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Abstract 

We consider the stochastic differential equation 

dX, = h(X, )dZ,, t > 0. 

where h is a Bore1 measurable real function and Z is a symmetric r-stable Levy motion. In 
Section I we study the convergence of certain functionals of Z and in particular. wc extend 
Engelbert and Schmidt O-1 law (for functionals of the Wiener process) to functionals c~f 
a symmetric a-stable Levy motion with 1 < Y < 2. In Section 2 we study the existence of wea\ 
solutions for the above equation, When 0 < x < 1 or 1 < r < 2 we prove a sufficient existence 
condition. In the case I < x < 2, we extend Engelbert and Schmidt’s necessary and sufficient 
existence condition (for the equation driven by a Wiener process) to the above equation: wc 
prove that. for every z there exists a nontrivial solution starting from z. if and only if 1111 ’ ih 
locally integrable. In Section 3 we study “local” solutions. We also pro\e a result relating 
“local” and “global” solutions. 

K~NYHY~ x-Stable L&y motions; O- I Law; Stochastic differential equations; Existence: 
“Local” existence; Stable integrals; Purely discontinuous martingales: Random measures: Time 
change 

_ 

0. Introduction 

In the first section of the present paper we study the convergence of certain 
functionals of a symmetric x-stable L&y motion (with 0 < x < 1 or 1 < x < 2) which 
we always denote by 2 and simply call an x-stable motion. In particular. when 
1 < x < 2. we prove a 0-l law (Theorem 1.4) analogous to Engelbert and Schmidt 
(1981) 0-l law for functionals of the Wiener process. A 2-stable motion being 
a Wiener process, the present O-1 law extends that of Engelbert and Schmidt to the 
class of x-stable motions with 1 < x G 2. 
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As in the Wiener case, the principal tool of the proof is the use of a local time (i.e. an 
occupation time density with respect to Lebesgue measure) for c-stable motions with 
1 < c( < 2: in particular, see the proof of Lemma 1.6. 

In the subsequent sections some of these results are applied to the case of certain 
functionals of 2 which are associated with one-dimensional stochastic differential 
equations driven by stable motions. Such functionals arise when applying the method 
of random time change to solving the equations we consider. 

These are of the form 

x,=x+ s b(X,-)dZ,, t 3 0, (1) 
10.r1 

where x is a real starting point, b is a Bore1 measurable real function and Z denotes an 
r-stable motion. 

In Section 2 for such equations we study the problem of the existence of weak 
solutions which we want to be nontrivial i.e. which are to move away from the starting 
point x with probability > 0. We prove a general sufficient condition (Theorem 2.5) 
that, in a sense, unifies the cases 0 < g < 1 and 1 < a d 2. 

In the latter case we also obtain a necessary condition (Proposition 2.30) for the 
existence of a nontrivial solution. 

As a corollary of these two conditions we have the following result about solutions 
of Eq. (1) driven by an E-stable motion Z with 1 < u < 2 (see Theorem 2.32): 
For every real number x there exists a nontrivial solution starting from x if and only if 
the function 1 bl -a is locally integrable. 

This necessary and sufficient condition extends an Engelbert and Schmidt (1981) 
result for equation (1) driven by a Wiener process (i.e. a 2-stable motion) to the class of 
equations (1) driven by Z with 1 < c( < 2. 

Besides some results in Section 1, the principal tools we use are various results in 
Kallenberg (1992) such as the integrability criterion with respect to stable Levy 
motion, the time change representation of stable integrals as well as the predictable 
reduction property of integer-valued random measures to Poisson ones (see Theorems 
3.1, 4.1, 2.1 in Kallenberg). 

We also use some properties of time changed processes and random measures as 
studied in a general setting in Jacod (1979, Section 1, Chap. X). 

In Section 3 we study the existence of “local” solutions i.e. of processes that solve 
Eq. (1) up to the first exit time of an interval. We obtain a sufficient condition for local 
existence (Theorem 3.4) that completely unifies the cases 0 < x < 1 and 1 < J < 2. 

In the case 1 < r < 2 we also state a necessary condition (Proposition 3.13) very 
natural if compared with that in Proposition 2.30: it is a consequence of that condition 
indeed. 

Still in the case we have a result (Theorem 3.17) which relates “local” solutions with 
“global” solutions (i.e. solutions defined for all t). Roughly, it states the following: For 
Eq. (1) the existence for any real x of a “local” nontrivial solution starting from x and 
the existence for any x of a “global” nontrivial solution starting from x, are equivalent 
properties. 
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1. Some properties of symmetric stable LCvy motions. A O-l law 

First of all we recall a few basic notions. For all other notions the reader is referred 
to well-known treatises as e.g. Dellacherie (1972), Dellacherie and Meyer ( 1980), .lacod 
( 1979). 

