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Despite the ability of current combination anti-retroviral therapy (cART) to limit the progression of HIV-1
to AIDS, HIV-positive individuals continue to experience neuroHIV in the form of HIV-associated
neurological disorders (HAND), which can range from subtle to substantial neurocognitive impairment.
NeuroHIV may also influence substance use, abuse, and dependence in HIV-positive individuals.
Because of the nature of the virus, variables such as mental health co-morbidities make it difficult to
study the interaction between HIV and substance abuse in human populations. Several rodent models
have been developed in an attempt to study the transmission and pathogenesis of the HIV-1 virus. The
HIV-1 transgenic (HIV-1Tg) rat is a reliable model of neuroHIV because it mimics the condition of HIV-
infected patients on cART. Research using this model supports the hypothesis that the presence of
HIV-1 viral proteins in the central nervous system increases the sensitivity and susceptibility of HIV-posi-
tive individuals to substance abuse.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human immunodeficiency virus (HIV) is a lentivirus (a
member of the retrovirus family) that replicates by infecting and
destroying primarily CD4+ T cells, a subset of lymphocytes that
are essential for the normal function of the human immune sys-
tem. As viral replication increases and the number of CD4+ T cells
declines, progressive immune suppression occurs, resulting in
extreme vulnerability to disease and opportunistic infections, such
as pneumocystis pneumonia and toxoplasmic encephalitis, condi-
tions rarely seen in people with healthy immune systems. The
end stage of HIV viral progression is acquired immune deficiency
syndrome (AIDS), identified when an individual’s CD4+ cell count
falls below 200, or when complicating infections occur (Health,
2014).

Anti-retroviral drugs have been developed to prevent viral
replication, thereby stopping the virus from actively taking over
the host’s immune cells. Highly active anti-retroviral therapy
(HAART) is the most commonly used form of HIV-1 treatment.
This combination of drugs mitigates HIV-associated disease pro-
gression towards AIDS by reducing viral replication, resulting in a
persistent, low-level infection. Advances in HAART have led to
the current standard of care, more commonly referred to as
combination anti-retroviral therapy (cART). While this treatment
has successfully reduced the prevalence of AIDS, and HIV infection
is now primarily managed as a chronic disease (Fauci and Folkers,
2012), a new spectrum of problems has emerged as a result of the
prolonged presence of HIV-viral proteins in the central nervous
system (CNS).

Before the progression to AIDS, HIV-positive individuals can
experience neuroHIV, a collection of diseases, including neuropathy
and dementia, that impacts the nervous system. The clinical mani-
festations of neuroHIV appear in the form of HIV-associated
neurological disorders (HAND), which range from subtle neu-
rocognitive impairment in asymptomatic HIV-seropositive patients,
to more substantial neurocognitive impairment in patients treated
chronically (Schouten et al., 2011). NeuroHIV may also directly
and indirectly influence substance use, abuse, and dependence
(Chang and Connaghan, 2014), behaviors that are closely inter-
twined with HIV infection. The spread of HIV is driven partly by
injection of addictive drugs and by engaging in risky sexual behavior
as a result of being under the influence of those drugs (Strathdee and
Hallett, 2010). However, substance use plays more than a determin-
ing role in the acquisition and spread of HIV infection. Exacerbated
neurodegeneration and neurocognitive symptoms are seen in
chronic relapsing substance-abusing HIV patients compared to
non-substance-abusing HIV-infected patients (Nath et al., 2002;
Byrd et al., 2012). The interactive effects of substance abuse and
HIV infection occur because both substances of abuse and HIV-1
viral proteins target common neural systems, such as the dopami-
nergic pathway (Theodore et al., 2007). As a result, it has been
hypothesized that HIV-1 alters responsivity to psychoactive drugs
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and increases vulnerability to substance abuse (Chang and Vigorito,
2006; Chang and Connaghan, 2014). Understanding the interaction
between HIV and substance abuse is made even more complicated
by mental health co-morbidities.

1.1. HIV-associated neurocognitive disorder (HAND)

The brain is one of the first targets of HIV-1; thus, clinical
assessment of neurocognitive function is recommended for all
HIV-1 positive patients regardless of symptoms or patient risk fac-
tors for HAND (Mind Exchange Working, 2013). A presumptive
clinical diagnosis of HAND is indicated when there is evidence of
an acquired difficulty with everyday functioning as determined
by questionnaires and other screening tools (Vance et al., 2014).

Using the current nosology of HAND (Antinori et al., 2007), a
decline in everyday functioning is diagnosed as HIV-associated
mild neurocognitive disorder (MND). The incidence of MND has
increased and the prevalence has remained stable despite the
introduction of cART (Cysique et al., 2004). In contrast, the inci-
dence of HIV-associated dementia (HAD), a diagnosis applied to
patients with severe limitations in day-to-day functioning,
declined with the advent of cART (Mocroft et al., 2000). HAD is
an end-stage complication of HIV that was seen in the pre-cART
era due primarily to opportunistic infection rather than to direct
HIV-induced CNS neuroinflammation and toxicity.

Performance-based neurocognitive assessment of HIV patients
on cART revealed an increasing incidence of asymptomatic neu-
rocognitive impairment (ANI), defined as mild neurocognitive
impairment in the absence of limitations in everyday functioning
(Robertson et al., 2007). Although there are no widely agreed upon
clinical measures of daily functioning (Marcotte, 2009), ANI
appears to put the individual at risk for subsequent deficits in
day-to-day functioning (Doyle et al., 2013).

Despite extensive clinical work and research on neuroHIV, the
pathogenesis of HAND is still not well understood. Studies rooted
in cognitive psychology and cognitive neuroscience as well as
behavioral and neural plasticity are a promising approach to test
hypotheses regarding the neural mechanisms underlying HAND
(Woods et al., 2009).

1.2. NeuroHIV, substance abuse, and alterations in behavior

The acquisition and maintenance of learned behavior depends
on cognitive processes, such as attending, manipulating, and
remembering information relevant to a particular task, and adjust-
ing to the consequences of actions. However, some learned behav-
iors may transition away from reliance on cognitive processes into
an automatic habitual performance that becomes difficult to undo,
marking the loss of behavioral plasticity (Balleine and O’Doherty,
2010). Because of these connections, behavioral studies can be use-
ful in gaining insight into less explicit neurological changes.

Another complicating factor associated with HIV-1 infection is
the high prevalence of substance use and abuse among HIV-1
infected individuals (Chander et al., 2006). In addition to learning,
age, and natural environmental events such as the effects of
repeated exposure to stressors, substance abuse also often results
in neurological and behavioral changes. There is a growing consen-
sus among researchers that substance-use disorders are acquired
brain disorders which alter the individual’s response to motiva-
tionally relevant stimuli on both neurological and behavioral levels
(Kalivas and O’Brien, 2008; Lewis, 2011; Torregrossa et al., 2011).
Repeated exposure to psychoactive substances can result in a sub-
stance-induced maladaptive change in behavior that is mediated
by underlying disordered brain processes in areas of the brain that
are responsible for reward and decision making (Robinson and
Berridge, 2000; Koob, 2006; Russo et al., 2010).
As a chronic acquired brain disorder, substance-induced behav-
ioral plasticity shares characteristics with other acquired brain
injuries. For example, HIV-1, whether treated with cART or left
untreated, often results in some form of HAND. Currently, sub-
stance use among HIV positive individuals is treated as a co-mor-
bidity that confounds research on HAND and impacts negatively
on HIV treatment outcomes. A broader theoretical approach that
addresses both HAND and HIV-associated substance use/abuse as
an alteration in behavioral and neural plasticity may better inform
and enhance neuroHIV research.

Research also supports that HIV-1 infection may directly or indi-
rectly affect substance use and abuse by altering brain function
(Chang and Connaghan, 2012). Interestingly, HIV-induced neuroin-
flammation has been shown to impact similar brain regions causing
neuronal cell death and altered neurotransmission (Li et al., 2013;
Chang and Connaghan, 2014). To date, very few studies have evalu-
ated the possible causal role of HIV-1-induced neuroinflammation
on substance use and abuse (Chang and Vigorito, 2006).
2. Animal models of HIV-1

Animal models of HIV-1 can play a major role in the inves-
tigation of the pathogenesis of neuroHIV and the complex interac-
tions between HIV-1 infection and substances of abuse. The human
immunodeficiency viruses type 1 (HIV-1) and type 2 (HIV-2)
resulted from a cross-species (zoonotic) infection, with origins in
a small number of non-human primates (Gao et al., 1999). HIV
infection and replication is species-specific and only occurs in
humans and chimpanzees; the progression of HIV to AIDS only
occurs in humans. To better understand the transmission and pro-
gression of the HIV virus, researchers recognized that an animal
model of HIV-induced pathology was necessary. Thus, the problem
of species tropism needed to be circumvented, and several
approaches were implemented. We review briefly some of these
approaches before expanding upon the HIV-1 transgenic rat model.

