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Abstract

Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus

(PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other

transcription factors at glutamine–glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm

of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease

itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS,

KKKRD, spanning amino acids 125–129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its

precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using

transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are

capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells.

Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be

detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with

the nuclear fraction by 3–4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the

entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host

cell transcription shut-off.

D 2004 Elsevier Inc. All rights reserved.
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Introduction and Semler, 1990; Leong et al., 2003). The viral proteases
Poliovirus (PV) is the prototype agent of a large group of

medically important viruses (picornaviruses), which include

those inducing infectious hepatitis (hepatitis A), common

cold (rhinoviruses), encephalitis, and myocarditis (coxsack-

ieviruses). The single-stranded, plus polarity RNA genome

of PV is translated into one large polyprotein which is co-

translationally processed by virus-encoded proteases 2A,

3C, and 3CD to generate the mature viral structural and non-

structural proteins (Krausslich and Wimmer, 1988; Lawson
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have been extensively studied and found to be very specific

in polyprotein cleavage; 3C and 3CD cleave the polyprotein

at gln–gly (Q–G) pair while the 2A cleaves only at tyr–gly

(Y–G) bond. The proteases do not cleave every potential

cleavage site within the polyprotein; other determinants

such as accessibility and the context of the cleavage site

are also important.

Host cell transcription mediated by all three RNA

polymerases is rapidly inhibited after infection of mam-

malian cells with PV (Dasgupta et al., 2003; Kaariainen

and Ranki, 1984). RNA polymerase I (pol I), the enzyme

responsible for ribosomal RNA (rRNA) synthesis, is

inhibited first after infection of HeLa cells with PV.

Cellular mRNA synthesis by RNA polymerase II (pol II)

is inhibited next, followed by shut-off of RNA polymerase

III (pol III) that catalyzes synthesis of tRNA and 5S rRNA.

Previous studies from our laboratory have identified four
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sequence-specific DNA binding pol II transcription factors

(TF) that are either cleaved or degraded in PV-infected

cells: the TATA-binding protein (TBP), the cyclic AMP-

responsive element binding protein (CREB), the Octamer-

binding factor (Oct-1), and the transcriptional activator p53

(Clark and Dasgupta, 1990; Clark et al., 1993; Weidman et

al., 2001; Yalamanchili et al., 1996, 1997a,b). Similarly,

the pol III factor, TFIIIC, which interacts with pol III

promoters, as well as the 110-kDa TBP-associated factor

(TAF 110), a subunit of the pol I factor SL-1 are also

cleaved in PV-infected cells (Clark et al., 1991; Rubinstein

and Dasgupta, 1989; Rubinstein et al., 1992; and data not

shown). Both genetic and biochemical studies have shown

that the virus-encoded protease 3C cleaves the transcrip-

tion factors at glutamine–glycine sites and is directly

responsible for host cell transcription shut-off (Dasgupta

et al., 2003). The 3C protease of foot-and-mouth disease

virus (FMDV), another member of the Picornavirus family,

has been reported to induce proteolytic cleavage of host

cell histone H3 (Falk et al., 1990). The significance of

histone H3 cleavage by FMDV 3C, however, is not

known.

PV replicates in the cytoplasm of infected cells. To shut-

off host cell transcription, one or more viral gene products

must enter the nucleus of the infected host cell. Because PV-

encoded 3C protease has been shown to be directly respon-

sible for transcription shut-off, it is likely that 3C must enter

the nucleus of infected cells as it is, or in the form of a

precursor to bring about transcription shut-off. Previous

studies have reported detection of PV proteins including

the protease precursor 3CD in the nuclei of infected cells

(Bienz et al., 1982; Fernandez, 1982). The viral protease-

polymerase precursor 3CD (Harris et al., 1992) is a protease

itself, which efficiently cleaves the capsid precursor P1 to

VP0, VP3, and VP1 (Parsley et al., 1999; Ypma-Wong et al.,

1988) and is also able to auto-catalyze the formation of 3C

and 3D polypeptides (Wimmer et al., 1993). These findings

suggested to us that 3CD could interact with transcription

factors in the nuclei of infected cells. A computer search did

not reveal the presence of a nuclear localization signal

(NLS) in 3C, although the relatively small size (f20

kDa) of 3C may allow diffusion of 3C into the nucleus at

sufficiently high concentrations of this protease. Amino acid

sequence examination of 3D, however, identified a potential

single basic type NLS, KKKRD (Dingwall and Laskey,

1991), between amino acids 125 and 129 within this

polypeptide. This sequence is well conserved among enter-

oviruses and is present within the finger sub-domain of PV

3D (Hansen et al., 1997). Previous studies have shown that

triple alanine substitutions within the KKKRD sequence in

the PV infectious cDNA clone were lethal (Diamond and

Kirkegaard, 1994). Thus, it is possible to envision a scenario

in which 3C enters the nucleus in the form of its precursor,

3CD, which then generates 3C by auto-proteolysis leading

to cleavage of transcription factors. Using enhanced green

fluorescent protein (EGFP) fusion polypeptides, we demon-
strate here that both 3CD and 3D are capable of entering the

