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ABSTRACT 

Smooth affine control systems acted on by the feedback group are dealt with, 
from the viewpoint of the existence of structurally stable normal forms. Detailed 
analysis of the action of the approximate feedback group of order 1 has revealed that 
in most cases an obstacle to structural stability appears just in the action of this group. 

1. INTRODUCTION 

The problem of classifying nonlinear control systems by certain nice 
normal forms is of considerable importance, both from theoretical and from 
the applied point of view. For linear systems a celebrated classification by 
orbits of the state feedback group was done by Brunovsky [l, 21. The orbits 
have been described by simple normal forms called the Bnmovsky canonical 
forms. Among the forms there exists one, attributed to the open dense orbit, 
which is clearly structurally stable [3]. 

As might be expected, the classification of nonlinear systems by feedback 
is very hard, and the existing results refer to a few particular cases [4-61. In 
this paper we study a particular aspect of the problem, namely the existence 
of structurally stable local normal forms of nonlinear systems subject to 
feedback. A similar approach has already been adopted in [6]; however, here 
we are able to improve and revise some results stated in that reference. 
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To be more specific, we shall deal with smooth uffine control systems of 
the form 

i= f(x)+g(x)u= f(x)+ f gi(x)ui, m=Gn, f(O)=O, (1.1) 
i=l 

defined on [w n or an open neighborhood of 0 E Iw “. Vector fields f, g,, . . . , g “, 

are assumed to be smooth, i.e. of class C”. Smooth affine systems will be 
identified with tuples u = (f, g) E 2, where Z = C”(lR”,lR(“‘+l)“), along 
with the C” Whitney topology [7]. 

Two affine systems u = (f, g), u’= (f’, g’) E 2 are said to be feedback 

equivalent (locally, around 0 E Iw “), if there exists an open neighborhood U 
of OER”, and a triple (cp, 77.4) of smooth maps defined on U, where 
‘p E Diff(U), ~(0) = 0, represents a local change of coordinates in the state 
space, n E P(U, Iw “), n(0) = 0, denotes the proper feedback, and 4 E 
C”( U, GL,(R)) is a state-dependent linear change of input coordinates, such 
that 

Within singularity theory the above equivalence can be formalized using the 
concept of germs of maps [7, 81. Thus, the feedback group G for affine 
control systems consists of triples of germs (cp, 7, 4) at 0 E R” such that cp is 
the germ of local diffeomorphisms preserving 0 E R n, cp: (R”, 0) + (R “,O), 
n:(R”,O)~(lRm,O), and $:(R”,O) --* GL,,(R). The group multiplication is 
given by the formula 

G acts on germs of affine systems according to the following expression: 

which should be read in terms of germs at 0 E R “. 
Having introduced the action (1.3), we call a “nice” affine system u E Z a 

structurally stable local normal fm of affine systems if there exists an open 
neighborhood V of u (w.r.t. the Whitney topology) such that, given any 
(I’ E V, the germs of u and u’ lie on the same orbit of G. 

This paper is composed as follows. In Section 2 we introduce a basic 
algebraic tool which simplifies considerably the analysis of the equivalence 
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(1.3), viz. a collection of approximate feedback groups. Then, in Section 3, we 
analyze in detail the action of the approximate group of order 1 and establish 
a range of dimensions (m, n) within which an obstacle to the existence of 
structurally stable normal forms comes from the action of this group. Section 
4 contains conclusions. 

2. APPROXIMATE FEEDBACK GROUPS 

Given a smooth map f: Iw n + Iw “, by the k-jet (k > 0) of f at 0 E Iw n we 
mean the collection of Taylor coefficients of f at 0 up to order k, i.e. 

jkf(0) = f(O), g(o),..., aXk 

i 

2(O) . 1 
From now on all the jets of maps or germs will be considered at 0 E [w “, so 
“0” will be omitted everywhere. 

With the feedback group G defined in the previous section we associate a 
family of approximate feedback groups G,, k > 0 [6, 91. The group 6, 
consists of triples ( jk+ r v, j$, jk) of jets for (q,q, #) E G. The group 
multiplication in G, is inherited naturally from (1.2) i.e. 

=(jk+l~.(P’,jk(~Jcp’+~ocp’.9), jk$oq’.#‘). (2.1) 

Let 2, = {(j”f, jkg)l( f, g) E 2) denote the set of k-jets of affine sys- 
tems. Then G, acts on Z, in accordance with the following formula: 

Yk’ (j”“(P, jkvp j”#)( j”f? j”g) 

av -1 
++ jk x 

ii 1 (focp+gocp.qJ, jk( zj-‘gov-#]. (2.2) 

It can be proved that G, is a Lie group acting on the analytic manifold 
2,; hence (2.2) is indeed much easier to handle than (1.3). On the other 
hand, the following lemma from [6] establishes an important connection 
between openness of orbits of yk and the existence of structurally stable 
normal fonns. 

