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This note is a continuation of the preceeding paper [I] in this journal. 
Let n, 6 be positive integers, and let 5“ be the collection of the first IZ sets 

of cardinality 8. Also let Q be any other family of y1 sets of cardinality 8. 
Then Y is Kruskal’s cascade and the theorem which we are about to prove 
([l, Theorem 31) says that 1 dU 1 < 1 dG!‘I . 

Let m be the minimum value of 1 W\X / over all sets W of cardinality / 
not in a and sets X in a with W < X. Since 6? f 9 we have m 3 1 and 
a particular choice W, , X,, for W, X with m = I W,,\X,, 1 . We put 

M = W,\X, and N = X,,\ W, 

soMnN= q5andm= IMI = IN(andM<N.Thenweput 

~={(X:XEO’,MMX=+,NCX,(X\N)UM$LZ}, 
%?={(X\N)uhf:X~c%?}, 
3 = 2? u (Q?\zq, 

so 1 G! ( = ) 9 I . Roughly speaking, we form 58 from a by replacing N as 
a subset of a set X of 02 whenever possible by M. If this replacement is 
made in a set X, the resulting set (X\N) u A4 is < X. In particular, X,, is 
replaced by W, which is < X,, . Thus 9 is nearer to 9 than is a, and 
repetition of the process would gradually transform G! into 9’. Hence the 
theorem will follow if we can show that ) dG2 1 ,( I da 1 . 

Let Z E (d@\(d@. Then there is a set YE 9\6!! = %? with Z C Y. By 
definition of V, there is a set X E 28 with Y = (X\N) u A4 and so 
N n Z = #. Suppose now that M @ Z. Because we get Z by deleting one 
element from Y and A4 C Y, if P = M n Z then 1 P j = m - 1. Moreover, 
if Q is the set obtained by deleting the smallest integer /3 in N from N, then 
j Q 1 = m - 1 and P n Q = (b and either P = Q = q5 or P 4 Q. Since 
XE~ we have MnX= # and NCX, so PnX= .$ and QCX. If 
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W,=(X\Q)uP, then IWJ=eand IIV,\XI=IPj=m--1 and 
W, < X E GY. Using the definition of m, we see that W, E GE But Q I? Z = 
N n Z = 4 and M n Z = P so Z C W, , giving the contradiction 
Z E Aa. Thus we have proved that N f? Z = $J and A4 C Z. 

We now write 

t,bZ = (Z\M) u N. 

Then #Z C X and so z+!~ defines an injection of (Ac~)\(ALY) into A@. Next 
we claim that z/Z $ AB. For if #Z C V E 3, then NC V so V $ V? but 
VE@\SY.%nceNCV$B,either(i)MnV#4or(ii)MnV=$and 
(V\N) u A4 E 07. In case (ii) we have Z C (V\N) u M so Z E A& a contra- 
diction. Thus we must have case (i) M n I/ # $. Now there is an integer 01 
such that V = 01 u #Z and A4 n #Z = 4 so in fact A4 n V = LX. Let 
P = M\a and .Q = N\/3 as before. Then Q C N C V and P n V = C# so 
we let W, = (V\Q) u P. Now 1 W, 1 = e and I W,\V I = 1 P I = m - 1 
and W, < V E fl so using the definition of m again W, E a. Moreover, 
because 01 E V, we have A4 C W, and hence Z C W, . However, this implies 
the contradiction Z E AOZ. Thus we have proved that # injects (A@\(A@ 
into (AG!)\(A9) and hence / A9 I < I A02 I as required. 
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