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The skin provides the first line defense of the human body against injury and infection. By integrating recent
findings in cutaneous immunology with fundamental concepts of skin biology, we portray the skin as a multi-
tasking organ ensuring body homeostasis. Crosstalk between the skin and its microbial environment is also
highlighted as influencing the response to injury, infection, and autoimmunity. The importance of the skin
immune network is emphasized by the identification of several skin-resident cell subsets, eachwith its unique
functions. Lessons learned from targeted therapy in inflammatory skin conditions, such as psoriasis, provide
further insights into skin immune function. Finally, we look at the skin as an interacting network of immune
signaling pathways exemplified by the development of a disease interactome for psoriasis.
Introduction
The skin, with its surface area of 1.8 m2, is one of the largest

organs in the human body and most exposed surface to the

environment. Being constantly exposed to potential hazards

requires the skin to perform numerous tasks in order to maintain

homeostasis critical for health. Among other classical nonim-

mune functions, the skin provides a physical and biochemical

barrier and a sensory-receptive area; it ensures adequate hydra-

tion; and it allows synthesis of vitamins and hormones. The skin

is also required to serve as an immuno-protective organ that

actively defends deeper body tissues. Similar to lung and gut

mucosal barriers, the skin exploits the immune surveillance

versatility of a well-coordinated system of epithelial and immune

cells. Collectively, they ensure adequate immune responses

against trauma, toxins, and infections, while maintaining self-

tolerance, preventing allergy, and inhibiting autoimmunity. Long

gone are the days when the skin was considered a mere passive

barrier. This review portrays the skin as amultitasking organ, and

by integrating recent exciting findings, from both clinical and

murine models with fundamental concepts, we highlight how

skin immune functions contribute to human health.

Anatomy of the Skin
The unique ability of the skin to carry out multiple and wide-

ranging roles is very closely related to its structure, which is

composed of an outer epidermis overlying an inner dermis,

separated by a basement membrane. From the lowermost layer

to the uppermost visible part of the epidermis is the stratum

basale, the stratum spinosum, the stratum granulosum, and

the stratum corneum, the latter consisting of dead keratinocytes

called corneocytes. The physical and biochemical skin barrier

results from the combination of terminally differentiated epi-

dermal keratinocytes (KCs) and the acidic, hydrolipidic nature

of the skin, as a result of sweat, sebum, lipids, and antimicrobial

peptides (AMPs). Changes in lipid composition and epidermal

differentiation lead to a disturbed skin barrier, which plays

a role in the pathogenesis of several immune-mediated skin
pathologies, such as atopic dermatitis and ichthyosis vulgaris

(Palmer et al., 2006; Smith et al., 2006). The epidermis is host

not only to KCs, but also to melanocytes and immune cells

such as Langerhans cells (LCs) and T lymphocytes. In addition,

it hosts nerve-ending cells (Merkel cells), essential for light-touch

and discrimination of shapes and texture. The dermis is

composed of an upper papillary (stratum papillare) and lower

reticular (stratum reticulare) dermis containing thin and thick

collagen fibers, respectively. The collagen fibers offer a mechan-

ical barrier as well as a structural framework in which to host

blood vessels and many immune cells such as dermal dendritic

cells (DDCs), ab T cells, gd T cells, natural killer (NK) cells, B cells,

mast cells, and macrophages.

At this point it is important to highlight that anatomical and

immunological differences exist between murine and human

skin (Gudjonsson et al., 2007), in order to better appreciate

information gleaned frommurinemodels of skin infection, inflam-

mation, and wounding. Mouse skin is covered by a thick layer of

fur, whereas human skin has sparse hair coverage. Hair aids in

waterproofing and prevention of desiccation and protects from

certain fungal infections. Mouse skin is also much thinner than

human skin with a faster epidermal cell turnover, resulting in

fast healing of wounds. Murine skin also contains a thin superfi-

cial muscle layer, the panniculus carnosus, which allows for

wound healing by contraction, leaving no scar upon healing,

whereas human skin heals via re-epithelialization and granula-

tion tissue formation, which can lead to scar formation. Immuno-

logical differences include the existence of subtypes of DCs not

present or not yet identified in humans such as CD207(langerin)+

CD103+ dermal DCs (DDCs). Whether analogous cell types exist

in human skin is currently being investigated. Moreover, mice,

but not humans, possess Vg5Vd1 T cells, named dendritic

epidermal T cells (DETCs), for their morphology and location.

Uniquely seeded to the basal epidermis during fetal develop-

ment, DETCs constitute more than 90% of epidermal T cells,

forming an interdigitating network with keratinocytes and over-

laying LCs. Human epidermal Vd1 (Toulon et al., 2009) and
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skin-homing Vg9Vd2 (Laggner et al., 2011) have recently been

attributed some of the functions exerted by DETCs in mice and

will be discussed later.

The skin is not a sterile place and as many as 1012 resident

bacteria/m2 are sheltered and prosper in the intercorneocytic

spaces. They feed on corneocyte debris and sebum and prevent

other undesirable bacteria from developing. The skin micro-

biome is dependent on the site that is being considered and on

sebum and moisture availability. A great step forward in helping

us to understand how and why the skin responds to microbes in

the way it does has been made by the establishment of the

Human Microbiome Project and in particular the skin micro-

biome (Grice and Segre, 2011). Three species of bacteria are

particularly well adapted to withstand the acidic pH environment

and host AMPs: Staphylococcus, Propionibacterium, and Cory-

nebacterium. Commensal bacteria like Staphylococcus epider-

midis appear to act as an additional barrier against colonization

of potentially pathogenic microbes and against the overgrowth

of already present opportunistic pathogens, by producing their

own AMPs to enhance host AMPs. They are also beneficial in

maintaining inflammatory homeostasis by suppressing excess

cytokine release after minor epidermal injury. Propionibacterium

acnes has maintained a controversial link with the pathogenesis

of acne in the face of being a skin-resident bacterium. Propioni-

bacterium species was found to be more extensively located on

the back of four subjects in the healthy skin group than in the

nose and feet (Grice and Segre, 2011), again supporting clinical

findings that acne is prone to occur on the backs of many

patients. More advanced technologies (e.g., whole genome

shotgun sequencing), able to differentiate between living and

dead bacteria, will soon provide further details regarding tempo-

rary and long-term skin-resident bacteria to identify the true

genetic diversity of the skin microflora (Grice and Segre, 2011).