Let (C&3”, P) be a complete probability space. An increasing family F = (-PI 1, , Cl 01‘ 
sub-o-algebras of 3 is called a filtration. We term stochastic basis a space (R. .F. PI 

equipped with a filtration iF: for such an object WC use the notation (Q, .F. IF. P). .A11 the 
stochastic bases (.C?. 3, [F, P) we consider in this paper. are supposed to satisfy the 
usual conditions, i.e. [F is right-continuous and .pCj contains all S-sets of P-measure 0. 

For a process X = (X,),>” defined on (0. .%. P) we write (X, 1F) to mean that .Y i!, 
[F-adapted. 

All the processes we consider here are supposed to be real-valued and to have all the 
sample paths in ED = D(R+, R), the space of all clidlig mappings from R a = [O. + / [ 
into R. 

Also we shall adopt here the usual convention 0. y_ = O:O = 0. 
Now let (Q, 3, [F, P) be a stochastic basis: throughout the paper the notation (Z. F) 

will stand for a process on this basis which is symmetric F-r-stable L&y motion. 
0 < r < 2, i.e. an IF-adapted process (Z,),>” with all sample paths in ED. such tha1 
Z. = 0 and for any 0 d s < t, QE R 

E[expji$(Z, -Z,))lYJ ==exp(-(t -s)191”:. 

This assumption implies that the increments Z, ~ Z,,. s < t, are independent of-f\. 
Hence a symmetric [F-x-stable L&y motion has stationary a-stable symmetric in- 
crements that are independent of the past for the filtration iF. 

In the sequel such a process (Z, [F) will be called an [F-x-stable motion; we lvill. 
however, suppress the prefix “[F” whenever its appearance is not essential. 

Also denote by v(w, t, .) the occupation time measure of Z i.e. the measure defined 
as follows. for all Bore1 sets A in R and all 11). t 2 0 

I 
t 

V((O. t. A) = l,(Z,(o))ds = 3.( (s d t:Z,(oj)~A) ). (1.1) 
0 

i, denoting Lebesgue measure. 
As it’s well known (see, e.g. Kesten, 1969), Z has a local time if and only if 1 < 7 < 1:: 

by local time we mean here an occupation time density i.e. a function L(c~,, t. J‘) such 
that, P-a.s. 

for any t and any Bore1 set A. And a version of L(ta, t, J,) exists which is jointly 
measurable in (0, t, y). Moreover, as it was proved in Boylan (1964), (t, y) ++ L(w I. A.) 
can be chosen to be jointly continuous for all (r~. In the sequel we shall always employ 
a version of the local time L satisfying these regularity conditions. 
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Proposition 1.3. Let Z denote an a-stable motion and v its occupation time measure 
dejned in (1.1). 

(a) Assume 0 < r < 1. Then we kuve 

P 
(i 

lim v(t, A) < x = 1 
L+‘u 1) 

for every Bore1 set A suck that i(A) < X. 
(b) Assume 1 < Y < 2. Then we have 

P 
(i 

lim v(t, A) = m 
I> 

= 1 
f - x 

for every Bore1 set A such that A(A) > 0. 

Proof. (a) In this case one has for every A with IAl ~1”~ ’ dy < #X 

(see Blumenthal and Getoor, 1968, Exercise 1.7, p.71). Thus the same relation holds for 
every A with ;I(A) < CC. 

(b) Since, P-as., L(t, y) is increasing in t and lim,,, L(t, y) = SC for all y (cf. Stone, 
1963, Theorem 1, p. 633) the property follows from (1.2) because of the monotone 
convergence theorem. 0 

Now for x-stable motions with 1 < r < 2 we prove a O-l law (Theorem 1.4) 
analogous to the Engelbert and Schmidt O-l law for functionals of the Wiener 
process: see Theorem 1 in Engelbert and Schmidt (1981). As in that case the idea of the 
proof is based on the use of local time of a-stable motions (with 1 < r d 2). 

Theorem 1.4. Fix E, 1 < LX < 2 and let (Z, E) denote 
(Sz, 9, ff, P). Let f be a Bore1 measurable function of 

Then the following conditions are equivalent. 

an r-stable motion dejined on 
the real line into [0, m]. 

(a) P({lbf(Z,)ds < CC for every t > 0}) > 0. 
(b) P({&f(Z,)ds < cc for every t 3 0)) = 1. 
(c) SK f (y) dy < CC for every compact subset K of the real line. 

Remark 1.5. Each of the following two conditions is also equivalent to the relations in 
the preceding theorem. 

(d) For all XE R 

P f(x + Z,) ds < co for every t > 0 = 1. 