nucleus in PV-infected cells. However, both polypeptides

remain in the cytoplasm in uninfected HeLa cells. Triple

alanine substitution of the first three or last three amino

acids of the NLS sequence prevents nuclear entry of 3D/

3CD in PV-infected cells. Using nuclear and cytoplasmic

fractions isolated from PV-infected HeLa cells, we demon-

strate that 3CD can be detected in the nuclear fraction as

early as 2 h postinfection. These results suggest that (i) both

the NLS and PV infection are required for the entry of 3CD

into the nucleus, and (ii) this 3C-containing precursor may

play an important role in host cell transcription shut-off by

delivering 3C protease inside the nucleus.
Results

Expression of EGFP-fusion polypeptides

To investigate nuclear entry of the viral protease 3C, we

prepared the following EGFP fusion constructs using the

pEGFP-N1 vector: p3C-EGFP, p3D-EGFP, p3CD-EGFP,

and pm3CD-EGFP (Fig. 1A). The m3CD-EGFP construct

contained a mutation at the Q–G site of the 3C–3D junction

to prevent auto-proteolysis of the 3CD polypeptide into

mature 3C and 3D. HeLa cells were transfected with these

plasmids and cell-free extracts were prepared from trans-

fected cells after 24 h and examined for synthesis of EGFP-

fusion proteins by immunoblotting using an antibody to

EGFP. As can be seen in Fig. 1B, EGFP was highly

expressed in cells transfected with the pEGFP (lane 2).

There was fairly good expression of 3C-EGFP (f45 kDa)

in cells transfected with p3C-EGFP; however, significant

amount of free EGFP was also detected in the immunoblot

(lane 3). This could be due to proteolysis of 3C-EGFP. Both

the f77-kDa 3D-EGFP (lane 4) and f97-kDa 3CD-EGFP

(lane 5) were also expressed and appeared to be stable under

the conditions used for expression. The expression of

m3CD-EGFP was comparable to that of 3CD-EGFP (lane

6). The Western analysis detected a band having an approx-

imate molecular weight of 55 kDa that migrated between

3D-EGFP and 3C-EGFP (indicated by an arrowhead).

Although the precise identity of the 55-kDa polypeptide is

not known, we assume it contains part of the 3D sequence

linked to EGFP.

PV infection results in nuclear entry of 3D and 3CD

The majority of the PV-encoded proteins are present in

the cytoplasm of infected cell. To examine whether PV

infection leads to nucleo-cytoplasmic relocalization of the

protease precursor 3CD, HeLa cells were first transfected

with the recombinant pEGFP-fusion plasmids and then

either mock-infected or infected with PV. Initially, a time

course of infection revealed nuclear entry of significant

amounts of 3CD-EGFP between 3 and 4 h of infection



Fig. 1. Expression of EGFP-fusion polypeptides. (A) Schematic representation of the constructs used for expression of p3CD-EGFP, p3D-EGFP, and p3C-

EGFP. The shaded area within the 3D sequence shows the location of the NLS (KKKRD, amino acids 125–129). (B) Western blot analysis of cell-free extracts

prepared from HeLa cells transfected with no plasmid (lane 1), pEGFP (lane 2), p3C-EGFP (lane 3), p3D-EGFP (lane 4), p3CD-EGFP (lane 5), and pm3CD-

EGFP (lane 6). The Q–G pair at the 3C–3D junction in m3CD-EGFP is mutated to an ala–ala pair to prevent processing into 3C and 3D.

Fig. 2. EGFP fluorescence profiles of cells transfected with various EGFP-fusion constructs. The cells were transfected with pEGFP (A, inset), p3C-EGFP (A,

B, G, and H), p3D-EGFP (C, D, I, and J), and p3CD-EGFP (E, F, K, and L). Transfected cells were either mock-infected (MOCK) or PV-infected (INF) for 4 h

and EGFP fluorescence visualized using a fluorescence microscope (panels A–F). The cells shown in panels G–L were stained with PI to visualize nuclei.
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Fig. 3. EGFP fluorescence profiles of cells transfected with EGFP-fusion constructs. The cells transfected with pm3CD-EGFP (A, B, E, and F) and pPK-EGFP

(C, D, G, and H) were either mock-infected (MOCK) or PV-infected (INF) and EGFP fluorescence visualized by fluorescence microscopy (panels A–D). The

cells shown in panels E–H were stained with PI to visualize nuclei.