Skin as an Immunocompetent Organ and a Window
into Tissue-Specific Immune Responses
Although skin nonimmune functions have been long known, its

immune function was not formally recognized until 1978, when

Streilein coined the term skin-associated lymphoid tissue

(SALT) to describe the continuous trafficking of immune cells

between the skin, draining lymph nodes (LNs), and the peripheral

circulation (Streilein, 1983). Expansion of this innovative concept

to include the vast majority of the cutaneous cellular com-

ponents led to the term skin immune system (SIS) (Bos and

Kapsenberg, 1986). Eventually, a detailed analysis of the dermal

compartment gave rise to the dermal immune system (DIS)

model in which dermal cells are crucially involved in the majority

of chronic inflammatory skin disorders (Nickoloff, 1993). More

recently, we have proposed a sentinel role in health and disease

for a spectrum of skin-resident cells (Nestle et al., 2009a), with

KCs involved in sensing pathogens and danger signals, migra-

tory DCs capable of initiating a diverse range of immune re-

sponses, and tissue-resident memory T (Trm) cells performing

crucial effector functions.

Analysis of clinical specimens and animal models of skin

inflammation and infection have contributed to the definition of

Trm cells as critical components of organ-based immunity (Fig-

ure 1; Sheridan and Lefrançois, 2011; Woodland and Kohlmeier,

2009). Initial views of skin immune surveillance greatly empha-
858 Immunity 35, December 23, 2011 ª2011 Elsevier Inc.
sized the role of circulatory memory cells, trafficking between

skin-draining LNs and skin, poised to react quickly to a

secondary challenge (Kupper and Fuhlbrigge, 2004; Streilein,

1983). Effector T cells gain tissue-specific tropism by the DC-

imprinted expression of tissue-specific homing markers, deter-

mining and directing T cell migration to the tissue from which

the cognate antigen is originally derived. For instance, imprinting

for intestinal migration results in the expression of the gut-

homing markers a4b7 and CCR9, whereas the a1b1 integrin

very late antigen-1 (VLA-1) is involved in T cell migration to the

lung. Expression of cutaneous leukocyte antigen (CLA), CCR4,

and CCR10 determines T cell cutaneous tropism (Sheridan and

Lefrançois, 2011). It has been suggested that skin DCs can

metabolize vitamin D3 to 1,25(OH)2D3 through which they

‘‘imprint’’ T cells with a skin-homing signature via upregulation

of CCR10 (Sigmundsdottir et al., 2007).

There is increasing evidence to support the concept of skin-

resident T cells, in keeping with other barrier sites such as the

lung and gut. The skin is thought to harbor a subset of Trm cells

that do not circulate but are strategically positioned in both

epidermis and dermis as the first-line defense in the tissue

(Boyman et al., 2007; Clark, 2010). It has been estimated that

the skin of a normal adult individual contains approximately

20 billion T cells, nearly twice the number present in the entire

circulation. More importantly, 98% of CLA+ skin-homing lym-

phocytes in the body reside in the skin under physiological

conditions (Clark et al., 2006). Our own model of T cell-mediated

skin inflammation strongly implies the existence of a Trm cell

compartment with a critical functional role, because upon xeno-

transplantion of human nonlesional psoriatic skin onto immuno-

deficient mice, fully fledged psoriatic lesions develop in the

absence of T cell recruitment from blood (Boyman et al., 2004).

Development of skin inflammation depends on the ability of

locally activated skin Trm cells, present in the initial graft, to

migrate into the epidermis via VLA-1 binding to collagen IV (Con-

rad et al., 2007). Elegant studies of herpes simplex virus (HSV)

skin infection clearly implicate Trm cells in long-term peripheral

immunity (Gebhardt et al., 2009;Wakim et al., 2008), as indicated

by the fact that HSV-1-specific CD8+ Trm cells are retained in

latently infected ganglia and are able to proliferate in situ and

to contain virus reactivation with CD4+ Trm cell help (Wakim

et al., 2008). HSV-1-specific CD8+ skin Trm cells expressing

CD103 and VLA-1 are also retained in healed skin where they

promote long-lasting and effective protection against local

reinfection (Gebhardt et al., 2009).

Important differences between CD4+ and CD8+ T cell subsets

in terms of tissue localization and migratory capacity have also

been highlighted (Gebhardt et al., 2011). Once infection has

resolved and immunological memory has taken place, memory

CD8+ T cells remain sequestered in the epidermis, in close prox-

imity to the original infection site. In contrast, memory CD4+

T cells rapidly traffic through the dermis, re-enter the circulation,

and rapidly reach previously uninvolved skin in the case of

secondary infection (Gebhardt et al., 2011). Therefore, the well-

known division of labor between helper CD4+ and cytotoxic

CD8+ T cells seems to also include a spatial compartmentaliza-

tion. Besides these animal models, the existence of a popula-

tion of virus-specific T cells that increases in number during

subclinical HSV reactivation has been documented in humans



Figure 1. Tissue-Resident Memory T Cells Provide Long-Term Peripheral Immunity in Human Skin
After first skin infection (left) with a pathogen, dermal dendritic cells (DDCs) take up foreign antigens (Ags) and present them to naive T cells in the skin-draining
lymph node, initiating an adaptive immune response. Ag-specific central memory T (Tcm) cells, expressing CCR7 andCD62L andmainly residing in lymph nodes,
and effector memory T (Tem) cells, expressing cutaneous leukocyte antigen (CLA), CCR4, and CCR10, are generated. Tem cells migrate to sites of skin infection
and remain there after the pathogen has been cleared to become tissue-resident memory T (Trm) cells. Upon second encounter with the same Ag (right), DDCs
present Ag in situ to skin Trm cells, allowing a quick response to local reinfection. Moreover, DDCs present Ag to Tcm cells in skin-draining lymph nodes, giving
rise to another population of Tem cells that migrate into skin and contribute to clearance of infection.
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(Zhu et al., 2007). Further studies are required to clarify whether

the different migration pattern of CD4+ and CD8+ T cells holds

true for tissues other than skin and most importantly whether

this can be exploited for therapeutic application.

Skin Immune Network Ensures Host Defense and Tissue
Repair against Chemical and Physical Insults
Having discussed the skin as an immune-competent organ,

capable of rapid response to danger, we will now explore the

vast array of signals that can trigger this response. Damaging

the skin physical barrier may have severe detrimental effects

on deeper body tissues, and therefore, the skin reacts to

exposure to chemicals and to physical trauma by mounting

a robust inflammatory response that prevents further damage

and ultimately attempts to restore tissue function.