(e) For every XE [w there exists an x-stable motion (i. W) and a finite. strict11 
positive random variable z on a suitable stochastic basis (5, 3, W, Q) such that 

First we prove the following: 

P ,I’(\- + Z,)ds < ‘X 
I! 

> 0. 

Proof. It is known that, for each f > 0, L(t. 0) > 0, P-as.: see Stone (1963, Theorem 1. 
p. 633). Owing to the strict positivity of T and the fact that L(vJ,, ., 0) is increasing. it 
follows that L(c!J. T(U). 0) > 0 for P-almost all 0). Also, for P-almost all c’) 

i’ 

i(ii) 
,1’(1- + Z,,((U)) ds = 

1 
,f’(\- + y)L(rc,, z(w), 1.1 dj,; (I.71 

0 k 

thus, by assumption, we may choose (‘1 such that the last relation holds as well a>, 
{;:“‘/‘(x + Z,(cf,))d.s < x and L(o), T((~J). 0) > 0. With this choice of cu. wc may appeat 
to the continuity of L(to, Z(U), . ) to choose strictly positive numbers (5 and k such thai 

L(co. T(CO), J%) 3 k whenever 1 J‘( d d. By (I .7) 

Proof of Theorem 1.4. The proof that condition (a) implies (c) is carried out as in the 
brownian case using the above Lemma and the following known fact about x-stablc 
motions Z with 1 < s( < 2 (cf. Port, 1967): 

For any .Y E [w, t > 0. the [F-stopping time 

T = inf:t > O:Z, = X) 

issuch thatP((O<r<NX-s,))= 1. 
Also it’s easy to verify that (c) implies (b) using the continuity of I!,((!,. f, 1. 
We omit details referring the reader to Engelbert and Schmidt (1981) or to Karatza:; 

and Shreve (1994, Proposition 6.27. p. 2 16). 0 

The conditions in Remark 1.5 are consequences of the proof of Theorem 1.4: indeed. 
if(e) is verified, by applying Lemma 1.6 to each s, we get condition (c). If(c) is satisfied 
for ,/: then (c) is also satisfied for the function ,f,( .) =,f’(.x + ), x being any real 
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number. Because of Theorem 1.4, for all x, condition (b) holds with fx in the place off: 
but this is exactly condition (d). Lastly, (d) implies (e), of course. 

2. Stochastic differential equations without drift. 
The extension of Engelhert and Schmidt condition 

Consider the one-dimensional stochastic differential equation 

x,=x+ J KG )dZ,, t 3 0 
1o.t1 

(2.1) 

where x is a real starting point, b is a Bore1 measurable real function and Z denotes an 
a-stable motion. 

In the present section we investigate solution of the equation above. 

Definition 2.2. A process (X, F) defined on a stochastic basis (Q g-, [F, P) is called 
a solution of(2.1) starting from x, if there exists an x-stable motion (2, lF) such that (2.1) 
holds for every t 3 0. 

Usually, solutions as above are called weak solutions: since in this paper we do not 
consider other solutions, we omit this attribute. 

Definition 2.3. A solution (X, F) (2.2) of Eq. (2.1) is said to be trioial if 

P( (Xt = X0 for all t 3 0;) = 1. 

As already pointed out in the Introduction, by employing the method of random 
time change, Engelbert and Schmidt (1981) proved a necessary and sufficient condi- 
tion for the existence of a nontrivial solution with arbitrary starting point for an 
equation in the class (2.1) namely an equation of the form (2.1) with Z being a Wiener 
process. 

We shall prove below a result (cf. Theorem 2.32) which is the extension of the 
Engelbert and Schmidt condition to the class of r-stable motions with 1 < x d 2. 

Everywhere in the following f(t, y) will denote the a-stable transition density (i.e. 
the density of any x-stable motion) with 0 < x < 2. 

Definition 2.4. Let x be a real number. We say that the coefficient b in (2.1) sutisjies 
condition (H) with respect to x, if f J (J 

ds 
1 

0 I~I<L lb@ + .v)l” 

f(s, y)dy < n3 
> 

for all t > 0, L > 0, (HI 

f’ denoting the x-stable transition density (0 < x < 2). (We set lb(x)IP” = + XI if 
b(x) = 0). 

Now we state a first result which is a general sufficient condition for the existence of 
solutions of (2.1). From Proposition 2.29 below, it will follow that such condition 



extends that of Engelbert and Schmidt to stable motions with 0 < r < 1 or 1 < :! < 2. 
Moreover it “almost” unifies the cases 0 < 2 < 1 and 1 < x < 2 (compare (a) and (b) ot 
the theorem below). 