Fig. 4. Expression of 3D-EGFP and 3CD-EGFP NLS mutants. Cell-free

extracts recovered from cells transfected with p3DAAARD-EGFP (lane 1),

p3DKKAAA-EGFP (lane 2), p3CDAAARD-EGFP (lane 3), and p3CDKKAAA-

EGFP (lane 4) were analyzed by Western blot using anti-EGFP.
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(data not shown). We, therefore, chose the 4 h time point to

determine nuclear entry of 3CD for all experiments de-

scribed below. When HeLa cells were transfected with

pEGFP, EGFP expression was detected throughout the cell

(Fig. 2A, inset). A similar pattern of fluorescence was

observed in cells transfected with p3C-EGFP (Fig. 2A).

This type of overall distribution of 3C-EGFP could be due

to generation of relatively high quantities of free GFP in

cells transfected with p3C-EGFP, which was evident from

the immunoblot analysis of proteins from p3C-EGFP trans-

fected cells (Fig. 1B, lane 3). Infection of p3C-EGFP

transfected cells with PV did not significantly change the

EGFP fluorescence profile except that the cells became

round in appearance (Fig. 2B). Mock-infected HeLa cells

expressing 3D-EGFP showed distinct cytoplasmic/ perinu-

clear localization (Fig. 2C). In contrast to 3C-EGFP, there

was no significant 3D-EGFP fluorescence in the nucleus of

mock-infected cells. These results are consistent with a

previous report in which PV proteins were expressed

following infection of mosquito cells with a recombinant

baculovirus (Neufeld et al., 1991). Infection with PVof cells

expressing 3D-EGFP resulted in significant increase in

fluorescence within the nucleus compared with the mock-

infected control (Fig. 2D, also see Fig. 5A). Similar results

were observed in 3CD-EGFP-expressing cells; 3CD-EGFP

was primarily localized in the cytoplasm in mock-infected

cells and infection with PV led to translocation of significant

amount of 3CD into the nucleus (Figs. 2E and F). Nuclear

staining of these cells by propidium iodide (PI) showed that

the nuclei were intact after 4 h of infection (Figs. 2G–L). To

rule out the possibility that 3CD-EGFP nuclear relocaliza-
tion in infected cells could be due to generation of 3D-EGFP

by proteolysis (or auto-proteolysis), a mutant 3CD-EGFP

was used to transfect HeLa cells. In this mutant (m3CD-

EGFP), the scissile gln–gly bond at the 3C–3D junction

was mutated to an ala–ala pair to prevent proteolysis. In

vitro protease cleavage assays showed that m3CD-EGFP

was completely resistant to cleavage by exogenously added

3C protease (data not shown). As can be seen in Figs. 3A

and B, the m3CD-EGFP protein behaved in a similar



Fig. 5. EGFP fluorescence profile of cells transfected with p3D-EGFP and p3CD-EGFP NLS mutants. HeLa cells transfected with wt p3DKKKRD-EGFP (A), wt

p3CDKKKRD-EGFP (F), and NLS mutants p3DAAARD-EGFP (B and C), p3DKKAAA-EGFP (D and E), and p3CDKKAAA-EGFP (G and H) were analyzed by

fluorescence microscopy. Mutant 3D-EGFP and 3CD-EGFP transfected cells were either mock-infected (MOCK) or infected with PV (INF). Only infected

cells are shown for wt 3D-EGFP and 3CD-EGFP transfected cells.

Fig. 6. EGFP fluorescence profile of cells transfected with pm3CD-EGFP

NLS mutants. The pm3CD-EGFP fusion plasmid with the wt NLS (A),

and pm3CD-EGFP containing the mutated NLS sequence (KKKRD to

KKAAA) (B, C) were transfected into HeLa cells. Transfected cells were

either mock-infected (B) or PV-infected (A and C) for 4 h.
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manner to that observed with the wt 3CD-EGFP (Figs. 2E

and F). Majority of the m3CD-EGFP was present in the

cytoplasm of uninfected cells and PV infection resulted in

nuclear entry of significant amount of this protein. As a

control, HeLa cells were transfected with a commercially

available soluble protein kinase (PK), which lacks a NLS.

Transfection of cells with pPK-EGFP resulted in cytoplas-

mic expression of this protein as expected (Fig. 3C).

Infection of cells expressing pPK EGFP with PV for 4

h did not result in significant nuclear fluorescence of this

soluble protein compared with the mock-infected cells (Fig.

3D). Panels E–H (Fig. 3) show staining of nuclei by PI. The

results presented in Figs. 2 and 3 suggest that a significant

portion of total 3CD and 3D enter the nucleus in cells

infected with PV.