Exposure to irritant xenobiotic compounds triggers the activa-

tion of the skin innate immune system and results in the skin

inflammatory condition known as irritant contact dermatitis
(ICD). This nonspecific inflammatory reaction is characterized

by an abundance of KC-derived proinflammatory mediators,

neutrophil and macrophage infiltrate, and KC apoptosis and/or

necrosis followed by compensatory proliferation (Nosbaum

et al., 2009). ICD is usually self-limiting and spontaneously re-

solves, but in some individuals the contact irritant can act as a

hapten, resulting in an allergic contact dermatitis (ACD) (dis-

cussed later).

The primary immunological task of the skin is to maintain body

homeostasis and is most evident in the physiologic process of

wound healing after tissue injury. Wound healing occurs in three

sequential stages: inflammation, new tissue formation, and

tissue remodeling. Within seconds of the injury, a well-orches-

trated cascade of inflammatory events take place. Exposed

collagen activates the coagulation cascade leading to an initial

platelet plug, which is sealed and solidified by fibrin, and even-

tually leads to a blood clot at the skin surface, which prevents

further loss of blood and fluid and serves as a scaffold for
Immunity 35, December 23, 2011 ª2011 Elsevier Inc. 859
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incoming immune cells. Neutrophils arrive within an hour of

wounding and launch the immune response. Although they

may be dispensable for proper tissue repair, in animal models

of artificial and sterile wounds (Martin and Leibovich, 2005),

they kill bacteria and produce chemokines, cytokines, and

proteolytic enzymes that encourage monocyte, pDC, and

lymphocyte recruitment and activation (Nathan, 2006). Two

days after injury, neutrophils are outnumbered by incoming

monocyte-derived macrophages. In mice, two distinct mono-

cyte subpopulations have been described (Auffray et al., 2009)

as giving rise to wound macrophages with different kinetics

(Brancato and Albina, 2011). Inflammatory monocytes, charac-

terized as Ly6ChiCCR2hiCX3CR1lo, migrate into sites of inflam-

mation, early after injury, to produce proinflammatory cytokines

and clear wound debris by phagocytosis. A second population,

defined as Ly6CloCCR2loCX3CR1hi, egresses from the circula-

tion later and produces transforming growth factor-b (TGF-b)

and vascular endothelial growth factor (VEGF). In humans,

CD16+ cells highly expressing CX3CR1 are considered the

ortholog of Ly6CloCCR2loCX3CR1hi murine monocytes, whereas

CD16�CCR2+CX3CR1lo monocytes resemble Ly6ChiCCR2hi

CX3CR1lo murine monocytes (Auffray et al., 2009). That macro-

phages undergo temporal evolution as the wound matures is

supported by a recent study uncovering their rather complex

phenotype, sharing traits associated with both alternative and

classical activation (Daley et al., 2010). In contrast to an early

mouse model of macrophage deficiency suggesting a detri-

mental role for macrophages in promoting scar formation (Martin

and Leibovich, 2005), three recent reports (Goren et al., 2009;

Lucas et al., 2010; Mirza et al., 2009) depleting monocytes and

macrophages during wound healing strongly confirm their

essential role as main orchestrator of the tissue repair. Macro-

phage depletion results in delayed re-epithelialization and im-

paired angiogenesis, associated with increased expression of

inflammatory mediators and reduced expression of VEGF and

TGF-b1. Thus, it is likely that macrophages modulate wound

closure and dermal healing, in part by regulating the cytokine

environment of the healing wound. Nonetheless, their role is

probably multifaceted and further studies are required to under-

stand their contribution to the different stages of the healing

process.

Other leukocytes to enter the wounded area in the inflam-

matory stages include plasmacytoid DCs (pDCs). pDCs are a

unique subset of DCs, normally absent in skin and characterized

by extraordinary secretion of type I interferons (IFNs) via toll-like

receptor-7 (TLR7)- and TLR9-dependent recognition of nucleic

acids (Conrad et al., 2009). Two studies on a murine model of

tape stripping-induced mechanical skin injury have recently

uncovered a previously unappreciated role for pDCs in wound

healing. pDCs were found to infiltrate skin wounds as early as

neutrophils and to react to self nucleic acids released by dying

cells as a result of coupling with the cathelicidin LL37, and

thereby inducing the typical type I IFN gene signature (Gregorio

et al., 2010; Guiducci et al., 2010). pDCs also contribute to

the early inflammatory responses and the re-epithelization of

injured wound by releasing IL-6 and promoting the production

of IL-17A and IL-22 by T cells. Of interest, a similar course of

events after skin injury also occurs in humans (Gregorio et al.,

2010).
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Skin-resident T cells residing in the epidermis have a crucial

role in promoting wound healing. In mice, Vg5Vd1 DETCs act

as fast, early responders to skin damage promoting tissue repair

(Havran and Jameson, 2010). After wounding, DETCs respond to

an as-yet-unknown antigen, expressed on damaged or stressed

KCs, by proliferating and producing proinflammatory cytokines,

chemokines, and KC growth factors. DETCs are critical in skin

repair as shown by the fact that mice lacking DETCs exhibit

a delay in wound closure. DETCs also modulate conventional

ab T cell and macrophage recruitment to the skin by enhancing

the deposition of extracellular matrix (ECM) molecules (Havran

and Jameson, 2010). As mentioned earlier, DETCs are not

present in humans and gd T cells are rare in normal healthy

skin, representing about 2%–9% of dermal and 1%–10% of

epidermal T cells. It has long been speculated whether or not

humans have a population of epidermal T cells capable of aiding

in wound healing. Toulon et al. (2009) have recently reported that

in humans, both ab ‘‘conventional’’ and Vd1 ‘‘unconventional’’

epidermal T cells are able to produce insulin-like growth

factor-1 (IGF-1) upon activation and to promote wound healing

in a skin organ culture model. Epidermal T cells isolated from

patients with chronic wounds are refractory to stimulation and

do not produce IGF-1. Moreover, we have recently shown that

a population of skin-homing Vg9Vd2-expressing T cells, able to

produce the same spectrum of mediators, is rapidly attracted

into perturbed skin (Laggner et al., 2011). Thus, both recruited

and skin-resident human gd T cells act as early effector sentinels

upon trauma.

