, . . . , vℓ be the branch in W that leads from the root to v, and each edge (vi, vi+1) be labelled by ‘‘ρi ∈Di’’.
With our vertices we associate the following ‘extended’ states:

• Cv = (T(τ ) ⊗ S ⊗ dα(∞) ⊗


β≠α dβ(xβ) ⊗
ℓ−1

i=0 (ρi ∈Di))

• Cw1 = (T(τ1) ⊗ S ′
⊗ (dα(τ +ρℓ) ⊗ (ρℓ ∈E1)) ⊗


β≠α dβ(xβ) ⊗

ℓ−1
i=0 (ρi ∈Di))

• Cw2 = (T(τ2) ⊗ S ′
⊗ (dα(τ +ρℓ) ⊗ (ρℓ ∈E2)) ⊗


β≠α dβ(xβ) ⊗

ℓ−1
i=0 (ρi ∈Di))
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where


β≠α dβ(xβ) represents the status of ‘time-guarded’ predicates other than dα (the behaviour of dα is explained in
Definition 9.1).
Let goα@τ denote the ‘axiom’ (14) where t is taken as τ .
Then we can derive in linear logic (with the rules from the system in Definition 13.1):

T(τ ) ⊢ T(τ1) Cw1 ⊢Z (ax-cut)T(τ ) ⊢ T(τ2) Cw2 ⊢Z
(⊕-ax-cut)

(a≤ρℓ ≤b) ⊢ ((ρℓ ∈E1)⊕(ρℓ ∈E2)) Cw1 ⊢Z Cw2 ⊢Z
(∃-ax-cut)

goα@τ Cw ⊢Z
Cv ⊢Z (34)

Here the auxiliary ‘states’C are introduced as:

• Cw1 = (T(τ ) ⊗ S ′
⊗ (dα(τ +ρℓ) ⊗ (ρℓ ∈E1)) ⊗


β≠α dβ(xβ) ⊗

ℓ−1
i=0 (ρi ∈Di))

• Cw2 = (T(τ ) ⊗ S ′
⊗ (dα(τ +ρℓ) ⊗ (ρℓ ∈E2)) ⊗


β≠α dβ(xβ) ⊗

ℓ−1
i=0 (ρi ∈Di))

• Cw = (T(τ ) ⊗ S ′
⊗ (dα(τ +ρℓ) ⊗ (a≤ρℓ ≤b) ⊗


β≠α dβ(xβ) ⊗

ℓ−1
i=0 (ρi ∈Di)).

The fact that all possible delays ρℓ of action α belong to E1 ∪ E2 is expressed as the following ‘axiom of real time’
(see Definition 2.1):

(a≤ρℓ ≤b) ⊢ ((ρℓ ∈E1) ⊕ (ρℓ ∈E2)) .

By inductive hypothesis, Cw1 ⊢Z and Cw2 ⊢Z are provable in Th.
Therefore, we can conclude that Cv ⊢Z is also provable in Th, which justifies our bottom-up induction (cf. Figs. 4 and 5).
Lastly, the task sequent (29) is provable in Th, since the ‘extended’ state Cv0 , associated with the root v0, happens to be

the left-hand side of (29):

Cv0 =


T(0) ⊗ W ⊗


α

dα(∞)


.

(B) ‘‘Proofs H⇒ Strategies’’.
The main idea is as follows (cf. [13–16]).
Given a Th-proof proof for the sequent in question, which is of a specific Horn-like form (29):

T(0) ⊗ W ⊗


α

dα(∞)


⊢ ∃t ′


(A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z

⊕
⊗


α

dα(∞)


,

with the help of Lemma 13.1 we translate it into a pure affine logic proof D′ for a sequent of the form (40):
T(0) ⊗ W ⊗


α

dα(∞)


, !∆ ⊢ ∃t ′


(A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z

⊕
⊗


α

dα(∞)


,

so that within D′ we apply only Horn-like rules from Table 1.
Then, running from the leaves of D′ to its root, by induction we assemble a solution to Task in the form of a winning

strategy in a finite concise form.
We will consider here the most complicated case, in which the rule (∃-H) is applied. Recall that the formula

(X −◦ (Y ⊗ ∃ρ U(ρ))) introduced by (∃-H) is to be an instance of the LL-image of a Th-axiom (14), which represents an
event of the form ‘‘Goα ’’.