NLS mutation interferes with nuclear entry of 3D and 3CD

in PV-infected cells

To determine whether the NLS present within the 3D

sequence plays a role in nuclear entry of 3D and 3CD, the

wt NLS sequence (KKKRD) was mutated to either

AAARD or KKAAA by triple alanine substitution. These

mutations, when introduced into the infectious PV cDNA

clone, were found to be lethal (Diamond and Kirkegaard,
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1994). Both mutants were expressed in HeLa cells as

EGFP-fusion proteins. Western analyses revealed that both

the 3D(AAARD)-EGFP and 3D(KKAAA)-EGFP polypep-

tides were produced in transfected cells and the level of

expression was similar to that of the wt 3D-EGFP (Fig. 4,

lanes 1 and 2), and data not shown). Similarly, the recom-

binant 3CD-EGFP harboring the KKAAA NLS mutation

was expressed in significant amounts and was stable under

the conditions used for expression (Fig. 4, lane 4). Surpris-

ingly, despite repeated attempts, we were unable to express

the full-length, recombinant 3CD-EGFP harboring the

AAARD mutation in reasonable quantities. Western analy-

sis revealed that the majority of expressed protein was

degraded to a number of lower molecular weight polypep-

tides that included significant amount of EGFP and at least

two other products having molecular masses of approxi-

mately 55 and 43 kDa (indicated by arrowheads, Fig. 4,

lane 3). The 55-kDa band detected here could be the same

polypeptide as seen previously in Fig. 1B (lanes 5 and 6).

We do not know the precise reasons for the instability of

3CD(AAARD)-EGFP. It is possible that the mutation
Fig. 7. Detection of 3D and 3CD in nuclear and cytoplasmic fractions recovered fro

infected with PV (B) at an moi of 25 for 0 (lanes 1 and 2), 1 (lanes 3 and 4), 2 (l

cytoplasmic (C) fractions prepared from these cells were examined by Western blo

(WCE) from 4 h infected cells was examined by Western analysis using anti-3D an

lamin for cytoplasmic and nuclear fractions, respectively, as loading controls. (D

infected for 0 (lanes 2 and 3), 3 (lanes 4 and 5), and 4 (lanes 6 and 7) h of infectio

analysis of a whole cell extract recovered from 4 h infected cells. The panel on the
(KKKRD to AAARD) introduced into the protein has

somehow made this polypeptide unstable. It should be

noted, however, that that the same mutation had no signif-

icant effect on the stability of 3D-EGFP (Fig. 4, lane 1).

We, therefore, were unable to use the 3CD(AAARD)-EGFP

plasmid in the following experiment to delineate the effects

of the NLS mutations on nuclear-cytoplasmic distribution of

3CD. The nuclear-cytoplasmic distribution of the mutant

polypeptides 3D(AAARD)-EGFP, 3D(KKAAA)-EGFP, and

3CD(KKAAA)-EGFP was examined in PV- or mock-

infected cells by fluorescence microscopy. In this particular

experiment, the localization of wt 3D-EGFP in PV-infected

cells was distinctly nuclear, although some fluorescence

was detected throughout the cell cytoplasm (Fig. 5A).

Infected cells expressing wt 3CD-EGFP showed both cy-

toplasmic and nuclear fluorescence (Fig. 5F). Although not

shown here, expression patterns of both wt 3D-EGFP and

3CD-EGFP in mock-infected cells were almost identical to

that seen previously (Figs. 2C and E). In the absence of PV

infection, both the 3CD-EGFP and 3D-EGFP mutants were

predominantly localized in the cell cytoplasm (perinuclear,
m PV-infected cells. HeLa cells (3 � 106) were mock-infected for 4 h (A) or

anes 5 and 6), 3 (lanes 7 and 8), and 4 (lanes 9 and 10) h. Nuclear (N) and

t analysis using a polyclonal antibody to 3D. In lane 11, a whole cell extract

tibody. (C) The upper and lower panels show Western analyses of actin and

) Cytoplasmic (C) and nucleoplasmic (N) fractions recovered from cells

n were used for Western analysis using 3D antibody. Lane 1 shows Western

right shows an overexposed blot for lanes 4–7 from the same experiment.
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Figs. 5B, D and G). Unlike the wt proteins (Figs. 5A and

F), infection with PV did not result in significant redistri-

bution of the mutant proteins into the nucleus (Figs. 5C, E

and H). These results suggest that triple alanine substitution

of the NLS prevent nuclear entry of 3D and 3CD in PV-

infected HeLa cells. We also examined the localization

pattern of m3CD-EGFP with the KKAAA NLS mutation.

The cells transfected with pm3CD-EGFP containing the wt

NLS (KKKRD) sequence showed GFP fluorescence both in

the cytoplasm and nucleus (Fig. 6A). However, the majority

of m3CD(KKAAA)-EGFP was found to localize to the

cytoplasm irrespective of whether the cells were mock-

infected or infected with PV (Figs. 6B and C). These results

suggest that both the NLS and PV infection are required for

entry of 3D and 3CD into the nucleus.