LEMMA 2.1. Let a E Z be a structurally stable local normul form of 
affine systems. Then the orbit Gk(jku) of 6, through jka has nonempty 
interior in 2, for any k > 0. 
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Now let us look at actions ye and yr of approximate feedback groups 
G,, G,. The case of y0 is easy. Due to the assumptions f(0) = 0, ~(0) = 0, 
n(O) = 0, we have Z, z Mat(n, m) = the set of all real n X m matrices, and 
G, = GLJR)XGL,(R). Hence ya:(~~/~x, $)g *(aq/ar)-‘.g.$ leads 
to the classification of rectangular matrices by their rank. Clearly, the number 
of orbits is finite and there exists an open dense orbit described by a normal 
form like 

The case of yr is much more involved. First observe that Z, = Mat(n, m) 
x Mat(n) X Mat( n, m)“, while G, = GL,,(R) X Sym(n)” X Mat(m, n) X 

GL,(R) X Mat(m)“, where Mat(n) is the set of n X n square matrices, 
Sym(n) is the set of n x n symmetric matrices, and superscripts denote 
Cartesian powers. Then after some calculations, the action yr can be given 
the following form: 

i 

a9, a2v1 a2vn all 
Yl: -- __ -,#,g$ ,...,; af agl agn 

ax ’ ax2 )“.’ ax2 ’ ax 1 II )i &X’Ijy ,..*, x) 

a9 
i-i 

T azcp;l n aTi- acp Tags 

ax Fg\l,+ c _JqT ax 22 i i 
* a$ a# s +c-- s_l ax, gz ,i=l,2 ,..., n . 

i 1 i (2.3) 

Hereabove (a$/&,),, = &jij/ax,, (ag”/ax)ij = ag,j/axi. (g a$/ax);j = 
(g a$/axi),j, i, s = 1,2 ,..., n, j = 1,2 ,..., m, g = [g, ,..., g,], all the terms 
being calculated at 0 E R”. 

The expression (2.3) clearly contains the action ya; moreover, one imme- 
diately recognizes the first two terms on the r.h.s. of (2.3) as resulting from 
the action of the linear-feedback group. Therefore, due to Lemma 2.1, if there 
exists a structurally stable normal form of affine systems, it must be mani- 
fested in yr by an open orbit passing through ( 8 f/ax, g ) in the so-called 
generic Brunovsky form. Because of that, we can assume in (2.3) that 
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af/ax=diag{J,,...,J,}, g=diag{el,...,e,), with 

where, if n=km+r,O<r<m, then xi= .*. =xr=k+l, x,+i= ..’ = 

x?n = k. This being so, the third group of terms on the r.h.s. of (2.3) is acted 
on by the stabilizer of the generic form and by new agents like 
a2qi/ar2, aq/axi. 

We choose ~,=(g, af/ax,agl/ar,...,ag*/ax)EZ1 with (af/ax,g) 
as above and ag’jax arbitrary. It is a standard fact that dim G,a, = 
codim Stab ui [lo], so the orbit G,a, cannot be open whenever codim Stab ui 
< dim 2,. Thus all we need is to calculate codimstab ui, i.e. to count 
independent equations defining the stabilizer. This wilI be done in the next 
section. 

3. MAIN RESULT 

For ui described in Section 2, Stab ui is determined by the following 
equations: 

aT -1 

i-i 

h 

ax gJ,=g, jy 
( i 

-lafaq aq -1 a7 af 
--+ax ax ax i i 

g-g = z, (3.la) 

aq i-1 
T a2cp;l n aTip acp 

ax ,g#+C-- 
i 

n a+ S agi 
s=l ax, jp+C- s=l ax, T? i 1 

i = ,...,n. (3.lb) 

The solution of (3.la) for (af/ax, g) in the generic form is welI known 
[ll, 121. With regard to the form of (3.lb) it is convenient to write down the 
solution (stabilizer of the linear feedback group) as follows: 
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0 
0 

:) 0 , 
n c’,r d,, 0 

0 d,, 0 (‘1r 

(‘,,, rr tl,,, rr 
n .:. 0 

0 ‘;,I r, r’,,, rr 0 

0 0 (‘m rr tl,,, rr 

0 
0 

L : 0 __: 0’ 

0 11 I,,, r 

0 0 
0 0 

11 I ,,, r 0 

0 ‘L r,,, 

0 0 

; 

=I1 

L n 
and 

. . Ulr 

0 
. . arr 1 

y (3.2) 
d II d lr b 11 .‘. h,-, 

b' b m-r1 ... m--r”,-, dm-,, d,,-r, 
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where the entries a, b, c, d are arbitrary, and where acp/ax, I,L are invertible. 
We have disregarded the term all/ax, as it does not appear in (3.lb). 