By induction, starting with the root of D′, we can prove that each of the non-terminal sequents in D′ is of the form (here
S stands for a ‘timeless’ part):

T(τ ) ⊗ (τ =h(ρ0, ρ1, . . . , ρℓ−1)) ⊗ S ⊗

ℓ−1
i=0

(ρi ∈Di) ⊗


α

dα(hα(ρ0, ρ1, . . . , ρℓ−1))


, Γ , !∆ ⊢ Z ′ (35)

where ρ0, ρ1, . . . , ρℓ−1 are distinct time variables, and each of these ρi is bound below by some rule ∃-H, which deals with
an instance of the LL-image of the corresponding Th-axiom (14):

(Yi ⊗ (ρi ∈D ′
α) ⊗ dα(τi+ρi) ⊗ V ′), Γ ′, !∆′

⊢ Z ′

(Xi ⊗ dα(∞) ⊗ V ′), ((Xi ⊗ dα(∞)) −◦ (Yi ⊗ ∃ρ ((ρ ∈D ′
α) ⊗ dα(τi+ρ)))), Γ ′, !∆′

⊢ Z ′
∃-H

(36)

here Xi is of the form Xi = (T(τi) ⊗ s ), and Yi is of the form Yi = (T(τi) ⊗s).
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Table 1
The E-Horn Linear Logic. Both ⊗ and ⊕ are assumed to be commutative and associative.

I
(X ⊗ V ) ⊢ X M X, Γ , !∆ ⊢ Y

(X ⊗ V ), Γ , !∆ ⊢ (Y ⊗ V )

E
(X ′

⊗ V ⊗ Zj ⊗ U(h)) ⊢ ∃t ′(X ′
⊗ Z

⊕
⊗ U(t ′))

where t ′ is a variable, h is a term, and Z
⊕

=(Z1 ⊕ Z2 ⊕ · · · ⊕ Zk), and 1≤ j ≤k.

H (Y ⊗ V ), Γ , !∆ ⊢ Z ′

(X ⊗ V ), Γ , (X −◦ Y ), !∆ ⊢ Z ′

⊕-H (Y1 ⊗ V ), Γ , !∆ ⊢ Z ′ (Y2 ⊗ V ), Γ , !∆ ⊢ Z ′ . . . (Ym ⊗ V ), Γ , !∆ ⊢ Z ′

(X ⊗ V ), Γ , (X −◦ (Y1 ⊕ Y2 ⊕ · · · ⊕ Ym)), !∆ ⊢ Z ′

∃-H (Y ⊗ U(ρ) ⊗ V ), Γ , !∆ ⊢ Z ′

(X ⊗ V ), Γ , (X −◦ (Y ⊗ ∃ρ U(ρ))), !∆ ⊢ Z ′

where ρ is a variable having no free occurrences in Γ , ∆, Y , V , X , and Z ′ .

∀-H V , Γ , (X(h) −◦ Y (h)), !∆ ⊢ Z ′

V , Γ , ∀z (X(z) −◦ Y (z)), !∆ ⊢ Z ′

L! X, Γ , A, !∆ ⊢ Z ′

X, Γ , !A, !∆ ⊢ Z ′ W! X, Γ , !∆ ⊢ Z ′

X, Γ , !A, !∆ ⊢ Z ′ C! X, Γ , !A, !A, !∆ ⊢ Z ′

X, Γ , !A, !∆ ⊢ Z ′

Cut X, Γ1, !∆1 ⊢ U U, Γ2, !∆2 ⊢ Z ′

X, Γ1, Γ2, !∆1, !∆2 ⊢ Z ′

Furthermore, by the appropriate commuting conversions we can push an (⊕-H)-rule of the form:
π1