Detection of 3CD in nuclear fractions from PV-infected

HeLa cells

To confirm results of transient transfection experiments

using the pEGFP-fusion plasmids, we examined distribution

of viral 3CD/3D polypeptides in nuclear and cytoplasmic

fractions of HeLa cells infected with PV. HeLa monolayer

cells were infected with PV at a multiplicity of infection

(moi) of 25 and cells were harvested at 0, 1, 2, 3, and 4

h postinfection. Cell-free lysates were prepared following

cell lysis and removal of membrane and cell debris by

centrifugation. Nuclei were separated from the cytoplasmic

fraction by centrifugation followed by repeated washing of

the nuclei with buffer containing non-ionic detergent NP-40.

The washing step was repeated until 3CD could no longer

be detected in the wash. Nuclear extracts were then prepared

and 20 Ag of cytoplasmic and nuclear extracts were exam-

ined by Western blot analysis using a polyclonal antibody to

3D. As can be seen in Fig. 7B, no viral protein could be

detected in cytoplasmic or nuclear fractions harvested at 0

and 1 h of infection (lanes 1–4). The two background

polypeptides migrating at approximately 44 and 69 kDa in

the cytoplasmic fraction and one polypeptide (f44 kDa) in

the nuclear fraction (indicated by arrowheads, lanes 1–4,

Fig. 7B) were also detected in nuclear and cytoplasmic

fractions prepared from mock-infected cells (Fig. 7A). A 72-

kDa polypeptide that comigrates with 3CD was detected as

early as 2 h postinfection in both cytoplasmic and nuclear

fractions (Fig. 7B, lanes 5 and 6). At 3 h postinfection,

considerable amount of 3CD was detected in the nuclear

fraction (lane 8). In contrast to 3CD, very little 3D poly-

merase was detected in the nuclear fraction at 3 h postinfec-

tion (lane 8). Considerable amounts of both 3CD and 3D

polypeptides were detected in the nuclear fraction at 4

h postinfection (lane 10). We also detected another virus-

encoded protein in the nuclear fraction at 3 h postinfection,

which migrated slower than 3CD (lanes 8). The estimated

molecular weight (f86 kDa) and migration pattern of this

polypeptide was consistent with that of the viral precursor

P3. Fig. 7C shows Western analyses of actin and lamin from
the cytoplasmic and nuclear fractions, respectively from

infected cells as loading controls. We also examined the

possibility that a portion of the 3CD in the nuclear fraction

could be associated with the nuclear membrane rather than

being nucleoplasmic. Therefore, the nucleoplasmic fraction,

after removal of nuclear membranes, was examined by

Western blot analysis. As can be seen in Fig. 7D, significant

amount of 3CD was still present in the nucleoplasmic

fraction at 3 and 4 h postinfection (lanes 5 and 7). Overex-

posure of the same immunoblot showed considerable

amounts of both 3CD and 3D at 4 h as well as a small

amount of the precursor predicted to be P3 (indicated by an

arrow). These results suggest that 3CD and possibly some

other 3D precursors are capable of translocating into the

nucleus in PV-infected cells.
Discussion

We have shown that the PV-encoded protease precursor

3CD is capable of translocating into the nucleus in PV-

infected cells. Both the transiently expressed 3CD-EGFP-

fusion protein and the native 3CD polypeptide synthesized

in PV-infected cells were found to translocate into the

nucleus within 2–4 h of infection. This ability to enter

nucleus resides within the 3D portion of 3CD, which

contains a single basic type NLS, KKKRD, between amino

acids 125 and 129. Mutation of the NLS sequence prevents

entry of 3CD/3D into the nucleus. The results presented

here also suggest that the presence of NLS alone is not

sufficient for nuclear entry of 3D/3CD; additional alter-

ations in the nuclear membrane brought about by PV

infection is also required for successful nuclear transloca-

tion of 3CD/3D.

Cells infected with PV undergo numerous changes that

include shut-off of host cell translation and transcription

(Dasgupta et al., 2003; Etchison et al., 1982; Gradi et al.,

1998), inhibition of host protein secretion (Doedens and

Kirkegaard, 1995), both induction and inhibition of apopto-

sis (Agol et al., 2000; Tolskaya et al., 1995), and the

conversion of ER membranes to viral replication complexes

(Bienz et al., 1983; Suhy et al., 2000). Whether one or more

of these processes play any role in 3CD/3D nuclear trans-

location is not known. However, recent studies have shown

that PV infection can cause inhibition of nuclear-cytoplas-

mic trafficking leading to accumulation of nuclear proteins

in the cytoplasm (Belov et al., 2000; Gustin and Sarnow,

2001, 2002). Nuclear proteins such as the La autoantigen,

Sam 68, and nucleolin accumulate in the cytoplasm of

infected cells and interact with either viral RNA or virus-

encoded proteins (McBride et al., 1996; Meerovitch et al.,

1993; Waggoner and Sarnow, 1998). The cytoplasmic

retention of La in PV-infected cells may, at least in part,

be due to truncation of La by the 3C protease resulting in the

loss of NLS (Shiroki et al., 1999). However, many proteins

that relocate to the cytoplasm retain their NLS (Belov et al.,
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2000; Gustin and Sarnow, 2001, 2002). Accumulation of the