2.1. Naturally occurring species-specific lentiviruses

One approach was to find similar lentiviruses specific to other
species that also cause profound immunodeficiencies as a result
of affinity for CD4+ T cells and macrophages, e.g., simian immuno-
deficiency virus in monkeys, bovine immunodeficiency virus in
cows, and feline immunodeficiency virus in cats (Olmsted et al.,
1989; Matthew et al., 1994; Schmitz et al., 1999). Despite the simi-
larities to HIV-1, these viruses have species-specific differences in
their gene products and their impact on the pathogenesis of dis-
ease in their unique hosts. Unfortunately, it was also costly to work
with these large animals. To better evaluate the clinical mani-
festations associated with HIV-1 infection, murine models were
developed and have proven useful in providing future directions
for understanding viral determinants of pathogenicity
(VandeWoude and Apetrei, 2006).

2.2. Expression of human HIV-1 receptors in rodent cells

A second approach was to genetically engineer rodents so that
their cells express the human version of the CD4 receptor and
the chemokine co-receptors to which HIV-1 binds to enter target
cells (Nischang et al., 2012). The envelope glycoprotein 120
(gp120) on the surface of the HIV-1 virus interacts with target cell
receptors to begin the cell entry process. Transgenic mice that
expressed the CD4 receptor and a co-receptor were successfully
produced. However, HIV-1 gp120 did not successfully bind to
CD4-expressing T cells and, therefore, the target cells were not suc-
cessfully infected (van Maanen and Sutton, 2003).
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2.3. Production of infectious chimeric viruses

The problem of viral entry restriction was overcome by making
changes in the HIV-1 virus rather than in the murine host cell. By
replacing the gp120 coding region of the HIV-1 virus with the gp80
coding region of the murine leukemia virus, the newly created chi-
meric HIV-1 clone could infect conventional mice cells, but not
human cells.

Several chimeric HIV-1 clones were developed to investigate
HIV-1 infection and to test anti-retroviral drugs (Potash et al.,
2005; Hadas et al., 2007), but these models failed to produce the
kind of neuroHIV disease progression seen in humans.

2.4. Infection and immune responses in humanized mice

Humanized mouse models first became possible with the devel-
opment of severe combined immunodeficiency (scid) mice. Lacking
T and B lymphocytes, scid mice are unable to activate a full adap-
tive immune response. These early scid mice were ‘humanized’
with either human hematopoietic stem cell transplants to form
human blood and immune cells, or with tissues from human fetal
liver and thymus (Zhang and Su, 2012). Early models of HIV-1
infection in humanized mice had several limitations in reconstitut-
ing human cells with immune function in the animal host, but
many significant advances were made. All of the immune cells
required for a human adaptive immune response in HIV-1 patho-
genesis can now be reconstituted in humanized mice (Zhang and
Su, 2012) such that HIV-1 can now establish an infection in these
models that results in CD4+ T cell depletion, a generalized immune
activation, and immunopathology that mimics HIV-1 infection in
humans (Denton and Garcia, 2011; Poluektova and Makarov,
2014).

Humanized mouse models are currently used in many lines of
investigation, including the mechanisms of immune responses,
mucosal transmission and prevention, immune activation and
pathogenesis, and anti-viral drug development. However, there
continues to be some sub-optimal human-like immune responses
in these humanized mouse models that are being addressed for
further development (Akkina, 2013).

2.5. HIV-1 transgenic (HIV-1Tg) rodent models

A different strategy was used to bypass the infectious step alto-
gether and to incorporate the HIV-1 genome directly into a murine
model so that it was expressed in many tissues. By excluding genes
essential for the production of virions, this type of model would be
non-infectious and would not require expensive high-level biosaf-
ety laboratories. This model is not useful to study the initial infec-
tion stage of HIV or the progression towards AIDs, but is suitable
for elucidating the mechanisms underlying HIV-associated disease
progression caused by the accumulation of viral gene products.

The HIV-1 transgenic (HIV-1Tg) model was developed from an
infectious clone of an integrated proviral plasmid (pNLS-3). An
overlapping fragment containing 2 of the 9 viral genes, the gag
gene at the 30 region and the pol gene at the 50 region, was deleted,
resulting in a non-infectious provirus (pEVd1443). The first animal
that was created from the non-infectious HIV-1 provirus was the
transgenic mouse. Although the HIV-1 transgenic mouse expresses
the transgene, the distribution of the transgene is atypical and HIV-
associated clinical manifestations are limited primarily to the skin
(Kopp et al., 1993).

HIV-1 transgenic mice also show inefficient tat transactivation
(Wei et al., 1998; Reid et al., 2001). The HIV-1 gene, tat, regulates
HIV gene expression by producing the Tat protein, which controls
the elongation mechanism of the transcription process and, there-
fore, ensures high levels of HIV viral protein production once
transcription is activated. It appears that, in these transgenic mice,
Tat does not effectively interact with its viral RNA target and,
therefore, fails to effectively regulate transcription (Wei et al.,
1998; Reid et al., 2001).

A much more successful HIV-1 transgenic rodent model was
created using rats. To create this model, the non-infectious pro-
virus was microinjected into a fertilized egg derived from a
Fisher/NHsd (F344) rat and a Sprague Dawley rat to produce a
female transgene founder. The transgene was incorporated into
only one copy of the two alleles of an HIV-1 transgenic animal
(they are hemizygous). Therefore, when mated with a wild type
inbred F344 rat, the offspring are either HIV-1 transgenic (HIV-
1Tg) or wild type (Tg-wild type). The HIV-1 transgene was incorpo-
rated into all cells (20–25 copies) of the HIV-1Tg rat, which results
in an overtly identifiable phenotype by the presence of opaque cat-
aracts (Reid et al., 2001). Tg-wild type littermates (commercially
available from Harlan, Inc., Indianapolis, IN) are typically used in
control comparison groups, but standard F344 rats can also be used
as non-Tg wild type controls.

The HIV-1 transgene expresses a non-replicative provirus under
its own viral promoter (i.e., a DNA sequence that activates tran-
scription). As a result, the provirus encodes for only one (env) of
the three genes (gag, pol, and env) needed to produce viral parti-
cles, plus all of the regulatory (tat, rev) and supplementary (vif,
vpr, vpu, and nef) genes (Fig. 1).

All models prior to the HIV-1Tg rodent models attempted to
produce infection in the host animal. The transgenic approach uses
a unique strategy that does not look at infection, but, instead,
focuses on the presence of viral proteins in the periphery and
CNS. Because the transgenic mouse exhibits limited viral effects,
this review focuses on characterization of the HIV-1Tg rat model
and the effects of HIV-1 viral proteins in the CNS.
2.6. Gene expression in the HIV-1Tg rat

Although there is no viral replication in the HIV-1Tg rat, viral
proteins are continually expressed throughout the animal’s life
(Peng et al., 2010; Abbondanzo and Chang, 2014). This is similar
to HIV-1-infected patients receiving cART in which viral replication
is substantially suppressed, but viral proteins continue to have an
impact (Letendre, 2011). The HIV-1 non-infectious transgene car-
ries the env gene and six supplementary genes, tat, rev, vif, vpr,
vpu, and nef. The env gene encodes for the viral glycoprotein,
gp160, which is responsible for forming the viral envelope.
Gp160 is subsequently cleaved into gp120 and gp41. Gp120 binds
to CD4+ receptors, permitting the virus to enter immune cell tar-
gets, such as macrophages and helper T cells. Tat and rev are reg-
ulatory genes that encode for two regulatory proteins essential
for the transcription process. The Rev protein is necessary to trans-
port the viral mRNA transcripts from the nucleus to the cytoplasm.

Gp120 and the other viral proteins are expressed in the blood,
lymph nodes, and spleen of the HIV-1Tg rat and in the CNS (Reid
et al., 2001; Peng et al., 2010). Higher levels of gp120, Tat, Nef,
and Vif are expressed in the spleen of young HIV-1Tg rats (2–3
mo old) compared to older (10–11 mo old) HIV-1Tg rats. The drop
in viral protein expression in the spleen of older rats is most likely
due to the loss of T lymphocytes and increased apoptosis (Reid
et al., 2001, 2004; Yadav et al., 2006) rather than to an overall
decrease in viral protein expression since viral protein expression
increases with age in some areas of the CNS (Peng et al., 2010).
3. The HIV-1Tg rat as a model of neuroHIV

The HIV-1Tg rat is a non-infectious model and, thus, it is not
suitable for studies investigating viral progression or replication,



Fig. 1. Structural organization of the genes of the HIV-1 genome and provirus with functional deletion of gag and pol genes. The protein products encoded by the retroviral
genes support the HIV-1 life cycle and contribute to the pathological conditions associated with HIV-1 infection. Although the functional deletion of the gag and pol genes
renders the HIV-1Tg rat non-infectious, the production of the regulatory and accessory gene protein products results in neuroinflammation in the CNS (Royal et al., 2007; Rao
et al., 2011; Homji et al., 2012a; Royal et al., 2012).
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or for studying the impact of cART on viral replication. This model
is, however, ideal for investigating the efficacy of therapeutic treat-
ments which reduce neurological dysfunction in HIV-infected
individuals in the post-cART era. The use of this rodent model for
investigating neurologically related issues has been well
established (Royal et al., 2007, 2012; Kass and Chang, 2010;
Moran et al., 2012). Moran et al. (2012, 2013) used this model to
test alterations in sensorimotor gating and behavior resulting from
HIV-1 infection, including changes in dopamine (DA) function
(Moran et al., 2012, 2013). Royal et al. (2007) and Royal et al.
(2012) used the HIV-1Tg rat to test the effects of vitamin A
deficiency on HIV-1-associated neuroinflammation and mu opioid
receptor (MOR) expression as well as peripheral and CNS immune
responses in HIV infection (Royal et al., 2007, 2012). Rao et al.
(2011) found that HIV-1Tg rats exhibit neurological markers for
neuroinflammation that are associated with cognitive impairment,
and they identified neuroinflammation as a target for treatment of
such impairment in HIV-positive populations (Rao et al., 2011).
Taken together, these studies suggest that HIV-induced neuroin-
flammation results in alterations in neurological function and
may be responsible for the many behavioral alterations reported
in HIV-1Tg rats as well as other animal models of HIV.