Among T cell-derived mediators involved in wound healing, a

prominent position is occupied by IL-22, in keeping with a similar

homeostatic role at other barrier surfaces, such as lung and gut

(Sonnenberg et al., 2011). An increasingly expanding variety of

adaptive (Th1, Th17, Tc17, ‘‘Th22,’’ and ‘‘Tc22’’) and innate-

like (LTi-like, gd T, NK, NKT) cell types have been reported to

produce IL-22 (Sonnenberg et al., 2011). To date only Th1,

Th17, and the recently described skin-homing IL-22-producing

‘‘Th22’’ cells (Duhen et al., 2009; Eyerich et al., 2009; Trifari

et al., 2009) have been reported to produce IL-22 in inflamed

human skin (Eyerich et al., 2009). Although named after their

signature cytokine, these IL-22-producing cells still lack the

attribution of a master regulator transcription factor to be for-

mally recognized as a distinct T helper cell lineage. The aryl

hydrocarbon receptor (AHR), involved in Th17 cell differentiation

(Stockinger et al., 2011) and recently shown to be an essential

regulator of murine DETCs and intraepithelial lymphocytes in

the gut (Kadow et al., 2011; Li et al., 2011), has been suggested

as the putative master regulator, but this has not been con-

clusively proven as yet. Nevertheless, we will henceforth refer

to them as Th22 cells.

IL-22 exerts its effects only on epithelial cells, in keeping with

the expression pattern of the IL-22R complex (Wolk et al., 2004).

The early identification of genes selectively regulated by IL-22

in KCs reveal its involvement in tissue repair (Boniface et al.,

2005). Regulated genes include those coding for keratinocyte

differentiation-associated protein, mobility and migration-regu-

lating proteins, and AMPs.More recently, transcriptome profiling

of Th22 clones shows selective expression of growth factors

(FGFs) and chemokines involved in tissue remodeling, angiogen-

esis, and fibrosis (Eyerich et al., 2009). Supernatants from Th22
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clones are able to upregulate KC expression of chemokines

(CXCL9, CXCL10, and CXCL11), T cell growth factors (IL-7 and

IL-15), and AMPs and to enhance wound healing in vitro. Hence,

IL-22 functions promote the formation of new tissue in the

second stage of the wound healing process. This stage occurs

2–10 days after injury and is characterized by proliferation and

migration of different cell types. KCs migrate over the injured

dermis, proliferate in response to growth factors produced by

gd T cells, and terminally differentiate in response to IL-22 to ulti-

mately restore the barrier function of the epithelium. At 2–3weeks

after injury, the majority of the inflammatory cells undergoes

apoptosis or exit from the wound, and fibroblasts become the

key players. Fibroblast-derived ECM, mainly collagen, forms

the bulk of the mature scar while differentiated myofibroblasts

bring the edges of the wound together. Increased angiogenesis

is also a prominent feature promoting fibroblast activity and scar

formation. The remodeling phase, a stage lasting up to 2 years

and involving reorganization of collagen fibers, terminates the

healing process with the wound progressively contracting near

its surface. Such a controlled and tightly regulated cascade of

events ultimately results in an uncomplicated fine scar with little

fibrosis and the return to near-normal tissue architecture.

However, if these events are not controlled and occur out of

sequence, the wound does not heal, resulting in chronic wounds

(such as in diabetic patients), which can be accompanied by

excessive fibrosis, resulting in an impaired skin structure and

thus compromising its functional integrity.

Skin Provides First Line Defense against Pathogens
Keratinocytes can be considered the first immune sentinels

encountered by pathogens and they need to be quick and effi-

cient in sensing and responding to danger (Nestle et al., 2009a).

On first encountering a microbe, KCs are alerted to potential

danger by recognizing conserved microbial structures known

as pathogen-associated molecular patterns (PAMPs) via their

pattern recognition receptors (PRRs) (Takeuchi and Akira,

2010). One major group of PRRs are Toll-like receptors (TLRs),

which keratinocytes express on their surface (TLR-1, TLR-2,

TLR-4, TLR-5, and TLR-6) and in their endosomes (TLR-3 and

TLR-9). TLR engagement triggers activation of nuclear factor-

kappa B (NF-kB) and interferon regulatory factor (IRF), which in

turn induces immune and inflammatory genes, namely, tumor

necrosis factor (TNF) and type I IFNs.

Another way in which KCs try to curtail the immediate micro-

bial threat is by releasing an abundant supply of proinflammatory

cytokines as a result of activating a large multiprotein oligomer

complex, within the cytoplasm, called the inflammasome (Feld-

meyer et al., 2010). This in turn activates the enzyme caspase 1,

which cleaves unprocessed pro-interleukin-1b (pro-IL-1b) and

pro-IL-18, stored in KCs, into the active IL-1b and IL-18. Acti-

vated keratinocytes release processed IL-1 (Dombrowski et al.,

2011), enabling neighboring epithelial cells to respond by ampli-

fying the signal through further production of IL-1a, in addition to

IL-1b, TNF, and IL-6.

Another critical role fulfilled by KCs in the defense against

invading microorganisms is the induction of numerous AMPs.

There are many cationic AMPs, such as the cathelicidin

(LL-37), defensins, and S100 family proteins (Harder and

Schröder, 2005). These cationic molecules destroy bacteria by
creating holes in their anionically charged cell walls or by

sequestrating iron required for bacterial growth (Gläser et al.,

2005). Proinflammatory cytokines (IL-1a, IL-1b, IFN-g, TNF) dif-

ferentially regulate the expression of genes encoding for a

number of AMPs, and IL-17A, IL-17F, and IL-22 are potent

inducers of AMPs (Sonnenberg et al., 2011).

The important role that AMPs play in the cutaneous defense

against infection is apparent in patients with AD, who are highly

susceptible to cutaneous bacterial and viral infections as a result

of decreased amounts of b-defensins and cathelicidins (Ong

et al., 2002), whereas skin infections are not common to a dis-

ease like psoriasis associated with increased production of

AMPs. Overall, the general increase in cytokines and chemo-

kines, such as CXCL9, CXCL10, CXCL11, CCL27, and CCL20,

resulting from activated KCs (Albanesi et al., 2001) leads to an

increase in the neutrophil and macrophage infiltrate in addition

to T lymphocyte recruitment.

As mentioned earlier, pDCs are normally absent in peripheral

nonlymphoid organs but migrate to the skin after viral infections.

pDCs produce large quantities of type I IFNs that limit the spread

of viral infections and induce maturation and activation of DCs,

thereby promoting cell-mediated protective immunity (Conrad

et al., 2009). Upon activation, pDCs lose their plasmacytoid

morphology and the ability to produce type I IFNs and differen-

tiate into cells with a dendritic morphology expressing major

histocompatibility complex (MHC) and T cell costimulatorymole-

cules. However, even in their mature status, pDCs are less effi-

cient than DCs in antigen presentation, especially in priming

naive T cells, and most probably do not have cross-presentation

capacity. Nevertheless, pDCs sustain protective responses at

sites of infection and display functional plasticity in promoting

almost every type of effector T helper subsets in vitro, including

differentiation of skin-homing Th22 cells, via IL-6 and TNF

(Duhen et al., 2009).

