Note

A Simple Proof of the Kruskal-Katona Theorem

D. E. Daykin
Reading University, England
Communicated by the Managing Editors

Received September 26, 1972

This note is a continuation of the preceeding paper [1] in this journal.
Let n, ℓ be positive integers, and let \mathscr{S} be the collection of the first n sets of cardinality ℓ. Also let $O l$ be any other family of n sets of cardinality ℓ. Then \mathscr{S} is Kruskal's cascade and the theorem which we are about to prove ($[1$, Theorem 3]) says that $|\Delta \mathscr{S}| \leqslant|\Delta \mathscr{O}|$.
Let m be the minimum value of $|W \backslash X|$ over all sets W of cardinality ℓ not in $O l$ and sets X in $O l$ with $W<X$. Since $O l \neq \mathscr{S}$ we have $m \geqslant 1$ and a particular choice W_{0}, X_{0} for W, X with $m=\left|W_{0}\right| X_{0} \mid$. We put

$$
M=W_{0} \mid X_{0} \quad \text { and } N=X_{0} \mid W_{0}
$$

so $M \cap N=\phi$ and $m=|M|=|N|$ and $M<N$. Then we put

$$
\begin{aligned}
& \mathscr{B}=\{X: X \in O \mathscr{O}, M \cap X=\phi, N \subset X,(X \backslash N) \cup M \notin \mathscr{O}\}, \\
& \mathscr{C}-\{(X \backslash N) \cup M: X \in \mathscr{B}\}, \\
& \mathscr{D}=\mathscr{C} \cup(\mathscr{O} \mathscr{B}),
\end{aligned}
$$

so $|O \nmid=|\mathscr{D}|$. Roughly speaking, we form \mathscr{D} from $O \not$ by replacing N as a subset of a set X of $O t$ whenever possible by M. If this replacement is made in a set X, the resulting set $(X \backslash N) \cup M$ is $<X$. In particular, X_{0} is replaced by W_{0} which is $<X_{0}$. Thus \mathscr{D} is nearer to \mathscr{S} than is O, and repetition of the process would gradually transform $O \mathscr{L}$ into \mathscr{S}. Hence the theorem will follow if we can show that $|\Delta \mathscr{D}| \leqslant|\Delta O \||$.

Let $Z \in(\Delta \mathscr{D}) \backslash(\Delta \mathscr{Z})$. Then there is a set $Y \in \mathscr{D} \backslash \mathscr{O}=\mathscr{C}$ with $Z \subset Y$. By definition of \mathscr{C}, there is a set $X \in \mathscr{B}$ with $Y=(X \backslash N) \cup M$ and so $N \cap Z=\phi$. Suppose now that $M \not \subset Z$. Because we get Z by deleting one element from Y and $M \subset Y$, if $P=M \cap Z$ then $|P|=m-1$. Moreover, if Q is the set obtained by deleting the smallest integer β in N from N, then $|Q|=m-1$ and $P \cap Q=\phi$ and either $P=Q=\phi$ or $P<Q$. Since $X \in \mathscr{B}$ we have $M \cap X=\phi$ and $N \subset X$, so $P \cap X=\phi$ and $Q \subset X$. If
$W_{1}=(X \backslash Q) \cup P$, then $\left|W_{1}\right|=\ell$ and $\left|W_{1}\right| X|=|P|=m-1$ and $W_{1} \leqslant X \in O$. Using the definition of m, we see that $W_{1} \in \mathcal{O}$. But $Q \cap Z=$ $N \cap Z=\phi$ and $M \cap Z=P$ so $Z \subset W_{1}$, giving the contradiction $Z \in \Delta O Z$. Thus we have proved that $N \cap Z=\phi$ and $M \subset Z$.

We now write

$$
\psi Z=(Z \backslash M) \cup N
$$

Then $\psi Z \subset X$ and so ψ defines an injection of $(\Delta \mathscr{D}) \backslash(\Delta O Z)$ into ΔO. Next we claim that $\psi Z \notin \Delta \mathscr{D}$. For if $\psi Z \subset V \in \mathscr{D}$, then $N \subset V$ so $V \notin \mathscr{C}$ but $V \in O \backslash \mathscr{B}$. Since $N \subset V \notin B$, either (i) $M \cap V+\phi$ or (ii) $M \cap V=\phi$ and $(V \backslash N) \cup M \in O$. In case (ii) we have $Z \subset(V \backslash N) \cup M$ so $Z \in \Delta C Z$, a contradiction. Thus we must have case (i) $M \cap V \neq \phi$. Now there is an integer α such that $V=\alpha \cup \psi Z$ and $M \cap \psi Z=\phi$ so in fact $M \cap V=\alpha$. Let $P=M \backslash \alpha$ and $Q=N \backslash \beta$ as before. Then $Q \subset N \subset V$ and $P \cap V=\phi$ so we let $W_{2}=(V \backslash Q) \cup P$. Now $\left|W_{2}\right|=\ell$ and $\left|W_{2}\right| V|=|P|=m-1$ and $W_{2} \leqslant V \in O \%$ so using the definition of m again $W_{2} \in C Z$. Moreover, because $\alpha \in V$, we have $M \subset W_{2}$ and hence $Z \subset W_{2}$. However, this implies the contradiction $Z \in \Delta O$. Thus we have proved that ψ injects $(\Delta \mathscr{D})(\Delta O t)$ into $(\Delta O t) \backslash(\Delta \mathscr{D})$ and hence $|\Delta \mathscr{D}| \leqslant|\Delta O t|$ as required.

Acknowledgment

The author thanks Jean Godfrey for kindly pointing out an error in the first version of this note.

Reference

1. D. E. Daykin, J. Godfrey, and A. J. W. Hilton, Existence theorems for Sperner families, J. Combinatorial Theory (A) 16 (1974), 245-251.