From a very early age and throughout life, HIV-1Tg rats gain less
body weight than control animals (Peng et al., 2010). This differ-
ence in body weight gain, however, is not due to reduced motiva-
tion to eat, or to illness, but appears to be due, in part, to reduced
build-up of lean body mass (skeletal muscle) rather than fat mass
(Pruznak et al., 2008). The HIV-1Tg rat is generally healthy, show-
ing no evidence of anhedonia or severe behavioral deficits during
the first year of life, a condition that seems to mimic asymptomatic
HIV-positive patients on cART. The organ pathologies eventually
take their toll, however, and eventual organ failure leads to an ear-
lier death in the second year of life of the HIV-1Tg rats compared to
controls (Peng et al., 2010; Moran et al., 2014). The general good
health of the HIV-1Tg rat in the first year of life provides the oppor-
tunity to investigate the neurocognitive deficits that may result
from prolonged exposure to the viral proteins. These studies would
not be possible in a sick animal experiencing the confounding
effects of illness and wasting.

The CNS is an early target of HIV-1. Shortly following infection,
the virus infiltrates the brain through infected monocyte-derived
macrophages, the so-called ‘Trojan-horse’ mechanism (Cavrois
et al., 2008). Once in the brain, the virus causes the release of
cytokines, which recruit more monocytic cells from the systemic
immune system causing progressive neuroinflammation as resi-
dent perivascular macrophages and microglia are also infected.
HIV-1 viral proteins, such as gp120 and Tat, also facilitate brain
inflammation by impairing the structure of the blood–brain barrier
[BBB] (Resnick et al., 1988). Studies with transgenic mice con-
firmed that soluble gp120 (Toneatto et al., 1999) and Tat
(Avraham et al., 2004) change the integrity of the BBB. Neurons
are not infected by HIV-1, but the expression of cell-surface recep-
tors (e.g., CCR5 and CXCR4 chemokine receptors, NMDAR, LRP, and
Da transporter) makes them vulnerable to the effects of viral pro-
teins as well as to the increased levels of pro-inflammatory cytoki-
nes and other immune cell products (e.g., nitric oxide and
arachidonic acid). The neuroinflammation caused by these HIV-1-
induced events results in neuropathology and the development
of HAND (Rao et al., 2014).

Despite the absence of infection, the HIV-1 transgene produces
many of the same neuroinflammatory events in HIV-1Tg rats that
occur during human HIV-1 infection. This is not the case in mice
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because the same transgene is expressed only in the periphery,
mostly in skin and muscle tissue (Dickie et al., 1991). HIV-1 protein
mRNA is detectable in the brain of HIV-1Tg rats as young as 2–
3 mos of age and increases or decreases with age, depending on
the specific brain area (Peng et al., 2010), in a pattern consistent
with autopsy results in humans (Wiley et al., 1999). HIV is associ-
ated with volumetric loss of specific brain areas, especially sub-
cortical, in HIV-1 seropositive patients.

The presence of viral proteins in the HIV-1Tg rat suggests that it
is the viral products that mediate these brain changes rather than
any possible toxic effects of anti-retroviral drugs. This hypothesis is
supported by a recent report that volumetric brain changes in HIV
patients occur independent of the presence or absence of anti-ret-
roviral treatment (Ances et al., 2012). The reason for changes in
selective brain areas is unknown, but may be due to brain-region
specific differences in penetration by HIV-1-infected monocytes
and differential susceptibility to the toxic effects of viral proteins.
The HIV-1Tg rat model can be instrumental in elucidating the role
of the persistent presence of viral proteins in brain changes and the
subsequent disruption in psychological and behavioral processes
independent of infection.

3.1. Immunodeficiency in the HIV-1Tg rat

Soon after the creation of the HIV-1Tg rat, several studies were
conducted in order to characterize immune changes in this animal.
Reid et al. (2001) determined that, in addition to developing symp-
toms of HIV such as skin lesions and wasting, HIV-1Tg rats also
express viral transcripts in their lymph nodes, thymus, liver,
spleen, and kidneys (Reid et al., 2001). Further, these animals
express gp120 in B and T cells, both of which are critical in immu-
nity (Reid et al., 2001, 2004). Similar to HIV-1 infected patients, the
HIV-1Tg rat shows a reduction in the overall number of CD4+ cells,
increased susceptibility of T cells to apoptosis, and alterations in T
effector functions (Reid et al., 2004). In a subsequent study, Yadav
et al. (2006) found that reduction of CD4+ cells results in immune
dysfunction via dysregulation of T helper 1 (Th1) effector cells
(Yadav et al., 2006).

The body’s defense mechanism is mediated by early non-specific
innate immunity, followed by specific adaptive immunity. The prin-
ciple cells of the innate immune system are monocytes and mono-
cyte-derived macrophages, which are targets of HIV-1. The HIV-1
viral products impact on macrophages in the HIV-1Tg rat, and viral
gp120 is expressed and shed into the circulating blood (Reid et al.,
2001). Macrophages contain pattern recognition receptors (PRR)
that serve as a second line of innate defense by patrolling the physi-
cal barriers of the body, such as the mucosal epithelia of the lung.
The alveolar macrophages in the HIV-1Tg rat exhibit reduced phago-
cytosis and decreased expression of the hematopoietic cytokine,
GM-CSFRb, which may contribute to the pulmonary hypertension
(Joshi et al., 2008) as well as to the pneumocystis pneumonia infec-
tion seen in the HIV-1Tg rat model (Ateh et al., 2014).

Macrophages also play an important role in humoral (B lym-
phocytes) and cell-mediated (T lymphocytes) responses of adap-
tive immunity. There is considerable evidence that adaptive
immune responses are abnormal in the HIV-1Tg rat. The prolifera-
tion and differentiation of effector (i.e., activated) T lymphocytes,
CD4+ T helper (Th) cells, and CD8+ cytolytic T lymphocytes (CTL),
are reduced in both young and mature rats, and older rats also
show deficits in CD4+ and CD8+ memory cells that mediate rapid
responses to subsequent antigens (Reid et al., 2004).

CD4+ Th cells are classified into subtypes depending on the type
of cytokines produced. Th1 cells participate primarily in cell-
mediated immunity and inflammation by releasing interferon
gamma (IFN-c), interleukin-2 (IL-2), and tumor necrosis factor-al-
pha (TNF-a), whereas Th2 cells participate primarily in humoral
immunity (i.e., antibody mediated; anti-inflammatory), and release
IL-4, IL-5, IL-6, and IL-10. HIV-1Tg rats have deficits in IFN-c produc-
tion by peripheral blood Th1 cells due, in part, to defects in antigen-
specific signaling and increased activation-induced apoptosis of
CD4+ T lymphocytes (Reid et al., 2004; Yadav et al., 2006).

Macrophages and dendritic cells bridge the gap between innate
and adaptive immunity by serving as antigen presenting cells
(APC). After detecting an evolutionarily conserved microbial patho-
gen with toll-like receptors (TLRs), macrophages and dendritic cells
capture and digest the pathogen and load the detected antigen
onto their cell surface Class II Major Histocompatibility Complex
(MHC II), then migrate to lymph nodes to present the antigen to
naïve CD4+ T cells. Stimulation of the TLRs also induces the release
of cytokines (e.g., IL-12) that favor the production of Th1 cells over
Th2 cells. The dendritic cells in the HIV-1Tg rat exhibit a defective
response to TLR-stimulation that impacts the subsequent adaptive
immune response (Yadav et al., 2009).