Now, thanks to (3.2), the equations (3.lb) can be transformed further. 
Recall that n = km + r, 0 Q r < m. Then (3.lb) is equivalent to the following: 

(a) i = Z(k +l), 2=1,2 ,..., r: 

a+,, - . . . 
r 

ax1 
+ht ; 

t=1 aJlt1 - . . . 
ax, 

a+,,, 
ax1 agi =-. 

ax ’ 

(b) i=r(k+l)+pk, p=1,2 ,..., m-r: 

Tag t(k+l)-1 

ax 4 

+ id,, Tag r(k+l)+sk 

t=1 

+ i d,, 
t=1 

wtl - . . . 
8x1 

& 
- . . . 

ax, 

a+ r+sl 
~. 

m-r 

+ C bps aixl 

s=l I r+sl 
~. 

ax, 

. . 

agi =-. 
ax ’ 
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(c) i=(Z-l)(k+l)+t, 1=1,2 ,..., r, t=1,2 ,..., k: 

(d) i=r(k+l)+(s-l)k+w, w=1,2 ,..., k-l, s=l 2 , a..., m - r: 

aq i-1 
* a!$;1 

ax rg+ + ecsj 2 

j=l i i 
Tag (j-l)(k+l)+w 

ax II/ 

*ag(j-l)(k+l)+w+l 

ax 4 

Tag r(k+l)+(t-l)k+w 

ax # 

agi =- 
ax * 

A careful analysis of (a)-(d) and (3.la) yields the main result of this paper. 

THEOREM 3.1. Let 

i 

af agl agn -- - 01= g7 ax’ ax T’.., ax 
1 

with (af/ax, g) in the generic BTunoosky fm, ag'/ax arbitrary. Then 
codimG,a, 2 (m/2)(m - l)(n - m) - m2. 

By combining the theorem with Lemma 2.1 one easily derives the next. 
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COROLLARY 3.2. Let n > m(m + l)/(m - l), m > 2. Then the orbits of 
G I have positive codimensions in 2,; hence there are no structurally stable 
local rwrmul forms of affine systems under feedback. 

4. CONCLUSION 

We have found a condition for the nonexistence of structurally stable 
normal forms of affine systems (Corollary 3.2) which is much stronger than 
that stated in [6, Proposition 4.31. This can be seen from the following 
example. Let n = 10, m = 5. Then according to [6, Proposition 4.31 an 
obstacle to the structural stability appears in the action of G,, while 
Corollary 3.2 implies that an obstacle exists already in the action of G,. 
Furthermore, we believe that Theorem 3.1 could be of some independent 
interest for a local classification of bilinear systems. 

Being stronger, Corollary 3.2 does not apply to all the cases covered by 
Proposition 4.3 in [6]. In particular, to use the corollary we must assume 
m > 2 and n > m +3, so it does not help us in the investigation of struc- 
turally stable normal forms for n = m + 1 (the case left undecided by Proposi- 
tion 4.3 in [6] and settled erroneously by Proposition 4.5 therein). 

If n < m(m + l)/( m - l), m > 2 or m = 1, n arbitrary, we conjecture 
that 6, acts on C, with open orbits. Having found normal forms for the 
orbits, we might be able to extend the region of dimensions (m, n) without 
structurally stable normal forms by analyzing the action of G,, etc. We 
conjecture that even the case n = m + 1 may be decided using approximate 
feedback groups of relatively low orders. 

REFERENCES 

1 P. Bnmovsky, A classification of linear controllable systems, Kybemetika 
6:173-187 (1970). 

2 W. M. Wonham, Linear Multiunviable Control, Springer-Verlag, Berlin, 1979. 
3 J. C. WiIlems, Topological classification and structural stability of linear systems, 

J. Differential Equations 35:30&318 (1980). 
4 R. W. Brockett, Control theory and singular Riemannian geometry, in New 

Directions in Applied Mathematics (P. J. Hilton and G. S. Young, Eds.), 
Springer-Verlag, Berlin, 1981, pp. 11-27. 

5 B. Jakubczyk and F. F’rzytycki, Singularities of k-Tuples of Vector Fields, Polish 
Sci. Publ., Warsaw, 1984. 

6 K. Tchoh, The only stable normal forms of affine systems under feedback are 
linear, Systems Control Lett. 8:359-365 (1987). 



104 KRZYSZTOF TCHOE;I 

7 M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, 
Springer-Verlag, Berlin, 1973. 

8 E. C. Zeeman, The classification of elementary catastrophes of codimension Q 5, 
in Catastrophe Theory: Selected Papers, 1972-1977 (E. C. Zeeman, Ed.), Addi- 
son-Wesley, Reading, Mass. 1977, pp. 497-581. 

9 K. Tchoh, On approximate feedback equivalence of affine control systems, 
Internat. J. Control 44:259-266 (1986). 

10 A. Tannenbaum, Invariance and System Theory, Springer-Verlag, Berlin, 1981. 
11 R. W. Brockett, The geometry of the set of controllable linear systems, Res. Rep. 

Automat. Control Lab. Nagoya Univ. 24:1-7 (1977). 
12 K. Tchoh, On generic properties of linear systems: An overview, Kybe-rnetika 

19:467-474 (1983). 

Received 12 December 1987; final manuscript accepted 28 May 1988 