((ρi ∈E1) ⊗ V ), Γ , !∆ ⊢ Z ′

π2
((ρi ∈E2) ⊗ V ), Γ , !∆ ⊢ Z ′

((ρi ∈E) ⊗ V ), ((ρi ∈E) −◦ ((ρi ∈E1) ⊕ (ρi ∈E2))), Γ , !∆ ⊢ Z ′
⊕-H

downwards to the corresponding rule (36) that binds the ρi.
Notice that a combination of consecutive (⊕-H)-rules with the same ρi, such as

π1
((ρi ∈E1) ⊗ V ), Γ , !∆ ⊢ Z ′

π2
((ρi ∈E2) ⊗ V ), Γ , !∆ ⊢ Z ′

((ρi ∈E ′) ⊗ V ), A′, Γ , !∆ ⊢ Z ′
⊕-H π ′′

((ρi ∈E ′′) ⊗ V ), A′, Γ , !∆ ⊢ Z ′

((ρi ∈E) ⊗ V ), A, A′, Γ , !∆ ⊢ Z ′
⊕-H

where
A = ((ρi ∈E) −◦ ((ρi ∈E ′) ⊕ (ρi ∈E ′′)))

and
A′

= ((ρi ∈E ′) −◦ ((ρi ∈E1) ⊕ (ρi ∈E2))),

can be glued into one (⊕-H)-rule with the same ρi:
π1

((ρi ∈E1) ⊗ V ), Γ , !∆ ⊢ Z ′

π2
((ρi ∈E2) ⊗ V ), Γ , !∆ ⊢ Z ′

π ′′

((ρi ∈E ′′) ⊗ V ), Γ , !∆ ⊢ Z ′

((ρi ∈E) ⊗ V ),A, Γ , !∆ ⊢ Z ′

⊕-H

with A = ((ρi ∈E) −◦ ((ρi ∈E1) ⊕ (ρi ∈E2) ⊕ (ρi ∈E ′′))).

By repeatedly applying commuting conversions and gluing, we come down to (36), resulting in something like this

(for brevity,Vi stands for (Yi ⊗ dα(τi+ρi) ⊗ V ′)):
π1

((ρi ∈E1) ⊗Vi), Γ ′, !∆′
⊢ Z ′

π2

((ρi ∈E2) ⊗Vi), Γ ′, !∆′
⊢ Z ′

π3

((ρi ∈E3) ⊗Vi), Γ ′, !∆′
⊢ Z ′

((ρi ∈D ′
α) ⊗Vi), ((ρi ∈D ′

α) −◦ ((ρi ∈E1) ⊕ (ρi ∈E2) ⊕ (ρi ∈E3))), Γ ′, !∆′
⊢ Z ′

⊕-H

((ρi ∈D ′
α) ⊗Vi), ∀ρ ((ρ ∈D ′

α) −◦ ((ρ ∈E1) ⊕ (ρ ∈E2) ⊕ (ρ ∈E3))), Γ ′, !∆′
⊢ Z ′

∀-H

((ρi ∈D ′
α) ⊗Vi), !∀ρ ((ρ ∈D ′

α) −◦ ((ρ ∈E1) ⊕ (ρ ∈E2) ⊕ (ρ ∈E3))), Γ ′, !∆′
⊢ Z ′

L!

((ρi ∈D ′
α) ⊗Vi), Γ ′, !∆′

⊢ Z ′
C!

(Xi ⊗ dα(∞) ⊗ V ′), ((Xi ⊗ dα(∞)) −◦ (Yi ⊗ ∃ρ ((ρ ∈D ′
α) ⊗ dα(τi+ρ)))), Γ ′, !∆′

⊢ Z ′
∃-H

where D ′
α ⊆ E1 ∪ E2 ∪ E3, and no (⊕-H)-rule with this ρi is applied inside π1, π2, and π3.
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Suppose that W1, W2, W3 are winning strategies that have been already associated with π1, π2, π3, respectively.
With this vertex (36) in D′, which is of the form:

((ρi ∈D ′
α) ⊗Vi), Γ ′, !∆′

⊢ Z ′

(Xi ⊗ dα(∞) ⊗ V ′), ((Xi ⊗ dα(∞)) −◦ (Yi ⊗ ∃ρ ((ρ ∈D ′
α) ⊗ dα(τi+ρ)))), Γ ′, !∆′

⊢ Z ′
∃-H

we associate then a winning strategy W(36) of the form:

•

(S, goα, τi)
✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾

(ρi ∈E1)

❄

(ρi ∈E2)

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳③

(ρi ∈E3)

•

W1

•

W2

•

W3

The remaining cases are treated in a similar way. �

Remark 12.1. Theorem 12.1 is dealing with certain sets of time moments and functions from time moments into time
moments. The theory Th includes certain ‘time axioms’ about such sets and their unions (see Section 2).

In fact, Theorem 12.1 provides an exact correlation between two levels:
(a) the level of sets of reals D and real functions involved in winning strategies (see Lemma 12.1), and
(b) the level of sets of reals E and real functions involved in the axioms of real time, for instance, as atomic formulas of the

form (ρ ∈E).
From the practical point of view (see, for instance, [2,10,7,3,4,9]), the most interesting case is the case where we are

dealing with Boolean combinations of time intervals and with Boolean combinations of linear functions.

Corollary 12.1. Let Th be an affine logic theory that includes as its proper axioms the Horn-like specifications of all actions α,
and the axioms of real time in the form of linear equalities/inequalities (see Section 2).
Then a sequent of the form (29):

T(0) ⊗ W ⊗


α

dα(∞)


⊢ ∃t ′


(A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z

⊕
⊗


α

dα(∞)


,

is provable in Th if and only if there exists a winning strategy W in a finite concise form, in which all sets of reals D involved are
Boolean combinations of intervals, and all functions involved are piecewise linear functions.

Moreover, there is a direct correspondence between Th-proofs for this sequent and winning strategies of this kind.

13. E-Horn linear logic derivations

In this section we introduce specific affine logic rules, the system of which will have the sufficient strength to handle the
planning problems under temporal uncertainty (see Theorem 12.1):

Definition 13.1. Below X , X ′, Y , Yi, U , V , Zj stand for elementary products of atomic predicate formulas, the connectives ⊗

and ⊕ are assumed to be commutative and associative.

(a) ‘axiom’:

(X ⊗ V ) ⊢ X

(b) ‘E-axiom’:

(X ′
⊗ V ⊗ Zj ⊗ U(h)) ⊢ ∃t ′(X ′

⊗ Z
⊕

⊗ U(t ′))
,

where t ′ is a ‘time variable’, h is a ‘time term’, and Z
⊕

=(Z1 ⊕ Z2⊕· · ·⊕Zk), and 1≤ j ≤k.
(c) ‘ax-cut’:

X ⊢ Y (Y ⊗ V ) ⊢ Z ′

(X ⊗ V ) ⊢ Z ′ ,

where X ⊢ Y is an axiom of a given theory Th, and Z ′ is either an elementary product of atomic predicate formulas, or a
formula of the form (X ′

⊗ Z
⊕
), or a formula of the form ∃t ′(X ′

⊗ Z
⊕

⊗ U(t ′)).
(d) ‘∃-ax-cut’:

X ⊢ (Y ⊗ ∃ρ U(ρ)) (Y ⊗ V ⊗ U(ρ ′)) ⊢ Z ′

(X ⊗ V ) ⊢ Z ′ ,

where X ⊢ (Y ⊗ ∃ρ U(ρ)) is an axiom of Th, and ρ ′ is a ‘time variable’ having no occurrence in Y , V , and Z ′.
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(e) ‘⊕-ax-cut’:

X ⊢ (Y1 ⊕ Y2 ⊕ · · · ⊕ Ym) (Y1 ⊗ V ) ⊢ Z ′ (Y2 ⊗ V ) ⊢ Z ′ . . . (Ym ⊗ V ) ⊢ Z ′

(X ⊗ V ) ⊢ Z ′ ,

where X ⊢ (Y1 ⊕ Y2⊕· · ·⊕Ym) is an axiom of Th.
(f) ‘cut’:

X ⊢ Y (Y ⊗ V ) ⊢ Z ′

(X ⊗ V ) ⊢ Z ′

(Notice that the ‘cut formula’ Y is confined to an elementary product of atomic predicate formulas.) �

The above system in Definition 13.1 turns out to be complete with respect to Th-provability for ‘task sequents’ of the
form (29). To simplify technicalities, first, we translate Th-proofs into the corresponding proofs within pure affine logic.

Definition 13.2. Given a systemwith a finite set of actionswith delayed effects, let Th be an affine logic theory that includes
as its proper axioms the Horn-like specifications of all actions α, and the appropriate axioms of real time (see Section 2).
Each of the non-logical axioms of Th of the form

X(z1, . . . , zn) ⊢ Y (z1, . . . , zn) (37)

will be encoded as its ‘LL-image’:

∀z1 · · · zn (X(z1, . . . , zn) −◦ Y (z1, . . . , zn)). (38)

Proposition 13.1. Any Th-proof DTh for a sequent of the form:

Γ ⊢ C

can be easily transformed into a purely affine logic proof for the following sequent:

Γ , !∆ ⊢ C

where ∆ consists of the LL-images of all non-logical axioms of Th that participate in DTh, and vice versa.

Then we will use a purely linear logic E-Horn version represented in Table 1 to provide the Horn-like completeness,
which we need to complete the part: ‘‘Proofs H⇒ Strategies,’’ in Theorem 12.1.

Lemma 13.1. Let DTh be a Th-proof for a ‘task sequent’ of the form (recall that each action α is supplied with the ‘time-guarded’
predicate dα(x))

T(0) ⊗ W ⊗


α

dα(∞)


⊢ ∃t ′


(A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z

⊕
⊗


α

dα(∞)


(39)

where Z
⊕

= (Z1 ⊕ Z2 ⊕ · · · ⊕ Zk).
Let ∆ consist of the LL-images of all non-logical axioms of Th that participate in DTh.
Assume this Th-proof DTh be translated into a purely affine logic proof DAL for a sequent of the form:

T(0) ⊗ W ⊗


α

dα(∞)


, !∆ ⊢ ∃t ′


(A0 ≤ t ′ ≤B0) ⊗ T(t ′) ⊗ Z

⊕
⊗


α

dα(∞)


. (40)

Notice that the planning task expressed by (40) is the same planning task expressed by (39).
Then such a DAL can be rearranged to apply only the Horn-like rules taken from Table 1, where X, X ′, Y , Yi, U, V , Zj stand for

elementary products of atomic predicate formulas, Z ′ is either an elementary product of atomic predicate formulas, or a formula
of the form ∃t ′(X ′

⊗ Z
⊕

⊗ U(t ′)), and Γ consists of the LL-images (and their instances) of non-logical axioms of Th:

∀z1 · · · zn (X(z1, . . . , zn) −◦ Y (z1, . . . , zn)),

and/or their instances with some terms h1, . . . , hn:

(X(h1, . . . , hn) −◦ Y (h1, . . . , hn)).

Proof. Any Th-proof for (39) can be easily translated into a cut-free purely affine logic proof D′ for (40), and vice versa. The
cut-free D′ can use only the following rules from Table 2 (we cluster them in two groups):
(i) ‘‘Left rules’’: L⊗, L⊕, L−◦, L!, W!, C!, L ∃, L∀.
(ii) ‘‘Right rules’’: R⊗, R⊕, R ∃.