The inflammatory response is one of the principle mechanisms
used by the innate immune system to defend against invading
pathogens. The purpose of the early inflammatory response by
macrophages is to eliminate invading microbes by recruiting
leukocytes to the site of infection and to initiate a balance of
pro- and anti-inflammatory cytokines. In the HIV-1Tg rat, the
TLR-stimulated immune response to the bacterial endotoxin,
lipopolysaccharide (LPS), is altered (Chang et al., 2007a,b). LPS fails
to initiate the adhesion of leukocytes to the endothelial cell walls,
the first step by which leukocytes migrate through the endothe-
lium of post-capillary venules to the site of infection (Chang
et al., 2007b). Blood plasma levels of TNF-a and IL1-b are greater
in the HIV-1Tg rat compared to control animals (Chang et al.,
2007a), and the balance between pro- and anti-inflammatory
cytokines and chemokines is substantially altered in response to
an endotoxin challenge in the HIV-1Tg rat (Homji et al., 2012a).
Monocytes and macrophages are also the principle cells responsi-
ble for endotoxin tolerance (Cavaillon and Adib-Conquy, 2006).
Stimulation by LPS causes a substantially greater IFN-c, TNF-a,
and IL1-b response in HIV-1Tg rats, even after induction of endo-
toxin tolerance (Homji et al., 2012a).

The spleen is an important immune organ of the lymphatic sys-
tem. The level of TNF-a is also greater in splenic monocytes and
macrophages in the HIV-1Tg rat following an LPS challenge
(Royal et al., 2012). Baseline IFN-c levels in the spleen (Homji
et al., 2012a) and in splenocytes following T cell CD3/CD28 recep-
tor stimulation are lower in HIV-1Tg rats compared to controls
(Royal et al., 2012).

HIV-associated diseases begin with an acute HIV-1 infection
that is temporarily controlled by the innate immune response, only
to ultimately lose the battle when the adaptive immune system
fails. AIDS occurs as a result of massive depletion of CD4+ T cells.
In the HIV-1Tg rat, however, the viral genes are a part of the gen-
ome of all the cells and so the viral proteins are not identified as
foreign. Thus, early mobilization of the innate immune system is
absent in the HIV-1Tg rat.

Immunodeficiencies are prevalent in the HIV-1Tg rat and are
most likely due to the chronic presence of viral proteins. Viral pro-
teins, such as gp120 and Tat, produce inflammation by inducing
cytokine production in the periphery and CNS (D’Aversa et al.,
2005). The cytokines and viral proteins enter the brain by means
of blood-independent viral transport and appear to have toxic
effects on neurons (Banks et al., 2006). Although infection results
in an adaptive inflammatory response, inflammation can also
emerge independent of infection, and chronic inflammation can
lead to neurodegenerative disorders (Viviani et al., 2014). As noted
by Rao et al., 2011, HIV-1Tg rats show significantly higher mRNA
and protein levels of the inflammatory cytokines, IL-1b and TNF-
a, as well as a decrease in the neuroprotective brain-derived
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neurotrophic factor (BDNF), among other changes in regulatory
factors and signaling (Rao et al., 2011). Similarly, Royal et al.
(2012) determined that pro-inflammatory cytokines, IFN-c, TNF-
a, and IL-1b, are up-regulated in the HIV-1Tg rat, which is, in part,
responsible for the neurodegeneration seen in HIV-infected
individuals (Royal et al., 2012).

Because the immune deficiencies and direct expression of HIV-1
viral proteins in several organs can cause damage, the HIV-1Tg rat is
a useful model for studying HIV-1 in the era of cART (Peng et al.,
2010), and, in particular, for investigating the pro-inflammatory
and toxic effects of viral proteins in the absence of viral infection
(Joshi and Guidot, 2011). However, the success of the HIV-1Tg rat
as a model for HIV-associated pathology is not consistent.
Substantial progress has been made using this model to study the
effects of the HIV-1 transgene transcripts on cardiovascular function
(Kline et al., 2008; Otis et al., 2008; Hag et al., 2009) and on lung (Fan
et al., 2011, 2013) and liver function (Joshi and Guidot, 2011), but
the HIV-1Tg rat has been less useful in mimicking HIV-1-associated
skin pathology (Cedeno-Laurent et al., 2011). The skin pathology in
the HIV-1Tg rats that is reported by laboratories that maintain HIV-
1Tg rats other than those commercially available from Harlan, Inc.
has been rarely observed by our laboratory or by others (Peng
et al., 2010; Moran et al., 2014; Nemeth et al., 2014).

With the prolonged life expectancy of individuals with HIV-1 in
the post-cART era, research into the effects of the HIV-1 virus over
time is essential. Both cART patients and the HIV-1Tg rat experience
age-related immune-response alterations (Reid et al., 2001), T-cell
abnormalities (Reid et al., 2004), kidney failure (Ray et al., 2003),
changes in behavior, and neuropathology (Reid et al., 2001).
HIV-1Tg rats exhibit learning deficits even before they develop
symptomatic signs of HIV infection (Vigorito et al., 2007; LaShomb
et al., 2009), which is consistent with the cognitive impairment
reported in HIV-1 patients receiving cART, and suggests that, despite
the lack of viral replication, the persistent presence of HIV-1 viral
proteins continues to affect brain and immune cells, causing
neurological and immunological damage (Rao et al., 2011).

Recent evidence indicates that both the baseline and LPS-chal-
lenged immunophenotype of the HIV-1Tg rat continue to change
with advancing age (Abbondanzo and Chang, 2014). Treatment
with LPS mimics bacterial infection and allows researchers to iden-
tify changes in immune responses during the aging process. As a
result of aging, HIV-1Tg rats exhibit several immunological
changes not seen in control rats (Abbondanzo and Chang, 2014).
Following an LPS challenge, HIV-1Tg rats exhibit a significant
decrease in the percentage of T cells and an increase in T helper
cells, neutrophils, and monocytes compared to F344 control rats.
There is also a pronounced increase in the pro-inflammatory
cytokines, IL-6 and TNF-a, and the chemokine, KC/GRO, in older
HIV-1Tg rats. These findings suggest that HIV-1 initiates and/or
impacts aging-associated immune alterations.

Early studies aimed at characterizing immunity in the HIV-1Tg
rat were conducted using HIV-1Tg rats from the University of
Maryland. More recently, Abbondanzo and Chang (2014) compared
immune factors between HIV-1Tg rats and F344 control rats pur-
chased from Harlan Laboratories (Abbondanzo and Chang, 2014).
Their analyses determined that, whereas F344 rats show a relatively
stable number of T cells from 2 to 16 mos of age, HIV-1Tg rats exhibit
a decline in T cells starting around 6 mos. By 16 mos, HIV-1Tg rats
have a significantly lower number of T cells compared to healthy
controls. This is similar to what was reported by Reid et al. (2004).
Abbondanzo and Chang (2014) also found that T helper cells remain
elevated in HIV-1Tg rats compared to F344 rats (Abbondanzo and
Chang, 2014). The elevation in T helper cell levels reaches signifi-
cance at 6 mos of age and remains significantly higher until
18 mos. This may be related to the dysregulation in Th1 effector cells
reported in 2006 by Yadav et al. (2006). HIV-1Tg rats provided by
Harlan Laboratories also exhibit significantly elevated T cytotoxic
cells at 6, 12, and 18 mos of age, significantly elevated neutrophils
at 18 mos, and significantly elevated monocytes at 2, 6, and
12 mos (Abbondanzo and Chang, 2014). Immunity in HIV-1Tg rats
was further dysregulated by alterations in the pro-inflammatory
cytokines, IL-6 and TNF-a, and an increase in the chemokine, KC/
GRO (Abbondanzo and Chang, 2014).

While animals from both the University of Maryland and Harlan
Laboratories appear to have comparable immunity, Reid et al.
(2001) reported that animals from the University of Maryland
begin to exhibit clinical manifestations of AIDS by 5–9 mos of
age (Reid et al., 2001). These symptoms include weight loss,
neurological abnormalities, respiratory difficultly, and skin lesions.
Aside from behavioral abnormalities, these symptoms are not seen
until later in HIV-1Tg rats (e.g., 18 mos or older) purchased from
Harlan Laboratories (Moran et al., 2012, 2013; Vigorito et al.,
2013; Moran et al., 2014).

3.2. Neuroinflammation in the HIV-1Tg rat

In the past, the brain was described as ‘disconnected’ from the
systemic immune system and as having an ‘immune privileged’ sta-
tus in order to evade immune recognition and be protected from
potential damage from excessive inflammation. The brain parench-
yma is indeed an immunosuppressive microenvironment compared
to the supporting non-parenchymal structures (ventricles, choroid
plexus, meninges, and circumventricular organs) and peripheral
organs, but the blood brain barrier permits a dynamic interaction
between the brain and the immune system (Banks, 2015) and once
inflammation occurs, this privileged state is severely compromised
(Galea et al., 2007). Because of the development of neuroimmunol-
ogy, immunopharmacology, immunophysiology, psychoneuroim-
munology, and neuroimmunopharmacology in the last three to
four decades, the bidirectional communication between the brain
and the immune system has been a focus of considerable research.
Both immune and neuronal products co-exist in lymphoid and neu-
ronal tissues (Tomaszewska and Przekop, 1997; Aller et al., 2001).
Various immune cells have been shown to produce hormones and
neuropeptides, including ACTH (Ottaviani et al., 1999), endorphins
(Morch and Pedersen, 1995), enkephalin (Wybran, 1985; Jankovic
and Radulovic, 1992), prolactin (Gala, 1991; Yu-Lee, 1997, 2002),
growth hormone (Gala, 1991; Meazza et al., 2004), catecholamines
(Elenkov, 2007), and acetylcholine (Hosoi and Nomura, 2004), and
the release of various neurotransmitters in immune system organs
is triggered by nerve impulses from the CNS to peripheral tissue
(Qiu et al., 1996; Pacheco et al., 2010).