Initiation of adaptive immune responses against pathogens

that gain access to the skin requires pathogen-derived antigen

capture, processing, and presentation by DCs followed by

DC-mediated priming of naive T cells. Epidermal LCs extending

dendritic processes to the stratum corneum have traditionally

been regarded as the typical peripheral DCs patrolling the cuta-

neous barrier (Schuler and Steinman, 1985). LCs are in an imma-

ture state, yet well equipped with a series of innate receptors to

sample the environment. PAMPs trigger migration toward skin

draining lymph nodes where LCs acquire a mature phenotype

and the functional ability to present antigens to naive T cells.

However, this view, known as the ‘‘LC paradigm,’’ has been

challenged by a number of murine studies that have led to

a re-evaluation of the role of LCs in pathogen-induced immune

responses (Kaplan, 2010; Merad et al., 2008; Romani et al.,

2010). Recently identified murine CD207+CD103+ DDCs (Bursch

et al., 2007; Ginhoux et al., 2007; Poulin et al., 2007) have been

shown to perform some of the tasks previously attributed to

LCs, such as cross-presentation (Bedoui et al., 2009; Henri

et al., 2010), despite other studies having shown cross-presen-

tation by LCs in vitro and ex vivo (Flacher et al., 2010; Klechevsky

et al., 2008). Recently, two studies shed some light on the role of

LCs in adaptive immunity (Bennett et al., 2011; Igyártó et al.,

2011). By using a TLR agonist-induced graft versus host disease

(GvHD) model, Bennett et al. (2011) showed that LCs are not
Immunity 35, December 23, 2011 ª2011 Elsevier Inc. 861
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required for T cell priming but are necessary to license effective

cytotoxic responses. Finally, Igyártó et al. (2011) have investi-

gated LC function in a skin model of recombinant Candida

albicans infection. Confirming previous findings, they have found

that CD207+CD103+ DDCs, but not LCs, are necessary and suffi-

cient for cross-presentation of exogenous antigen to CD8+

T cells in vivo. However, direct antigen presentation by LCs is

required for Th17 cell differentiation promoted by LC-derived

IL-6, IL-1b, and IL-23. Taken together these two studies suggest

that LCs do play a specific and nonredundant role in antigen-

specific responses.

Previously overlooked on the assumption that all CD207+ DCs

found in the dermis were LCs en route to draining LNs, CD207+

CD103+ DDCs have raised considerable interest since their iden-

tification (Kaplan, 2010). They have been consistently identified

in mice as the only skin-derived DC subset able to cross-present

viral antigens and self-protein expressed by keratinocytes in

both in vitro and in vivo settings (Bedoui et al., 2009; Henri

et al., 2010). Moreover, CD207+ DDCs promote antigen-specific

cytotoxic T lymphocytes (CTL) and Th1 cells while inhibiting LCs

and CD207� DDC-induced Th17 cells (Igyártó et al., 2011).

Counterparts of CD207+CD103+ DDCs are also found residing

at other mucosal sites, including the lung and small intestine

(Heath andCarbone, 2009), further supporting a putative sentinel

role at barrier surfaces. Despite the growing number of murine

DC subsets identified to date, CD207+CD103+ DDCs share

their cross-presenting capability only with splenic CD8a DCs.

Because both cell subsets depend on the transcription factor

Batf3 for their development, similar ontogeny and functions for

these subsets can be hypothesized. No human equivalent of

dermal CD207+CD103+ DDCs has been identified so far. Human

CD207+ DDCs are scarce, representing less than 5% of DDCs in

human skin (Chu et al., 2011; Romani et al., 2010), and whether

they correspond to the CD207+CD103+ DDCs described in mice

remains to be investigated.

An additional subset of dermal DCs involved in building immu-

nity to infection is a population of monocyte-derived DDCs

(mo-DDCs) that patrol the skin during inflammation. They are

important for adequate immune response against pathogens,

e.g., inducing protective Th1 cell responses against Leishmania

major (León et al., 2007). Interestingly, inflammatory mo-DDCs

and DDCs found in steady state display similar phenotypic

features, hinting to a monocytic origin for DDCs (López-Bravo

and Ardavı́n, 2008). A formal identification of inflammatory

mo-DCs during infection in human is still lacking. A population

of ‘‘inflammatory DDCs,’’ characterized as CD11c+CD1c�, has
been identified in inflamed psoriatic lesions (Zaba et al., 2009b)

and is believed to be the equivalent to mouse splenic TNF-

and inducible nitric oxide synthase (iNOS)-producing DCs

(TIP-DCs) found in infection models.

After presentation of the cognate antigen by DCs and accord-

ing to the surrounding cytokine milieu, naive T cells differentiate

into effector cells endowed with critical effector functions, such

as cytokine production and cytotoxicity. All CD4+ Th cell lineages

identified to date contribute to provide protective cutaneous

immunity against a range of intracellular and extracellular patho-

gens. Cytotoxic CD8+ T cells, producing type 1, 2, and 17 cyto-

kines, also occur. Among CD4+ T cells, Th17 cells perform an

essential first-line defense against a number of fungal and bacte-
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rial skin infections (Miossec et al., 2009). Mice lacking IL-23 show

impaired Th17 cell response to Candida albicans infection

(Kagami et al., 2010). In humans, genetic defects in a variety

of Th17 cell-related genes, such as those coding IL-12p40,

IL-12Rb1, STAT-3, IL-17RA, and IL-17F, cause severe immuno-

deficiency and dramatic susceptibility to and recurrence of

bacterial and fungal infections, as seen in Job’s syndrome and

chronic mucocutaneous candidiasis (de Beaucoudrey et al.,

2008; Puel et al., 2011), respectively. Lack of Th17 cytokines

observed in these patients is likely to impair recruitment of

neutrophils, activation of macrophages, and production of

AMPs by KCs and neutrophils, thus interrupting the crosstalk

between adaptive and innate immunity required for full pathogen

clearance. Other important sources of IL-17A at barrier sites

come from innate immune cells and unconventional T cells

(Cua and Tato, 2010). In the lung, gd T cells have been identified

as important IL-17A producers inmice and patients infected with

tuberculosis (Cua and Tato, 2010). In the skin DETCs (Cho et al.,

2010), a recently identified dermal-resident gd T cell subset (Cai

et al., 2011; Gray et al., 2011; Sumaria et al., 2011) as well as

skin-homing Vg9Vd2 T cells (Laggner et al., 2011) produce IL-

17A. As to which is the primary source probably depends on

the triggering pathogen. Dermal gd T cells are motile, able to

proliferate in situ and orchestrate the immune surveillance

program by recruiting neutrophils and promoting CD4+ T cell

expansion (Sumaria et al., 2011), and thus link innate and adap-

tive immunity.
Skin as the Site for Immune-Mediated Inflammatory
Pathologies
A critical task for skin is to ensure that active defense and tolero-