Now we will transform the cut-free proof D′ whose rules are from Table 2 into a proof in which the rules are taken from
the Horn-like Table 1.
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First, we push our ‘‘right rules’’ upwards (to logical axioms) and push our ‘‘left rules’’ downwards (to the conclusion) by
repeatedly applying the corresponding commuting conversions:

(a) E.g., a combination: ‘‘first L⊕, then R⊗,’’ of the form (here π0, π1 and π2 are proofs):
π1

Γ ′, Y1 ⊢ Z ′

π2
Γ ′, Y2 ⊢ Z ′

Γ ′, (Y1⊕Y2) ⊢ Z ′
L⊕ π0

Γ ′′
⊢ Z ′′

Γ ′, (Y1⊕Y2), Γ ′′
⊢ (Z ′

⊗ Z ′′)
R⊗

can be replaced with the following combination: ‘‘first R⊗, then L⊕:’’
π1

Γ ′, Y1 ⊢ Z ′

π0
Γ ′′

⊢ Z ′′

Γ ′, Y1, Γ ′′
⊢ (Z ′

⊗ Z ′′)
R⊗

π2
Γ ′, Y2 ⊢ Z ′

π0
Γ ′′

⊢ Z ′′

Γ ′, Y2, Γ ′′
⊢ (Z ′

⊗ Z ′′)
R⊗

Γ ′, (Y1⊕Y2), Γ ′′
⊢ (Z ′

⊗ Z ′′)
L⊕

(b) A combination: ‘‘first L−◦, then R⊗,’’ of the form (here π0, π1 and π2 are proofs):
π1

Γ1 ⊢ X
π2

Y , Γ2 ⊢ Z ′

Γ1, (X −◦ Y ), Γ2 ⊢ Z ′
L−◦

π0
Γ ′′

⊢ Z ′′

Γ1, (X −◦ Y ), Γ2, Γ ′′
⊢ (Z ′

⊗ Z ′′)
R⊗

can be replaced with the following combination: ‘‘first R⊗, then L−◦:’’

π1
Γ1 ⊢ X

π2
Y , Γ2 ⊢ Z ′

π0
Γ ′′

⊢ Z ′′

Y , Γ2, Γ ′′
⊢ (Z ′

⊗ Z ′′)
R⊗

Γ1, (X −◦ Y ), Γ2, Γ ′′
⊢ (Z ′

⊗ Z ′′)
L−◦

(c) The remaining combinations are treated in a similar way.

As a result, the ‘‘right rules’’ will be applied only to axioms, which allows to establish the explicit form of the
corresponding sequents.

In particular, suppose the R ∃-rule is applied as follows (here Z
⊕

=(Z1 ⊕ Z2 ⊕ · · · ⊕ Zk), andπ is a proof in which no ‘‘left
rule’’ is applied):

π

Φ ⊢ (X ′
⊗ Z

⊕
⊗ U(h))

R . . .

Φ ⊢ ∃t ′(X ′
⊗ Z

⊕
⊗ U(t ′))

R ∃
(41)

Then Φ must be of the form (modulo associativity and commutativity of ⊗):

Φ = (X ′
⊗ V ⊗ Zj ⊗ U(h)). (42)

Hence, by pruning away parts such as π

Φ ⊢ (X ′
⊗ Z

⊕
⊗ U(h))

in (41), we obtain the proof in which the leaves are

sequents of the form E or I declared as axioms in Table 1.
As for the ‘‘left rules’’, by induction we can simulate each of these rules with the Horn-like rules from Table 1:

(a) E.g., an (L−◦)-rule of the form (here π1 and π2 are proofs that have been already constructed by induction with rules
from Table 1):

π1
X ′, Γ1, !∆1 ⊢ X

π2
Y , V , Γ2, !∆2 ⊢ Z ′

X ′, Γ1, !∆1, (X −◦ Y ), V , Γ2, !∆2 ⊢ Z ′
L−◦

is simulated with the following Horn-like rules from Table 1:
π1

X ′, Γ1, !∆1 ⊢ X
(X ′

⊗ V ), Γ1, !∆1 ⊢ (X ⊗ V )
M

π2
(Y ⊗ V ), Γ2, !∆2 ⊢ Z ′

(X ⊗ V ), Γ2, (X −◦ Y ), !∆2 ⊢ Z ′
H

(X ′
⊗ V ), Γ1, Γ2, (X −◦ Y ), !∆1, !∆2 ⊢ Z ′

Cut

(b) As for the (L⊕)-rule, by the appropriate commuting conversionswe canpush it downwards (to the related L−◦), resulting
in something like this:

π0
X ′, Γ ′, !∆′

⊢ X

π1
Y1, V , Γ , !∆ ⊢ Z ′

π2
Y2, V , Γ , !∆ ⊢ Z ′

(Y1 ⊕ Y2), V , Γ , !∆ ⊢ Z ′
L⊕

X ′, Γ ′, !∆′, (X −◦ (Y1 ⊕ Y2)), V , Γ , !∆ ⊢ Z ′
L−◦
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which is simulated with the following Horn-like rules from Table 1:

π0
X ′, Γ ′, !∆′

⊢ X
(X ′

⊗ V ), Γ ′, !∆′
⊢ (X ⊗ V )

M

π1
(Y1 ⊗ V ), Γ , !∆ ⊢ Z ′

π2
(Y2 ⊗ V ), Γ , !∆ ⊢ Z ′

(X ⊗ V ), Γ , (X −◦ (Y1 ⊕ Y2)), !∆ ⊢ Z ′
⊕-H

(X ′
⊗ V ), Γ ′, Γ , (X −◦ (Y1 ⊕ Y2)), !∆′, !∆ ⊢ Z ′

Cut

(c) Similarly, the (L ∃)-rule can be pushed downwards (to the related L−◦), resulting in something like this:

π0
X ′, Γ ′, !∆′

⊢ X

π1
Y ,U(ρ), V , Γ , !∆ ⊢ Z ′

Y , ∃ρ U(ρ), V , Γ , !∆ ⊢ Z ′
L ∃

X ′, Γ ′, !∆′, (X −◦ (Y ⊗ ∃ρ U(ρ))), V , Γ , !∆ ⊢ Z ′
L−◦

which is simulated with the following Horn-like rules from Table 1:

π0
X ′, Γ ′, !∆′

⊢ X
(X ′

⊗ V ), Γ ′, !∆′
⊢ (X ⊗ V )

M

π1
(Y ⊗ V ),U(ρ), Γ , !∆ ⊢ Z ′

(X ⊗ V ), Γ , (X −◦ (Y ⊗ ∃ρ U(ρ))), !∆ ⊢ Z ′
∃-H

(X ′
⊗ V ), Γ ′, Γ , (X −◦ (Y ⊗ ∃ρ U(ρ))), !∆′, !∆ ⊢ Z ′

Cut

(d) The remaining cases are treated in a straightforward way. �

14. Concluding remarks

We have introduced the E-Horn fragment of linear logic (see Section 13) as a comprehensive logical system capable of
handling the typical AI problem of making a plan of the actions to be performed by a controller so that it could get into a set
of final situations, if it started with a certain initial situation.

A particular focus of this paper is on planning problems in which actions may have quantitatively delayed effects, and
where the delays are non-deterministic and continuous.

We have shown that the potentially unbounded winning strategies which may arise in this context can be exactly
captured by proofs within the E-Horn fragment of linear logic. Within this paradigm ‘‘proofs ⇐⇒ plans,’’ we have
established thereby a comprehensive and adequate logical model of strong planning under temporal uncertainty which
addresses infinity concerns.

One could say that some examples given in the paper (e.g., Example 1.1) could be reformulated in several planning
formalisms, such as timed transition systems, timed automata, Markov decision processes, etc (see, for instance, [1]).

What arguments could we offer about the superiority of linear logic as a modeling formalism for the planning domains
under temporal uncertainty considered here (save its being a novel compared to the others) ?
(A) The simple Horn fragment of linear logic provides ordinary users with an easy way of specifying their robot systems in

their own terms, without radical reformulation of the original problem. In particular, our choice of the minimal set of
connectives: ⊗ and ⊕, is in full accordance with the naive AI semantics.