latter class of proteins in the cytoplasm could result from

alteration of the nuclear pore complex as well as inhibition

of active nuclear import. The TATA-binding protein (TBP),

which is the major target for PV protease 3C, was found not

to relocalize to the cytpoplasm of infected cells (Gustin and

Sarnow, 2001). The inability of TBP to be translocated to

the cytoplasm of infected cells necessitates entry of 3C and/

or 3CD or some other 3C-containing precursor into the

nucleus and subsequent cleavage of TBP leading to shut-off

of host cell transcription. It is interesting to note that despite

accumulation of cellular proteins in the infected cell cyto-

plasm, virus-encoded proteins (3CD/3D) are capable of

moving in the opposite direction in a NLS-dependent

fashion. Therefore, nuclear import pathways must be oper-

ational in spite of general inhibition of nuclear import in

infected cells. Indeed, a previous study found that not all

nuclear transport/import systems are affected in PV-infected

cells (Gustin et al., 2001).

The results presented in this paper do not rule out the

possibility that 3C protease itself could enter the nucleus,

leading to cleavage of TBP or other transcription factors. In

fact, overexpression of 3C alone in mammalian cells leads

to shut-off of pol III transcription (Clark et al., 1991). At

sufficiently high concentrations, such as overexpression or

late times postinfection, 3C could conceivably diffuse into

the nucleus and inhibit transcription. However, this may not

be the case early during infection when the concentration of

3C is not high enough to successfully defuse into the

nucleus. This is particularly relevant for RNA pol I tran-

scription shut-off, which occurs very early (1.5–2 h)

postinfection accompanied by multiple cleavage of the

TBP-associated factor (TAF) 110, a pol I factor, at gln–

gly sites (Dasgupta et al., 2003; Banerjee and Dasgupta,

unpublished results). We could only detect 3CD but no free

3C in the infected cells between 1.5 and 2 h postinfection.

Thus, it is conceivable that 3CD might translocate into the

nucleus as early as 1.5–2 h postinfection to shut-off RNA

pol I catalyzed synthesis of rRNA. Although purified 3CD

does not directly cleave purified TBP in vitro (Dasgupta et

al., 2003), we cannot rule out the possibility that it could

cleave transcription factors in vivo. Efficient processing of

the viral capsid precursor P1 by 3CD appears to be

dependent on a cellular polypeptide (Blair et al., 1993). It

is, therefore, possible that 3CD in association with cellular

proteins could cleave TBP or other transcription factors in

infected cells.

The lack of distinct localization of 3C-EGFP in p3C-

EGFP transfected cells did not allow us to make any valid

conclusions regarding nuclear entry of 3C. This was due, at

least in part, to generation of relatively high amounts of free

EGFP in these cells, which made it difficult to determine

intracellular localization of 3C-EGFP. The precise reason for

the generation of high amounts of EGFP in p3C-EGFP

transfected cells is not known. The cloning strategy used to

make the 3C-EGFP-fusion polypeptide did not generate
potential 3C cleavage sites at or near the junction of 3C

and EGFP. We were also surprised with the finding that

almost no full-length protein was found in cells transfected

with the p3CD-EGFP containing the AAARD NLS muta-

tion (Fig. 4, lane 3). The same mutation in 3D-EGFP,

however, did not result in the lack of synthesis/breakdown

of the full-length protein (Fig. 4, lane 1). It is possible that

the NLS mutation (KKKRD to AAARD) introduced into

the protein might have destabilized the polypeptide leading

to its cleavage and/or degradation. We also do not know

whether viral (3C) or cellular proteases contribute to the

instability of this polypeptide in vivo. Further studies will be

required to answer these questions.

The results presented here suggest that cleavage between

3C and 3D is not necessary for nuclear entry of 3CD-EGFP.

First, a significant fraction of m3CD-EGFP in which the Q–

G bond between 3C and 3D is not cleaved in vitro (data not

shown), translocates into the nucleus following PV infection

(Figs. 3A and B). Secondly and more importantly, when the

KKAAA NLS mutation is introduced into m3CD-EGFP, the

protein is found almost exclusively in the cytoplasm of PV-

infected cells (Fig. 6C). This is in contrast to the m3CD-

EGFP with the wt NLS, a significant amount of which

migrates to the nucleus following PV infection (Figs. 3A

and B). Thus, both the wt 3CD and m3CD behave similarly

with respect to cellular localization in PV-infected HeLa cells.