genic and/or regulatory mechanisms are in place to maintain the

homeostatic balance between appropriate beneficial immune

response and unnecessary immune responses to self-antigens,

harmless microorganisms, and environmental chemicals.

Skin DCs and regulatory T (Treg) cells play a critical role in

orchestrating extrinsic mechanisms of peripheral tolerance.

Murine CD207+CD103+ DDCs are able to mediate T cell toler-

ance, possibly in the context of their cross-presentation (or

rather ‘‘cross-tolerance’’) capability by which they present exog-

enous self-antigens in the steady state to induce unresponsive-

ness of self-reactive CD8+ T cells (Lutz and Kurts, 2009). In

humans, the majority of circulatory CD4+CD25hiFoxp3+ Treg

cells bear skin-homing receptors (Hirahara et al., 2006) and

make up 10% of the resident T cells in normal skin. Accordingly,

lack of skin-homing molecules CD103, CCR4, and P- and E-se-

lectin ligands severely affects the migration and/or retention of

Treg cells within the skin and results in impaired pathogen

clearance and skin-specific autoimmunity (Campbell and

Koch, 2011). Moreover, Treg cells prevent unnecessary immune

responses to harmless antigens applied onto the skin and control

the magnitude of the inflammatory reaction (Cavani, 2008).

A break of self-tolerance and failure of regulatory mechanisms

may contribute to the development of immune-mediated in-

flammatory skin diseases such as ACD and psoriasis. Special

emphasis will be given to psoriasis because of the recent prog-

ressmade in understanding its complex pathogenesis as a result

of the success of targeted biologic therapies.
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Allergic Contact Dermatitis
ACD is a typical delayed-type hypersensitivity (DTH) reaction to

a sensitizer agent, characterized by two distinct phases. The

sensitization, or induction, phase occurs at the first contact of

skin with a strong hapten able to form complexes with host

proteins and trigger activation of the innate immune system,

similar to ICD. However, in ACD this leads to the generation of

hapten-specific T cells in LNs and their migration back to the

skin. Re-exposure of sensitized individuals with the same hapten

results in the elicitation phase of ACD. Hapten-specific T cells

are activated in skin and mediate adaptive immunity responsible

for the cutaneous lesions. This inflammatory reaction persists for

only a few days and rapidly resolves thanks to downregulatory

mechanisms. Because only a minority of exposed individuals

develop ACD, genetic predisposition is likely to play a role;

however, data so far are inconclusive and genome-wide associ-

ation studies (GWASs) are still not available. TLRs and the inflam-

masome mediate the initial innate inflammation in murine

contact hypersensitivity (CHS) (Martin et al., 2011), the experi-

mental model of ACD, with TLR4 identified as the receptor for

nickel in a recent study (Schmidt et al., 2010). Identification of

which skin DC subset is responsible for initiating the hapten-

induced adaptive response has been the subject of extensive

work (Kaplan, 2010; Romani et al., 2010). In keeping with the

‘‘LC paradigm,’’ epidermal LCs are traditionally considered the

initiators of CHS. This concept was first challenged by classical

depletion experiments, showing enhanced CHS in the absence

of LCs (Grabbe et al., 1995). Later, inducible or constitutive LC

ablation in transgenic mice did not abrogate but rather resulted

in CHS of similar (Kissenpfennig et al., 2005) or even enhanced

(Kaplan et al., 2005) magnitude, depending on the ablation

strategy used. Finally, CD207+CD103+ DDCs are found to induce

CHS reactions in vivo and to compensate for LC absence

(Bursch et al., 2007). Recently, functional redundancy of LCs

and CD207+CD103+ DDCs has been proposed, depending on

hapten accessibility. In the presence of a high concentration of

hapten, which makes it accessible to both epidermal LCs and

CD207+CD103+ DDCs, the latter compensate for the absence

of LCs, although LCs are necessary to induce CHS in the pres-

ence of lower hapten doses (Honda et al., 2010; Noordegraaf

et al., 2010). However, mice lacking the transcription factor

Batf-3, and therefore lacking CD103+CD11b� DCs in skin,

develop a normal CHS response (Edelson et al., 2010). A tolero-

genic role for LCs in damping CHS reactions has also been

postulated with possible mechanisms involving interaction with

cognate T cells and production of IL-10 to inhibit expansion of

hapten-specific T effector cells (Igyarto et al., 2009; Kaplan,

2010). Therefore, further studies are required to address the rela-

tive contribution of different DC subsets to CHS.

Both CHSmodels and studies on nickel ACD individuals show

that hapten-specific CD8+ T cells are the main effector cells of

CHS with CD4+ T cells mainly playing a regulatory role. KC-

targeted cytotoxicity, enhanced by the combined release of

IFN-g and IL-17A (Pennino et al., 2010), is a key pathogenic

mechanism by which CD8+ T cells mediate disease. Resolution

of ACD relies on a number of regulatory mechanisms, including

apoptosis of effector T lymphocytes, release of immunosup-

pressive cytokines (IL-10 and TGF-b), and induction of Treg cells

(Cavani, 2008). Defective regulatory function of Treg cells corre-
late with the development of ACD to nickel, suggesting their

critical role in dampening T cell activation at the site of hapten

application in allergic individuals.