In contrast, cytokines, such as IL-6, normally produced by
immune cells, have been shown to be synthesized by and secreted
from anterior pituitary cells when stimulated by LPS (Fuchs et al.,
2013). Receptors for cytokines, hormones, neurotransmitters, and
neuropeptides are found in both immune and brain cells and
include opionergic, dopaminergic, cholinergic, and cannabinoid
receptors. The chemokine, CCR5, is elevated in HIV-1 infected
patients (Giovannetti et al., 1999) and has been identified as a tar-
get for gene therapies aimed at reducing the deleterious effects of
the HIV-1 virus (Nazari and Joshi, 2008; Nazari et al., 2008).
However, CCR5 deficiency has also been linked to modifications
in the dopaminergic reward pathway (Choi et al., 2012).

Deregulation of immune mediators in the brain, including, but
not limited to, increased cytokine exposure during brain develop-
ment, acts as a ‘‘vulnerability’’ factor for later brain pathology,
leading to behavior disorders. For example, there is strong evi-
dence correlating early CNS infection with the development of
schizophrenia (Suvisaari et al., 2003). Infections early in life can
alter cytokine expression and glial activation in response to a sub-
sequent immune challenge in adulthood (Bland et al., 2010), and a
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neonatal Escherichia coli infection has been shown to impair mem-
ory formation in adulthood in the presence of a subsequent
immune challenge with LPS (Bilbo and Schwarz, 2009).

A number of studies have shown that injection of LPS leads to
deregulation of cytokine and chemokine expression and secretion
in the CNS, which is enhanced in the morphine tolerant state
(Staikos et al., 2008) or in the persistent presence of HIV-1 viral
proteins (Chen et al., 2005; Homji et al., 2012a). Viral infections,
including HIV infection, can lead to CNS inflammation, which sub-
sequently causes alterations in neurotransmitter-dependent path-
ways associated with compulsive behavior (Lindl et al., 2010).

Evidence from studies employing different experimental strate-
gies strongly support the hypothesis that viral proteins produce
toxic effects that cause neuroinflammation and neurological dys-
function. The viral protein, gp120, binds to the chemokine recep-
tor, CXCR4, an HIV-1 co-receptor involved in AIDS, that is
expressed in most cells of the CNS, including neurons, to guide
brain development (Tran and Miller, 2003). Gp120 stimulates
CXCR4 and activates pro-apoptotic pathways in human neuroblas-
toma cells (Bardi et al., 2006). Gp120 also induces apoptosis
through its interaction with the CCR5 receptor (Catani et al.,
2000). These neurotoxic effects of gp120 on neurons appear to be
mediated through activation of a p38-MAPK signaling cascade
(Kaul and Lipton, 1999).

Neuronal injury and apoptosis also result from gp120 stim-
ulation of the N-methyl-D-aspartate receptor (NMDAR). Excessive
stimulation of NMDAR causes a large influx of Ca2+ and subsequent
generation of free radicals (e.g., NO) and reactive oxygen species
during the process of necrosis or neural apoptosis (Lannuzel
et al., 1995; Rao et al., 2014). The role of gp120 in inducing oxida-
tive stress is also supported by the demonstration that genes
involved in an antioxidant response are expressed in human astro-
cyte cultures treated with gp120 (Reddy et al., 2012).

In addition to its apoptotic effects, gp120 induces activation of
the inflammatory cytokines, IL-1b, TNF-a, IL-6, IL-8, and CCL5, in
rats and humans (Ronaldson and Bendayan, 2006; Shah and
Kumar, 2010; Shah et al., 2011a,b). The impact of gp120 on brain
function was demonstrated by experiments using the exogenous
administration of gp120 to rodents and the expression of shedable
gp120 in transgenic mice. Toggas et al. (1994) developed transgenic
mice that contain astrocytes that express gp120 under the control of
the promoter of glial fibrillary acidic protein and that develop CNS
damage consistent with HIV-1-associated neuropathology (Toggas
et al., 1994). Those transgenic mice exhibit changes in neural func-
tion in brain structures [e.g., neocortex and hippocampus (HIP)]
associated with HIV-1 brain deficits (Krucker et al., 1998; Maung
et al., 2012) and age-related changes in species-typical behaviors,
cognitive performance, and responses to substances of abuse
(D’Hooge et al., 1999; Roberts et al., 2010; Kesby et al., 2012;
Henry et al., 2013). Exogenous gp120 also disrupts rodent perfor-
mance of learning and memory tasks (Glowa et al., 1992).

The supplementary HIV-1 proteins also produce neurotoxicity.
Similar to gp120, the viral protein, Tat, can lead to apoptosis by
excessively stimulating NMDA receptors, and by interacting with
the low-density lipoprotein (LDL) receptor gene family expressed
in neurons and astrocytes (Liu et al., 2000; Rao et al., 2014).
Changes in neuronal circuitry also occur in response to the pres-
ence of Tat (Hargus and Thayer, 2013; Shin and Thayer, 2013), as
do deficits in learning and memory following exogenous Tat (Li
et al., 2004) as well as transgenically expressed Tat (Carey et al.,
2012; Fitting et al., 2013).

Other viral proteins, such as Vpr and Vpu, have neurotoxic
effects, produce inflammatory cytokines (Patel et al., 2000; Trillo-
Pazos et al., 2000), and affect CNS function and behavior, including
memory performance of standard learning tasks (Acharjee et al.,
2010; Chompre et al., 2012; Torres and Noel, 2014).
Chang and Connaghan (2012) proposed the possibility that a
positive feedback interaction exists between opioid receptor-de-
pendent pathways and HIV progression and that this interaction
is, at least partly, moderated by HIV-induced neuroinflammation
(Chang and Connaghan, 2012).

The hypothesis that decline in cognitive performance is at least
partially caused by neuroinflammation is also supported by vari-
ous clinical investigations. For example, one study looked at factors
associated with cognitive decline following ischemic stroke and
found that, among the 231 patients, 83 patients showed signs of
impairment within 48 h of the stroke event; plasma levels of IL-6
and TNF-a were significantly higher in these individuals compared
with those who did not exhibit such clinical deterioration (Vila
et al., 2000). While more research is needed to determine the
relationship between inflammation and cognitive dysfunction in
autism spectrum disorder (ASD), patients with ASD were found
to have significantly elevated TNF-a levels (Zimmerman et al.,
2005). In a longitudinal study of cognitive impairment which
spanned 20 yrs, IL-6 and TNF-a levels were collected from 1947
participants. Analyses revealed that those with high levels of both
pro-inflammatory agents throughout the duration of the study, or
increasing levels of IL-6 throughout the study, were at greater risk
of cognitive impairment (Wichmann et al., 2014). Similar results
have been reported in patients with type 2 diabetic encephalopa-
thy (Diaz-Gerevini et al., 2014) and with Alzheimer’s disease
(Bettcher and Kramer, 2014).

4. Behavioral alterations in the HIV-1Tg rat

The modulating influence of immune function on behavioral
and neural plasticity is well established (Yirmiya and Goshen,
2011). Thus a better understanding of the impact of HIV-1 infection
on behavioral and neural plasticity can provide insights into neu-
rodegenerative and neuropsychiatric diseases in general.

Animal models have been invaluable in evaluating the causal
interactions between substance use, learning and memory, and
the impact of HIV-induced brain injury. Such models allow for
greater control in isolating HIV-1-induced changes in brain plastic-
ity from co-morbidities that cause non-HIV-associated brain injury
and in the detection of possible neurodegenerative disorders associ-
ated with aging in HIV patients. As an animal model of HIV-1-in-
duced neuroinflammation, the HIV-1Tg rat shows alterations in
both experience- and substance-induced behavioral plasticity.

Although HIV-1Tg rats have consistently lower body weight
than control rats, they gain weight at the same rate as controls,
indicating a normal motivation for and consumption of food
(Peng et al., 2010; Midde et al., 2011; Moran et al., 2013;
Nemeth et al., 2014), and they exhibit no anhedonia to sucrose
solutions (Peng et al., 2010; Nemeth et al., 2014).