Why does 3D-EGFP (or 3CD-EGFP) not enter nucleus in

transfected cells (in the absence of virus infection) despite

the presence of a fairly well conserved NLS sequence? It is

possible that the NLS sequence may not be exposed in the

absence of other viral proteins. Virus infection may be

required for interaction of 3CD/3D with one or more viral

or cellular proteins before entry into the nucleus. It is

interesting to note that bipartite nuclear signal sequences,

called NLS I and II, were required for efficient entry of

potyviral NIa, the VPg-protease precursor, into the nucleus

of infected cells. When used individually, NLS I and II could

facilitate very low level of translocation of the precursor

protein (Carrington et al., 1991). The potyviral NIb, the

RNA-dependent RNA polymerase, also contains an NLS

and mutations in this sequence interfere with nuclear local-

ization of NIb (Li and Carrington, 1995; Li et al., 1997;

Schaad et al., 1996).

The results of transient transfections using pEGFP-

fusion plasmids are consistent with the observation that

both virus-encoded 3CD and 3D are detected in the

nuclear fraction in PV-infected HeLa cells (Fig. 7). In

fact, considerable amount of 3CD is detected in the

nuclear fraction by 3 h postinfection. Also, significant

amounts of 3CD and 3D could be detected in the

nucleoplasm of infected cells (Fig. 7D). A 3D-containing

viral precursor protein with an approximate molecular

mass of 86 kDa was also detected in the nuclear fraction

(Figs. 7B and D). The estimated molecular weight and

migration pattern of this polypeptide are consistent with

that of the precursor P3. Although this observation raises
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the possibility that 3CD and 3D may be generated in the

nucleus by processing of P3, the transient transfection

data clearly show that both 3CD and 3D are capable of

entering the nucleus on their own.

It is interesting to note that the putative NLS (KKKRD) in

the 3D coding region is partially contained within a se-

quence, KKRDI, which is common among all known picor-

naviral RNA polymerases. This suggests that this sequence

might have an important function in the virus life cycle. One

distinct possibility why it is so conserved could be that this

sequence might act as a true NLS and that nuclear translo-

cation of certain viral proteins could be essential for efficient

replication and spread of the virus in the infected host.

Further characterization of the role of the putative NLS in

nuclear transport of PV non-structural proteins will add to

our understanding of how and why cytoplasmic RNAviruses

interact with the nuclei. In this regard, it can be said that a

portion of life cycle of a cytoplasmic RNAvirus does include

interaction with the host cell nucleus.
Materials and methods

Cells and viruses

HeLa cells were cultured in Dulbecco’s modified Eagle’s

medium (Gibco BRL, Gaithersburg, MD) supplemented

with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin G,

and 100 Ag/ml streptomycin. DNA transfections were per-

formed using the lipofectamine plus reagent (Gibco/BRL)

following the manufacturer’s recommendations. HeLa cells

were seeded in six-well plates and allowed to reach 70%

confluency. Transfection was performed by addition of 1.5–

2.0 Ag of DNA, 5 Al lipofectamine and 4 Al plus reagent to
HeLa cells for 3 h. Cells were then fed with regular medium

and allowed to grow for 24 h. Cells were infected with PV

(type 1, Mahoney strain) at an moi of 25 as previously

described (Clark et al., 1991).

Subcellular fractionation

HeLa monolayer (3 � 106) cells were infected or mock-

infected with PV (type 1, Mahoney strain) at an moi of 25

for 0, 1, 2, 3, and 4 h. The cells were collected at

appropriate times postinfection and fractionated into nucle-

ar and cytoplasmic fractions as previously described (Hu et

al., 1998). Briefly, the cells were washed 3 times with PBS,

scraped into a tube, and peletted by centrifugation at 400 �
g for 1–2 min at 4 jC. The cells were resuspended in 500–

600 Al buffer C (10 mM Tris, pH 7.8, 5 mM MgCl2, 10

mM KCl, 0.3 mM EGTA, 0.5 mM DTT, 0.3 M sucrose, 10

mM h-glycerol phosphate, and 2 mM ZnCl2). After incu-

bating for 15 min on ice, NP-40 was added to a final

concentration of 0.5%. The cells were then vortexed, and

nuclei were isolated after centrifugation at 7200 � g for

20–30 s at 4 jC. The nuclei were washed 5 times with
buffer C. In some experiments, the nuclear fraction was

resuspended in buffer D (20 mM Tris, pH 7.8, 5 mM

MgCl2, 320 mM KCl, 0.2 mM EGTA, 0.5 mM DTT, and 2

mM ZnCl2). After sonication for 10–20 s, nuclear soluble

fraction (nucleoplasm) was separated from nuclear mem-

brane fraction (pellets) by centrifugation at 13,500 � g for

15 min at 4 jC.