Psoriasis
Psoriasis is a chronic immune-mediated inflammatory skin

disease characterized by highly inflamed and sharply demar-

cated scaly plaques (Nestle et al., 2009b). Histological features

consist of marked epidermal hyperplasia with dysregulated KC

differentiation, prominent inflammatory infiltrate, and increased

vascularization. A combination of environmental (streptococcal

pharyngitis, stress, skin trauma, and certain drugs) and genetic

(gene variants conferring disease susceptibility) factors trigger

the immuno-histological changes seen in the skin. Human

leukocyte antigen-C (HLA-C) within the MHC and at least 23

more genes, mainly belonging the IL-23-Th17 axis, the NF-kB

pathway, and the epidermal differentiation complex (EDC), are

identified to date as conferring susceptibility to psoriasis (Nair

et al., 2009; Strange et al., 2010). Researchers have long

debated whether psoriasis is an epidermal or an immune-

mediated disease, torn between the most prominent epidermal

changes and the unexpected efficacy of serendipitously admin-

istered immunosuppressive agents. Evidence, ranging from

the presence of clonally expanding T cells in the lesions to the

clinical benefit obtained with specific anti-T cell therapies to

humanizedmousemodels relying on T cells for disease develop-

ment, consistently points toward T cells as critical effectors.

Analogous to other autoimmune-mediated pathologies, psori-

asis has long been considered a Th1 cell-mediated disease.

However, insights from targeted therapies, combined with

genetic and experimental data, recently identify a critical role

for the IL-23-Th17 axis (Di Cesare et al., 2009). It is increasingly

more apparent that a pathogenic crosstalk between innate and

adaptive cells underpins the dysregulated immune response

leading to the aberrant epidermal proliferation.

The extraordinary success of biologic drugs targeting TNF as

well as IL-12 and IL-23 has dramatically changed patient care.

TNF-neutralizing agents used for psoriasis therapy are etaner-

cept, a human TNF receptor Fc fusion protein, and two TNF

monoclonal antibodies, infliximab and adalimumab. Cellular

and genomic analysis of etanercept-treated patients shows that

TNF blockade downregulates both innate and adaptive genes

(Gottlieb et al., 2005; Zaba et al., 2007). Patients rapidly downmo-

dulate innate cell-derived and Th17 cell-driving genes, such as

IL12B, IL23A, and IL1B as well as Th17 cytokines. Th1 cytokines

arealso reducedbut late indisease resolution (Zabaet al., 2009c).

Ustekinumab, a fully human monoclonal antibody directed

against the common p40 subunit shared by IL-12 and IL-23, is

also highly effective in psoriasis, showing superior efficacy to

anti-TNF therapy in a head-to-head trial (Griffiths et al., 2010).

Insights gleaned from clinical studies confirm genetic and

experimental data. We and others have shown, by GWAS, that

several genes of the IL-23 pathway, including IL23R, IL12B,

and IL23A, are associated with psoriasis (Capon et al., 2007;

Cargill et al., 2007; Nair et al., 2009). Moreover, we and others

have recently provided a functional explanation of how the

psoriasis-associated IL23R R381Q gene variant confers pro-

tection against Th17 cell-mediated immuno-pathologies by

impairing IL-23-induced Th17 cell responses (Di Meglio et al.,
Immunity 35, December 23, 2011 ª2011 Elsevier Inc. 863



Figure 2. Immunopathogenesis of Psoriasis
The combination of environmental factors with psoriasis-susceptibility genes triggers an orchestrated cascade of pathogenic events leading to disease initiation
and plaque formation. In the initiation phase, proinflammatory crosstalk between injured or stressed keratinocytes (KCs), releasing self-nucleic acids and LL-37,
recruited plasmacytoid dendritic cells (pDCs) producing IFN-a, activated dermal DCs (DDCs), and inflammatory DDCs (iDDCs), the latter producing IL-23, TNF,
and nitric oxide radicals (NO$), promoting the activation of skin-resident and newly recruited T cells that lead to plaque formation. IL-23 stimulates T helper 17
(Th17) and T cytotoxic 17 (Tc17) cells, expressing cutaneous leukocyte antigen (CLA), CCR6, and CCR4, plus very late antigen-1 (VLA-1) in the epidermis, to
release IL-17A, IL-17F, IL-22, and IFN-g. IFN-g further activates DDCs. IL-17A and IL-17F acts on KCs promoting production of T cells and neutrophil-attracting
chemokines (CXCL1,3,8-11;CCL17-20) and antimicrobial peptides (AMPs): S100 proteins and LL-37. CCL20 favors the recruitment of more Th17 cells. IL-22,
also produced by Th1 cells, expressing CXCR3 and skin-homing marker CLA, and Th22 and Tc22 cells, expressing CCR6, CCR10, and CLA, induces epidermal
hyperplasia by impairing KC terminal differentiation. Recruited unconventional Vg9Vd2 T cells, expressing CLA and CCR6, are activated by pDCs-derived IFN-a
and release further proinflammatory cytokines (IL-17A, IFN-g, TNF) as well as neutrophils (Neut) and Th1 cell-attracting chemokines (CCL3-5). Infiltrating Neut,
mast cells, and macrophages (M) contribute to the proinflammatory environment producing cytokines (IL-17A, TNF), AMPs (S100 proteins, LL-37), and che-
mokines. Crosstalk between keratinocytes producing IL-1, TNF and transforming growth factor beta (TGF-b), and fibroblasts, which in turn release keratinocyte
growth factor (KGF), epidermal growth factor (EGF), and TGF-b, and possibly Th22 cells releasing fibroblast growth factor (FGFs), contribute to tissue reorga-
nization.
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2011; Pidasheva et al., 2011; Sarin et al., 2011). Increased

amounts of IL-23 (Lee et al., 2004) and IL-23R (Tonel et al.,

2010;Wilson et al., 2007), essential for Th17 cell effector function

and pathogenicity, as well as Th17 cytokines (Wilson et al.,

2007), are detected in psoriatic skin. Both IL-23 and Th17 cyto-

kines are downregulated after therapies (Gottlieb et al., 2005).

Th17 cells and IL-17A and IFN-g or IL-17A and IL-22 double-

producing cells are also described in psoriasis patients (Eyerich

et al., 2009; Lowes et al., 2008). Moreover, IL-23 induces psori-

asis-like skin inflammation in murine models (Chan et al., 2006;

Zheng et al., 2007). Most importantly, we have recently shown
864 Immunity 35, December 23, 2011 ª2011 Elsevier Inc.
in our xenotransplantation psoriasis model that selective target-

ing of IL-23 alone is as effective as anti-TNF blockade (Tonel

et al., 2010), strongly suggesting that the beneficial effect of us-

tekinumab is due to its activity on IL-23 and not IL-12. Phase I/IIa

clinical trial results for secukinimab (Hueber et al., 2010), an IL-17

monoclonal Ab, further support the beneficial effects of targeting

the Th17 cell axis in psoriasis.