(B) By means of the linear logic proof machinery we have overcome the basic obstruction to finding an adequate logical
formalism for the planning under temporal uncertainty: the discrepancy between global quantitative time constraints
and the locality, ormemoryless, property of the proofs - that any inference rule depends only on its direct premises.

(C) As for the timed automata [1], they are very efficient for the so-called ‘reachability properties’ such as safety property:
‘‘there is no path to a given state S.’’

For the actions with non-deterministic delays, we are involved in a certain game against Nature: In order to succeed,
we have to respond properly to each of the infinite number of possible delays on the road from the initial state to a final
one.

Hence, to make a timed automata approach appropriate, we have to provide an infinite number of links between
some nodes of a timed automaton. On top of that, we have to distinguish certain links as controlled by a robot and
‘delay’ links as ‘controlled’ by Nature.

In other words, we need the concept of an alternating timed automaton A and a winning strategy on A. For the sake
of brevity, we confine ourselves to a tree-based formalism for winning strategies (see Definition 4.1).

(D) As for the Markov decision processes, we cannot directly apply their techniques, since the basic point of their theory -
that is, given the state at time t is known, transition probabilities to the state at time t+1 are independent of all previous
states or actions. Recall that the winning strategies under consideration may use the whole pre-history information on
the branch leading from the root to a given state.

On the other hand, it is promising to take into account the distribution of possible delays to provide both non-
deterministic and probabilistic approaches.

(E) Linear logic is capable of coping with preemptive/anticipative planning , as in Example 1.1, in a very natural way.
In order to capture such preemptive/anticipative planswithin timed automata or Markov decision processes, we have

to consider all possible timed combinations of partial states, which leads to a combinatorial explosion in number of
states even on the level of specifications.
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As for the complexity of proof-search in the proposed fragment of affine logic, this is not an object of this paper (our idea
is to find an exact logical model for the time planning). Our intention is to address the complexity issues in the next paper,
as it has been done for the actions with instant effects[15,16].

Theorem 12.1 remains valid even for planning problems in which actions may have non-deterministic effects with
quantitatively delayed effects, and where the delays are non-deterministic and continuous.

Appendix. Linear logic rules

In fact, we can confine ourselves to the intuitionistic version of the first-order linear logic enriched with the Weakening
ruleW (see Table 2).

Table 2
The inference rules of intuitionistic affine logic.

I A ⊢ A P Γ , A, B, ∆ ⊢ C
Γ , B, A, ∆ ⊢ C

Cut Γ ⊢ A A, ∆ ⊢ C
Γ , ∆ ⊢ C W Γ ⊢ B

Γ , A ⊢ B

L⊗ Γ , A, B ⊢ C
Γ , (A ⊗ B) ⊢ C R⊗

Γ ⊢ A ∆ ⊢ B
Γ , ∆ ⊢ (A ⊗ B)

L⊕ Γ , A ⊢ C Γ , B ⊢ C
Γ , (A ⊕ B) ⊢ C R⊕

Γ ⊢ A
Γ ⊢ (A ⊕ B)

Γ ⊢ B
Γ ⊢ (A ⊕ B)

L−◦
Γ ⊢ A B, ∆ ⊢ C
Γ , (A −◦ B), ∆ ⊢ C R−◦

Γ , A ⊢ B
Γ ⊢ (A −◦ B)

L1 Γ ⊢ C
Γ , 1 ⊢ C R1

⊢ 1

L! Γ , A ⊢ C
Γ , !A ⊢ C W! Γ ⊢ C

Γ , !A ⊢ C C! Γ , !A, !A ⊢ C
Γ , !A ⊢ C R! !∆ ⊢ C

!∆ ⊢ !C

L ∃
Γ , A(v) ⊢ C

Γ , ∃ v A(v) ⊢ C (v is not free in Γ and C) R ∃
Γ ⊢ C(s)

Γ ⊢ ∃ v C(v)
(s is a term)

L∀
Γ , A(s) ⊢ C

Γ , ∀ v A(v) ⊢ C (s is a term) R∀
Γ ⊢ C(v)

Γ ⊢ ∀ v C(v)
(v is not free in Γ )
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