In a standard running wheel, HIV-1Tg rats run as much, or more,
than controls during daily 20 min sessions (Chang and Vigorito,
2006) and do not differ from controls in swim speeds during a water
maze task (Vigorito et al., 2007; Lashomb et al., 2009). This suggests
that adult transgenic rats with the gag-pol deleted HIV-1 provirus
exhibit good motor competence, consistent motivated behaviors,
and no illness behavior that could confound assessments of learning
and cognition. The observed differences in motivated behaviors sug-
gest that the persistent presence of HIV-1 proteins alters the neural
circuitry and the resulting behavioral phenotype. Although rodents
engage in species-typical exploratory behavior, like humans, they
utilize cognitive information such as memory of locations recently
visited to guide their behavior. The altered exploratory behavior in
HIV-1Tg rats could reflect similar deficits in cognition (Repunte-
Canonigo et al., 2014) that underlies the decline in everyday func-
tioning that defines HIV-associated mild neurocognitive disorder
in human HIV patients.
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When tested using an open-field test, a common assessment of
general locomotor activity, unconditioned motivated behavior,
and behavioral plasticity (Walsh and Cummins, 1976), HIV-1Tg rats
demonstrate robust locomotor activity, but somewhat less overall
activity than F344 controls (June et al., 2009; Midde et al., 2011;
Moran et al., 2013; Nemeth et al., 2014). Similar changes in open
field behavior have also been noted in transgenic mice expressing
gp120 (D’Hooge et al., 1999). Locomotor activity in an open field
partly reflects the strong motivation to explore unfamiliar environ-
ments. There is some evidence that unconditioned exploratory
strategies are altered in the HIV-1Tg rat. For example, in a circular
open field, HIV-1Tg rats spent significantly more time in the periph-
ery when tested repeatedly at 6, 7, and 11 mos of age (Moran et al.,
2013). In a more structured test environment, such as a T-maze, rats
have a very strong tendency to alternate arm choices as they explore
across trials. This spontaneous alternation behavior is significantly
reduced in HIV-1Tg rats (Repunte-Canonigo et al., 2014).

The lower locomotor activity and altered exploratory behavior
of the HIV-1Tg rats is not caused by reduced motor competence
because, in a rotarod test of balance and coordination, HIV-1Tg rats
perform as well as control animals during initial training;
although, in more challenging tests (faster rod rotation rates), per-
formance is poorer than controls (June et al., 2009). These results
suggest good basic motor competence, but deficits in more com-
plex tasks that may involve motor planning, a neurocognitive def-
icit characteristic of neuroHIV. It is possible that the reduction in
locomotor activity seen in HIV-1Tg rats is, in part, due to neuroin-
flammation caused by circulating HIV-1 viral proteins. Similar
reductions in locomotor activity have been noted in mice treated
with LPS, which is known to induce peripheral cytokine production
and, consequently, dysregulated behavior (Kozak et al., 1994).

Habituation, a fundamental form of learning that involves the
progressive decline in a response to a repeated stimulus, results
from synaptic plasticity rather than sensory adaptation to the stimu-
lus or motor fatigue (Rankin et al., 2009). Functionally, habituation
allows an individual to ignore stimuli that have no motivational sig-
nificance, allowing attentional resources to be directed towards
other potentially meaningful stimuli and to reduce (and eventually
discontinue) unnecessary responses to repetitive stimuli.

The behavioral characteristics of short- and long-term habitua-
tion (Rankin et al., 2009) involve different neural and molecular
mechanisms (Typlt et al., 2013). Although most studies of habitua-
tion focus on reflexive behaviors, such as orienting and startle
responses, even motivated behaviors are modulated by habituation
processes. For example, voluntary wheel running behavior and
operant responding in rodents are modulated by habituation and
sensitization processes (Aoyama and McSweeney, 2001;
McSweeney and Murphy, 2009). Reduced habituation is correlated
with several neurodegenerative disorders, including chronic
schizophrenia and autism spectrum disorder. Such disturbances in
habituation reflect cognitive deficits (e.g., pre-attentional and atten-
tional processes) that contribute to the neurocognitive symptoms of
the correlated neurodegenerative disorders (Akdag et al., 2003).

Few studies have examined habituation in HIV-1Tg rats. We
have observed in HIV-1Tg rats more persistent wheel running
behavior during daily 30 min tests than control rats, indicating that
HIV-1Tg rats show less habituation of a motivated behavior within
a running session (Chang and Vigorito, 2006). HIV-1Tg rats also
show less habituation of locomotor activity in the periphery of a
circular open field compared to controls (Moran et al., 2013), but
do not demonstrate any change in the rate of short-term (intra-
session) habituation of a reflexive startle response to a repetitive
auditory stimulus (Moran et al., 2014). More studies on the
habituation of reflexive and motivated behaviors in HIV-1Tg rats
are needed before any conclusions about the effects of the trans-
gene on habituation can be formed.
Deficits in executive function are commonly observed in human
neurological disorders, such as Alzheimer’s, Parkinson’s, and
neuroHIV. Symptoms of disturbances in executive function are often
first noted by patients in the form of concerns about subjective
experiences, which suggests a decline in cognition and sensorimotor
capacity. However, not all patients are aware of their cognitive
decline until more severe symptoms occur. It is possible to detect
deficits in executive function pre-symptomatically in neuroHIV.

Animal models have been important tools for the investigation
of disorders of executive function in that these models allow for a
focus on the experimental manipulation of the frontal-striatal cir-
cuit, which is essential for executive function in humans
(Chudasama, 2011) and which is believed to be disrupted by HIV
infection (Chang et al., 2002). Animals models can also help to
break down the broader area of executive function into specific
psychological constructs that support and mediate behavioral plas-
ticity and that can be objectively measured in animals and humans
(Chudasama, 2011). The data from the few studies targeting speci-
fic psychological constructs of executive function in HIV-1Tg rats
are encouraging.

Prepulse inhibition (PPI) is an operational measure of sensori-
motor gating. In this paradigm, the magnitude of a defensive star-
tle reflex (usually to a loud auditory stimulus) is inhibited by the
presentation of a weaker ‘prepulse’ prior to the startle-eliciting
stimulus. PPI, therefore, reflects the ability to isolate salient and
potentially relevant stimuli from the flood of trivial, irrelevant
stimuli. Deficits in PPI suggest a loss of sensorimotor gating and/
or impaired behavioral plasticity in the form of reduced response
inhibition (Braff et al., 2001).

Moran et al. (2013) assessed PPI with both auditory and visual
cues in HIV-1Tg female rats from 2 to 8 mos of age. The magnitude
of PPI is influenced by the interval between the prepulse stimulus
and a subsequent startle-eliciting stimulus. Although HIV-1Tg and
control rats both exhibited PPI, the HIV-1Tg rats were less sensitive
to the manipulation of the interval between the stimuli at all ages
except the youngest, suggesting a disturbance in sensorimotor gat-
ing and/or plasticity of defensive startle behavior. Mice exposed to
LPS-induced pro-inflammatory cytokines in utero show similar
alterations in sensorimotor gating, which indicates that neuroin-
flammation is likely involved in this change in behavior (Tsakok
et al., 2012).

Similar alterations in the sensitivity of PPI to interval manip-
ulation have been demonstrated in adult female rats following
Tat and gp120 injection into the HIP (Fitting et al., 2006a,b). PPI
deficits have also been reported in gp120 transgenic mice,
although these impairments appear to differ between males and
females (Henry et al., 2014). Interestingly, a recent study demon-
strated PPI deficits in HIV-positive individuals with a diagnosis of
HAND, but not in cognitively asymptomatic HIV-positive partici-
pants (Minassian et al., 2013). These results, together with the fact
that the PPI is reduced following treatment with dopaminergic
agonists such as amphetamines, suggest that alterations in PPI
may be caused by viral protein-induced changes in the dopaminer-
gic system of the HIV-1Tg rat (Moran et al., 2013).

PPI and sensorimotor gating have also been extensively applied
to translational studies on cognitive fragmentation in schizophre-
nia (Swerdlow and Geyer, 1998).

The construct of working memory in humans involves three
principal subsystems, including a ‘central executive’, which is pos-
tulated to be flexible in its control and regulation of cognitive pro-
cesses (Baddeley, 1996). Whereas working memory in rodents
differs from that of humans in that it is less explicit and is typically
conceptualized as a transient mental representation or short-term
memory for a stimulus, object, location, or event, rodent models
are still able to shed light on HIV-induced alterations in basic
short-term working memory.
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Another approach to assessing working memory is to take
advantage of a rodent’s natural, species-typical tendency to spon-
taneously choose alternative locations when exploring and search-
ing in mazes. To choose to enter an alternate arm of a maze during
a test session, it is necessary for the animal to maintain the loca-
tion of its prior response in working memory. Thus, spontaneous
alternation is supported by the capacity of working memory. In a
recent study, HIV-1Tg rats showed a marked decrease in sponta-
neous alternation in a T-maze compared to control animals, indi-
cating disruption in working memory (Repunte-Canonigo et al.,
2014). Moreover, this deficit was correlated with the expression
of HIV-1 proteins in the HIP as well as gene expression that is con-
sistent with neuroHIV. The HIP is one of the brain regions shown to
be a target of HIV-induced neuroinflammation, which suggests
that, similar to the aforementioned alterations in behavior, deficits
in working memory in the HIV-1Tg rat may also be related to
increased inflammation in the brain (Li et al., 2013).