In the psoriasis model depicted in Figure 2, we integrate

known environmental and genetic factors triggering the disease

with established cellular and molecular effectors reported to

contribute to psoriasis pathogenesis.



Figure 3. A Psoriasis Interactome
Gene expression data pooled from large patient samples can be used to
generate a disease interactome. An interactome is a network of inter-
connected genes based on similar expression profiles across tissues. Differ-
entially expressed genes between normal and psoriatic skin are shown as
a heatmap. A coexpression interactome is created where nodes reflect genes
and edges the degree of coexpression. This psoriatic interactome can be used
as a disease-relevant molecular reference data set, against which differentially
expressed gene transcripts generated from experimental models are
assessed.
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The exposure to unknown environmental factors of genetically

predisposed individuals, carrying susceptibility psoriasis alleles,

triggers disease development (Nestle et al., 2009b). In the initia-

tion phase, LL-37 released by KCs, after trauma or infection,

binds to self-DNA and self-RNA fragments (Ganguly et al.,

2009; Lande et al., 2007) released by stressed or dying skin cells.

These complexes of LL-37 and self-DNA activate pDCs to

produce IFN-a (Lande et al., 2007). Keratinocyte-derived IL-1b,

IL-6, TNF, pDC-derived IFN-a, and self-RNA-LL-37 complexes

can all activate DDCs. DDCs migrate to the skin-draining LNs

to present as-yet-unknown antigen (either of self or of microbial

origin) to naive T cells and promote their differentiation into Th17

and Tc17 cells (Zaba et al., 2009a) as well as Th1 and Th22 cells.

Skin-homing Th17 and Tc17 cells, expressing CLA, CCR4, and

CCR6, migrate via lymphatic and blood vessels into psoriatic

dermis, attracted by keratinocyte-derived CCL20 and CCL17.

Moreover, inflammatory DCs produce IL-23A, nitric oxide (NO)

radicals, and TNF (Zaba et al., 2009a). IL-23A activates recruited

and skin-resident Th17 and Tc17 cells to release IL-17A and

IL-17F but also IL-22 and IFN-g. IL-17A and IL-17F stimulate

KCs to produce neutrophil-recruiting chemokines and AMPs,

including LL-37 and S100 family members (Wilson et al., 2007).

Neutrophils infiltrating the epidermis and mast cells mainly in

the dermis produce more proinflammatory mediators, including

IL-17A (Lin et al., 2011), thereby contributing to the proinflamma-

tory environment. S100A7 and S100A15 are chemoattactant for

leucocytes promoting both Th1 and Th17 cell response (Wolf

et al., 2010). VLA-1-expressing cytotoxic CD8+ T cells accumu-

late in the epidermis (Conrad et al., 2007) and also produce

IL-17A. Unconventional Vg9Vd2 T cells are recruited into the

lesions via CCL20, possibly contributing to the proinflammatory

milieu by releasing AMPs, IL-17A, IFN-g, and TNF as well as

neutrophils and Th1 cell-attracting chemokines (Laggner et al.,

2011). Th1 cells and Th22 cells also infiltrate the lesion, attracted

by KC-derived chemokines and/or activated in situ by the proin-

flammatory milieu. Finally, IL-22, potentially produced by Th1,

Th17, and Th22 cells in the lesion (Eyerich et al., 2009), induces

epidermal hyperplasia (Ma et al., 2008; Zheng et al., 2007) by

impairing KC differentiation, with a possible contribution from

IL-17A. This orchestrated cascade of pathogenic events ulti-

mately leads to the formation of a psoriatic plaque characterized

by acanthosis (thickening of the skin), papillomatosis (elongation

of the epidermis into the papillary dermis), hypogranulosis (loss

of the stratum granulosum), and parakeratosis (retention of the

nucleus in the stratum corneum).

Despite knowing this sequence of events, at least 20% of

patients do not respond to anti-TNF and anti-IL-12+anti-IL-23

therapy, meaning that key pathogenic mechanisms are still ill

understood and the known mechanisms may not always apply

to every individual. As GWASs identify more psoriasis-suscepti-

bility genes, the next big challenge is not only their functional vali-

dation but also linkage to the environment. Finding the causative

link between genetic susceptibility and environmental factors

that trigger the aberrant immune response could provide addi-

tional therapeutic targets and might eventually deliver the

promise of personalized medicine.

Another useful approach to unravel the immune mechanisms

underlying psoriasis pathogenesis is to make use of systems

immunology. This involves integrating small in vivo and in vitro
data sets with in silico predictive models (Valeyev et al., 2010),

as well as deconstructing large quantities of clinical and experi-

mental data into meaningful immunology (Benoist et al., 2006).

An example of the latter approach is our use of publically avail-

able data from the Genetic Association Information Network

(GAIN) (Nair et al., 2009) to build up amolecular network of psori-

asis, by comparing gene expression profiles from psoriasis

patients against profiles from healthy controls. A molecular

network, or skin interactome, has been created by looking at

differentially expressed genes, genes linked to each other by

similar expression profiles across samples, between patients

and controls (Figure 3). Such a network can be used as a refer-

ence data set against which in-vitro- and in-vivo-derived gene

expression profiles can be compared and may ultimately help

to elucidate disease mechanisms, drug targets, and potential

biomarkers of disease and therapeutic response (Barabási

et al., 2011).

Finally, both gene-to-environment linkage and interactome

studies could be of relevance to other immune-mediated inflam-

matory disorders at barrier sites, such as Crohn’s disease, owing

to shared genetic variants, immunological pathways, and thera-

peutic targets with psoriasis.

Conclusions and Perspectives
The skin’s exceptional accessibility makes it an ideal model

system to interrogate in order to answer fundamental questions

about host immunity. This, in combination with advances in

technology, has led to considerable interest in cutaneous

research over the past few years. Recent exciting findings

have contributed to the concept of the skin as a multitasking

immune organ involved in promoting health. The advantage of

hosting commensal bacteria is being unraveled along with the
Immunity 35, December 23, 2011 ª2011 Elsevier Inc. 865



Immunity

Review
contribution that innate cells make toward the generation

of beneficial and pathogenic immune responses. The iden-

tification of several skin-resident cell subsets, each with unique

critical capabilities, expands the skin immune network and

subsequently its functions. Recent findings have already been

translated into therapeutic options in psoriasis and have

provided a useful framework to further expand upon with re-

gard to other barrier tissues. Finally we suggest the potential

of using an integrative systems analysis to combine human

data sets with experimental data sets from biological model

systems.
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