Plasmids and cloning

The cloning strategy for EGFP-fusion proteins is

depicted in Fig. 1A. Briefly, the DNA sequences encoding

3C, 3D, and 3CD were fused with GFP sequence at the N

terminus using pEGFP-N1 N-terminal protein fusion vector

(Clontech). The multiple cloning site (MCS) in the pEGFP-

N1 vector is between the immediate early promoter of CMV

and the EGFP coding sequences. Genes cloned into the

MCS will be expressed as fusions to the N terminus of

EGFP if they are in the same reading frame as EGFP and

there are no intervening stop codons. SV-40 polyadenylation

signals downstream of the EGFP gene direct proper pro-

cessing of the 3V end of the EGFP mRNA. The DNA

sequences encoding 3C, 3D, 3CD, and m3CD were PCR

amplified using specific primers containing the Kpn1 and

BamH1 restriction sites. Following amplification and gel

purification, the viral protein coding sequences were cloned

between the Kpn1 and BamH1 sites of the pEGFP-N1 MCS.

All constructs were verified by DNA sequencing as well as

immunoblotting with antibodies directed against GFP

(Clontech). The following primers were used for PCR

amplification:

3C (forward): 5VGACGGTACCTATGGGACCAGG-

GTTCGATTACGCA 3V
3C (reverse): 5VGGTGGATCCATTTGACTCTGAGT-
GAAGTATGA 3V
3D (forward): 5VGACGGTACCTATGGGTGAAATC-
CAGTGGATGAGA 3V
3D (reverse): 5VGGTGGATCCATAAATGAGTCAAGC-
CAACGGCG 3V.

For amplification of 3CD, the 3C forward and 3D reverse

primers were used.

The following primers were used to mutate the KKKRD

NLS sequence to AAARD:

(forward primer): 5VTATGTAGCAATGGGAGC-

CGCGGCGAGAGACATCTTFAAC 3V
(reverse primer): 5VGTTCAAGATGTCTCTCGC-

CGCGGCTCCCATTGCTACATA 3V.

The following primers were used to alter KKKRD NLS

sequence to KKAAA:

(forward primer): 5VGCAATGGGAAAGAAGGCGGC-
CGCGATCTTGAACAAACAA 3V,
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(reverse primer): 5VTTGTTTGTTCAAGATCGCGGCC-
GCCTTCTTTCCCATTGC 3V.

The pm3CD-EGFP construct is same as p3CD-EGFP

except that the gln–gly pair at the 3C–3D junction has been

mutated to an ala–ala pair.

The following forward and reverse primers were used to

mutate the gln–gly pair at the 3C–3D junction:

5VGATCATACTTCACTCAGAGTGCGGCTGAAAT-

CCAGTGGATG 3V, and
5VCATCCACTGGATTTCAGCCGCACTCTGAGT-

GAAGTATGATC 3V.

Immunoblotting

HeLa cell-free lysates were prepared by washing cells

once with PBS, followed by resuspending them in 1�
passive lysis buffer (Promega). Cells were lysed by repeated

freeze–thawing in dry ice–alcohol bath followed by incu-

bation at 30 jC. The lysate protein concentration was then

determined by the Bradford method (Bio-Rad) and proteins

separated by 4–15% gradient SDS-polyacrylamide gel

electrophoresis. The proteins were then transferred to nitro-

cellulose membrane, and the membrane probed with a rabbit

polyclonal antibody specific to GFP (Clontech and Molec-

ular Probe). Immunoreactive proteins were detected with

goat anti-rabbit antibody conjugated to horseradish peroxi-

dase (Roche) using the supersignal chemiluminescence kit

(Pierce). For detection of PV proteins in infected cells, 20–

40 Ag of cell-free extracts were used in Western analysis

using a rabbit polyclonal antibody against bacterially

expressed 3D polypeptide. The antibody to 3D was gener-

ously supplied by Dr. Ellie Ehrenfeld, NIH.

Microscopy

HeLa cells were washed once with PBS 24 h after

transfection, fixed for 20 min in chilled absolute methanol

at �20 jC, and again washed with PBS-CM-BSA (PBS

containing 0.9 mM CaCl2, 0.83 mM MgCl2, and 3 mg/ml

BSA) 2 times. Cells were then incubated with 20 Ag/ml

RNase for 30 min, washed 3 times with PBS-CM-BSA, and

incubated with PI for 15 min at 4 jC. The cells were then

washed again with PBS-CM-BSA 2 times and mounted on

slides (Vectashield). Cells were visualized using a Nikkon

Diaphot 200 inverted fluorescence microscope attached with

a CCD camera.
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