Moran et al. (2014) further explored the impact of HIV on
executive functioning by looking at performance on signal detec-
tion, discrimination learning, and reversal learning tasks (Moran
et al., 2014). They found that the HIV-1Tg rats displayed impair-
ment in attention, flexibility, and inhibition as evidenced by a
lower number of hits, misses, and correct rejections, but a com-
parable number of false alarms as controls in a signal detection
task, slower acquisition of criterion and response rate in discrim-
ination learning, and difficulty learning a novel stimulus–response
contingency in reversal learning. These findings are consistent with
the cognitive decline seen in HIV-positive individuals, suggesting
that the persistent presence of HIV-1 in the CNS results in various
cognitive impairments.

Even in the era of cART, HIV-1-positive individuals still experi-
ence neurocognitive impairment, including deficits in attention,
memory, psychomotor functioning, and behavioral flexibility
associated with subcortical and frontal-striatal brain damage
(Becker et al., 2011). The Morris water maze is a procedure used
for investigating learning, memory, and behavioral flexibility in
rodents. Although the task is simple – the animals must locate a
hidden platform to escape water – there are several strategies that
rats can use to search for and remember the location of the plat-
form for an efficient escape. Rats appear to have a preference for
the use of visual landmark cues when available (Hodges, 1996),
but they can learn the task even in the dark (Rossier et al., 2000).
Because HIV-1Tg rats are born with opaque cataracts, we con-
ducted several studies investigating the performance of HIV-1Tg
rats in a modified water maze that minimizes visual cues. The tests
were conducted under dim red light, and non-visual cues were
added (olfactory and tactile intra-maze cues and an auditory
extra-maze cue) to encourage the use of non-visual landmark cues
(an allocentric strategy) rather than an egocentric swim strategy
that did not rely on any available cues. HIV-1Tg rats consistently
exhibit a deficit in the acquisition of the water maze task, either
when the start location is varied from day-to-day (Vigorito et al.,
2007, 2013), or when the start location is not varied (Lashomb
et al., 2009).

After acquisition of the task, when the platform is removed on
probe tests, the HIV-1Tg rats behave similar to control rats by per-
sistently searching in the former platform location. Thus, once the
task is learned, the HIV-1Tg rats remember the location of the plat-
form and use an allocentric strategy to locate it. These findings
indicate that HIV-1Tg rats experience deficits in psychomotor func-
tioning and cognition that retards acquisition of the water maze
task. The behavioral inflexibility that is characteristic of
neuroHIV is also evident in the HIV-1Tg rats. When the location
of the platform is changed after initial acquisition, the HIV-1Tg rats
show very clear deficits in adjusting their behavior to locate the
newly located platform (Lashomb et al., 2009).
4.1. Substance-induced behavioral alterations in the HIV-1Tg rat

Patients on cART continue to experience neurological impair-
ment, especially in the HIP and temporal cortex, regions associated
with memory, spatial recognition, motivation, and movement
(Brew et al., 2009). Thus, HIV-induced inflammation in the CNS
may be the key mechanism underlying the use of addictive
substances.

In addition to changes in unconditioned motivated behavior,
psychomotor functioning, attention, and learning, HIV-1Tg rats
also exhibit more profound substance-induced behavioral plastic-
ity as evidenced by changes in behavior in response to substances
of abuse, such as methamphetamine (METH), morphine, alcohol,
and nicotine. Research investigating the neurological mechanisms
underlying substance abuse and addiction has strongly supported
the belief that chronic use of addictive substances is linked to neu-
ral plasticity or abnormalities in neurotransmitter-dependent
pathways, such as the mesolimbic dopaminergic reward pathway
and the endogenous opioid system [EOS] (Herz, 1998). Moreover
the delicate balance that exists between central immune cells
(microglia & astrocytes), peripheral immune cells (T cells and
macrophages) and neural pathways in modulating normal behav-
ioral and neural plasticity (Yirmiya and Goshen, 2011) may be dis-
rupted by HIV-1 viral products, facilitating substance-induced
behavioral and neural plasticity. Neuroinflammation, for example,
also leads to alterations in neurotransmitter-dependent pathways
associated with addictive behavior (Trigo et al., 2010; Chang and
Connaghan, 2012; Homji et al., 2012a; Li et al., 2013).
Neuroinflammation can cause neuronal damage leading to dereg-
ulation of the dopaminergic system, and inflammatory cytokines
have been shown to alter the expression of the MOR, an important
component of the endogenous opioid system (EOS). Recently, the
EOS was shown to interact with another reward system, the
endogenous cannabinoid system [ECS] (Fattore et al., 2004).

4.1.1. Methamphetamine
Repeated exposure to METH causes behavioral changes, such as

increased locomotor activity (rearing) and stereotypic behavior
(repeated head movements) in rats. Such changes are caused by
behavioral sensitization, which indicates neuronal adaptation
associated with substance addiction and dependence (Robinson
and Berridge, 2008). METH increases the number of rearings and
head movements in both HIV-1Tg and F344 rats; however, HIV-
1Tg rats exhibit significantly more extreme behavioral sensitiza-
tion as evidenced by a significantly higher number of rearings
and head movements compared to F344 rats treated with the same
dose of METH (Liu et al., 2009).

4.1.2. Morphine
Similar changes in behavior have been reported in HIV-1Tg rats

treated with morphine. HIV-1Tg rats exhibit significantly longer
tail flick latencies after a significantly lower dose of morphine than
control animals (Chang and Vigorito, 2006). These findings indicate
that there is a greater anti-nociceptive effect in HIV-1Tg rats from
the same dosage of morphine as normal animals and that HIV-1Tg
rats may be more susceptible to the potentially rewarding effects
of opioids such as morphine.

Conditioned place preference (CPP) is a paradigm used in
behavioral pharmacology research to determine the rewarding
properties of substances of abuse. In the initial pre-conditioning
stage, animals are tested for baseline place preference, which is
determined by the amount of time spent in one of two distinctly
different chambers in the CPP box. Subsequently, the chamber that
is not preferred is paired with the substance under investigation
over several trials in the conditioning stage, and place preference
is re-evaluated. If the substance produces a reward, animals will
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spend more time in the chamber that has been paired with the
substance. When animals continue to spend more time in the sub-
stance-paired chamber, despite several unpaired exposures during
the extinction stage, drug seeking behavior is indicated.

When CPP was used to compare reward and drug seeking in
HIV-1Tg and F344 rats, all rats administered morphine showed a
preference for the morphine-paired chamber (Homji et al.,
2012b). However, F344 rats receiving morphine showed preference
extinction by Day 7, whereas HIV-1Tg rats continued to show place
preference until Day 14 of testing, suggesting that the rewarding
effects of morphine are more profound in HIV-1Tg rats and that
HIV-1Tg rats are more likely to partake in drug seeking behavior
despite exposure to un-reinforced drug cues.

Ruzicka et al. (1996) and Vidal et al. (1998) were among the first
to link inflammatory cytokines to the effects of MOR ligands such
as morphine (Ruzicka et al., 1996; Chang et al., 1998). This discov-
ery opened up the field of neuroimmunology by demonstrating
that molecules that are mainly linked to the immune system can
also interact and modulate expression of neurotransmitter recep-
tors directly related to the effects of addictive substances. Not only
do cytokines and chemokines mediate effects of MOR ligands, but
these ligands also interact with the function and binding of cytoki-
nes and chemokines.

There have been many studies which report that morphine use
increases the progression of HIV-1 infection to AIDS through its
interaction with cytokines, chemokines, and their receptors
(Hahn et al., 2010; El-Hage et al., 2011). The relationship between
morphine and cytokine/chemokine receptors has been demon-
strated in vivo as well as in vitro. Mahajan et al. (2002) suggested
that morphine acts to both inhibit and enhance gene expression
of certain chemokines in a concentration-dependent manner
(Mahajan et al., 2002). Morphine induces heterogeneous desensiti-
zation by inhibiting the migration of chemokines to CXCR1 and
CXCR2 receptors via phosphorylation of these receptors (Grimm
et al., 1998).

Conversely, morphine tends to up-regulate the expression of
chemokine receptors, CCR5, CCR3, and CXCR4 (Mahajan et al.,
2002; Rogers and Peterson, 2003). This is significant for the HIV-
1 infected population because CCR5 and CXCR4, along with CCR3
and CXCR2, while primary receptors for particular chemokines,
are also major co-receptors for the HIV-1 virus (Horuk et al.,
1997). These receptors are located throughout the CNS on micro-
glia, astrocytes, neurons, and vascular endothelial cells (Horuk
et al., 1997).

Since morphine inhibits the production and gene expression of
IL-8 and the expression of macrophage inflammatory protein-1b
(MIP-1b) in astroglial cells (Mahajan et al., 2002), it is likely that
the use of morphine and other MOR ligands is involved in HIV-1
viral progression. Both IL-8 and MIP-1b act to suppress HIV-1
infection by blocking HIV-1 receptors, and, thus, by inhibiting the
proper function of IL-8 and MIP-1b, morphine enhances the
possibility of HIV-1 binding to these receptors.

Even at basal levels, MOR expression is significantly higher in
HIV-1Tg rats. LPS was used to induce IL-1b, IL-10, and TNF-a, all
of which have been shown to modulate MOR expression (Borner
et al., 2004; Kraus, 2009). TNF-a and IL-1b levels were increased
7- and 38-fold, respectively, by LPS in HIV-1Tg rats compared to
control rats (Chang et al., 2007a). MOR expression was also exam-
ined in response to LPS treatment. LPS induced MOR expression in
both HIV-1Tg and F344 rats, but the increase in expression was sig-
nificantly higher in HIV-1Tg rats (Chang et al., 2007a).

In animal models, chronic exposure to morphine causes desen-
sitization of the HPA axis (Chang et al., 1996a,b; House et al., 2001)
and inhibits the release of the final product of the HPA axis, gluco-
corticoid. Inhibition of this endogenous anti-inflammatory mole-
cule in individuals addicted to opioids could be one of the factors
responsible for the high susceptibility of these individuals to
opportunistic infections (Ocasio et al., 2004).

Morphine increases the expression of chemokine receptors
(Mahajan et al., 2002; Rogers and Peterson, 2003), which are major
co-receptors for the HIV-1 virus (Horuk et al., 1997), thereby
increasing the susceptibility of HIV-infected individuals to oppor-
tunistic infections. Chang and Connaghan (2012) proposed the
possibility that a positive feedback interaction exists between the
MOR and HIV progression, and that this interaction is, at least
partly, moderated by HIV-induced neuroinflammation (Chang
and Connaghan, 2012).

Using tail-flick latency as a measure of the anti-nociceptive
effects of morphine, Chang and Vigorito (2006) demonstrated that
tail flick latencies are significantly longer in the HIV-1Tg rat follow-
ing treatment with morphine, and the ED50 of morphine is lower
in HIV-1Tg rats than in control rats (Vigorito and Chang, 2006),
indicating that the HIV-1Tg rat is more prone to the anti-nocicep-
tive and possibly the rewarding properties of opioids. One of the
possible molecular mechanisms underlying the increase in tail-
flick latency is the increased expression of the MOR in the HIV-
1Tg rat (Vigorito and Chang, 2006; Chang et al., 2007a).

When CPP testing was used to more directly evaluate the
rewarding properties of morphine, HIV-1Tg rats continue to show
a preference for the morphine-paired compartment for up to
14 day, whereas this preference extinguished over a 7-day period
in F344 control animals. These data suggest that HIV-1Tg rats are
more likely to partake in drug seeking behavior despite repeated
exposure to unreinforced drug cues (Chang and Connaghan, 2012).

4.1.3. Alcohol
Changes in behavior in the HIV-1Tg rat have been noted in the

context of alcohol-related locomotor activity. In one study, loco-
motor activity was assessed in adult HIV-1Tg and F344 control rats
administered 20% ethanol (EtOH) intragastrically (i.g.) twice daily
for three consecutive days (Sarkar et al., 2013). Twenty-four hours
following the last EtOH treatment, the rats were placed in an open-
field chamber and locomotor activity was assessed based on the
distance traveled for 25 min in the open field chamber.
Locomotor activity was decreased in HIV-1Tg rats given water
compared to F344 control rats given water, and was significantly
decreased in both the HIV-1Tg and F344 rats treated with EtOH
compared to the water-controls. The decrease in locomotor activity
was significantly more profound in the HIV-1Tg rats compared to
the F344 rats, suggesting that the presence of HIV-1 viral proteins
may enhance the effects of EtOH.

In addition to behavioral changes, Clary et al. (2011) found that,
in HIV-1Tg rats, chronic alcohol consumption accentuates skeletal
muscle atrophy and decreases expression of anabolic factors, CT-1
and CNTF, indicaing that alterations in these signaling mechanisms
may be involved in the loss of muscle mass associated with alco-
holism, especially in HIV-infected populations (Clary et al., 2011).

Excess alcohol consumption also impacts lung liquid clearance
and alveolar epithelial paracellular permeability in HIV-1Tg rats,
which may be related to the decrease in expression of nuclear fac-
tor-erythroid 2-related factor 2 (Nrf2) seen in the animals (Fan
et al., 2011). In addition, while treatment with gp120 alone results
in barrier dysfunction in the lung epithelium, co-treatment with
alcohol exacerbates this effect (Fan et al., 2011).

4.1.4. Nicotine
Acetylcholine has been associated with learning and behavioral

plasticity as well as reward (Crespo et al., 2006). Further, nicotine,
a nicotinic acetylcholine receptor (nAChRs) agonist, produces
neuroprotective effects in cognitive disorders such as dementia
and depression (Picciotto et al., 2002; Picciotto and Zoli, 2002). A
toll-like receptor pathway that plays a key role in innate immunity
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and in the production of pro-inflammatory cytokines has been
shown to be modulated by nicotine through a7nAChRs (Cui
et al., 2012, 2013).

Given that nicotine can ameliorate HIV-induced deficits in
event-related potentials (Gonzalez-Lira et al., 2006) that are associ-
ated with cognition, it is possible that cholinergic receptor function
is altered by the HIV-1 virus. Deep-sequencing analysis of RNA
transcripts revealed differentially altered gene expression in corti-
cal, HIP, and STR brain regions in the HIV-1Tg rat compared to con-
trol (Cao et al., 2013). When treated with nicotine, approximately
20% of the altered gene expression in each brain region is restored
(Li et al., 2013). The most profound restoration was observed in the
Wnt/b catenin and ephrin B signaling pathways in the prefrontal
cortex (PFC), cAMP responsive element-binding protein signaling
and glutathione metabolism pathways in the HIP, and the tricar-
boxylic acid cycle and calcium signaling pathway in the STR.
These data suggest that cholinergic-modulators may be useful in
buffering the neurological deficits resulting from HIV-1 infection.

Using RNA deep sequencing, Li et al. (2013) sequenced 72 RNA
samples from the PFC, HIP, and STR of HIV-1Tg and F344 control
rats (Li et al., 2013). Following deep-sequencing analysis of 50-bp
paired-end reads of RNA-Seq, Bowtie/Tophat/Cufflinks suites were
used to align these reads against the Rn4 rat reference genome and
to quantify the relative abundance of each transcript. Statistical
and bioinformatics analyses of each brain region between the
two strains revealed that immune response-related pathways are
altered in the HIV-1Tg rat, with brain region differences, indicating
that the persistent presence of HIV viral proteins causes inflamma-
tion in the brain of the HIV-1Tg rat (Li et al., 2013).

In addition, analysis of serum cytokine levels revealed that,
while LPS induces a significant increase in TNF-a and IL-1b in both
F344 and HIV-1Tg rats, the increase in these cytokines is signifi-
cantly greater in the HIV-1Tg rats (Rao et al., 2011; Chang and
Connaghan, 2012).

Li et al. (2013) compared PFC, HIP, and striatial (STR) gene
expression in HIV-1Tg rats using deep-sequencing analysis of
RNA transcripts in brain regions related to learning and memory
(Li et al., 2013). They found that there are differences in neural
pathways related to immune responses, neuronal health, and
neurotransmission in HIV-1Tg rats (Li et al., 2013). In a subsequent
study, RNA deep-sequencing analysis was also used to determine
whether the altered gene expression observed in the HIV-1Tg rats
could be corrected by nicotine. Cao et al. (2013) found that nicotine
restores expression of about 20% of the altered genes in each brain
region and modulates distinct pathways in different brain regions
(Cao et al., 2013). The most significantly restored pathways are the
Wnt/b catenin signaling and ephrin B signaling pathways in the
PFC, cAMP-responsive element-binding protein (CREB) signaling
and glutathione metabolism pathways in the HIP, and the tricar-
boxylic acid (TCA) cycle and calcium signaling pathway in the
STR. These findings suggest that cholinergic modulators, such as
nicotine, can have beneficial effects on HIV-1-induced neurologic
deficits.

5. Conclusions

Several animal models have been developed in recent years in
an attempt to characterize and study the HIV-1 virus. Despite the
absence of infection, the presence of viral proteins in the HIV-
1Tg rat causes immune deficiencies and neuroinflammation simi-
lar to those seen in HIV-1-infected humans. HIV-induced neuroin-
flammation causes neurocognitive deficits that emerge early in
humans. HIV-1Tg rats show similar deficits as evidenced by a
decline in their performance on tasks that require some basic cog-
nitive capacities and behavioral flexibility. The data suggest that
the presence of viral protein-induced neuroinflammation alters
behavior and causes HIV-1-induced neurological deficits, which
may be among the causes for the increased incidence of substance
abuse in HIV-positive individuals.
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