Theorem 2.5. (a) Consider Eq. (2.1) \vith respec,t to OH x-stchle motiorl Z .suc~/~ thtrt 

1 < z < 2. Let x be 0 real number and ussume that function b .satisf,r.s the trhorc 

cwditior~ (H) rvifh respect to x. Then there e.yists (I mmtririal solutior~ of’ Eq. (2. I ) 
starting ,fiwm the point s. i.e. such that X0 = s. 

B( = (YER’: Ib(r + !,)I > U) 

Then thrw crisis II mntrit;ial solutior~ of’ Eq. (2.1 ) st~wtit~g ,fkm the point .\ 

In order to prove this theorem, begin by considering an r-stable motion (Z. !?:I 
defined on some stochastic basis (Q, 9, [F, P) and such that Z. = 0. A solution of (2.1 I 
will be constructed by random time change from (Z, [F). 

Let the increasing process (C, E) be defined by 

c, = 1 

1bt-y + -&)I” 
ds, t 3 0. (2.61 

Lemma 2.7. c’ndev the assumptions of Theorem 2.5 the ~IYKCS.S (C. F) rwjfit~s t/w 

,fdlowiny properties: 

(a) Fo~ez,er!:t30,P(IC,<~c))=l. 
(b) P((lim,_, C,=C, = X3],= 1. 

Proof. For 7,’ > 0 consider the If-stopping time 

r,.=inf(t >O:lZ,/ 3 I/) 

Fix any t > 0. For all U > 0 we have 

C,(to) = c,,,, ((0)’ l{t<r,]((l)) + C,(W). l{t~r,;(W). 

Since TV.. > 0. for each U > 0 

because of condition (H) with respect to X. 
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It follows, for every U, l,, < TI) C, A c, = l,t <+)Cf < co, P-as.. Since r. t co as U 7 co, 
we get (a). 

As to property (b), since l/jh(x + y)l” > 0 for all y, there exists E > 0 such that 
3.(B,) > 0 where 

1 1 
B, = YeR: ,& + # 2 s 

I 

So, in the case 1 < 2 d 2, property (b) follows from (b) of Proposition 1.3 and the 
fact that 

s f 1 

ds = i 

1 

R Ih(x + J’)l” 
L(t, y)dy > a. v(t, B,), 

0 I& + &)I” 

L denoting the local time of Z. 
In the case 0 < r < 1 we have for all t s f c, 3 

1 f 1 

I& + &)I” 

lw B,(Zs)ds 3 
o z 1M (Z, ) ds> 

0 

s 

BU being the set introduced in (b) of Theorem 2.5. So, using the occupation time 
measure v (1.1) of Z, for all t 

c, 2 u-yt - v(t, B,)) 

and in the case, property (b) follows from (a) of Proposition 1.3. 0 

Now we come to the proof of Theorem 2.5 (a). 
In the case M = 2 the result follows applying the same proof of the implication 

(ii) j(i) in Theorem 4 of Engelbert and Schmidt (1981) to the equation 

x,=x+ s b,(Xs )dWs 
1o.t1 

with 6, = $. b, W denoting a standard Wiener process: remark indeed that the 

properties (a), (b) of Lemma 2.7 are sufficient. And ,/?. W is a 2-stable motion. 
Hence only the case 1 < Y < 2 is to be considered. 
In the proof we employ some results in Kallenberg (1992) such as Theorem 3.1, 

p. 210, i.e. the integrability criterion with respect to stable Levy motion and the 
predictable reduction theorem of integer-valued random measures to Poisson random 
measures: below we quote the latter explicitly. 

Given a measurable space (S, S), denote S6 the augmentation Su{(il\ where 6 is an 
external point. The a-algebra in S;, is understood to be the one generated by S. 

Theorem 2.8. (see Theorem 2.1(a) in Kallenberg). Fix a Polish space K und a aTfinite 
measure space (S, S, tt), let 5 be a quasi-leftcontinuous integer-valued random measure in 
K (defined on some stochastic basis satisfying the usual assumptions). Let T be a predict- 
able mapping of R, x K into Sg. Suppose that T(t) = p as. on S, f denoting the 
compensator of [. Then the random measure T(t) is Poisson on S with intensity ,tt. 



Let T denote the right-inverse of C (2.6) i.e. 

z, = inf(s 3 0: C, > t), t 3 0. (2.9) 

Taking the above lemma into account, process z is P-as. finite. continuous. strictly 
increasing and such that lim,, , r, = r, = + x. Moreover, for every t. r, is an 
[F-stopping time Hence r = (r,),>,” defines a change of time in the sesnse of Jacod 
(1979, Chap. X. Section 1). Moreover, P-as. 

r, = for every t > 0: (2. IO] 

indeed. for every OJ. Ih(s + Z. (to))i” > 0 3.-a.e. owing to (a) of the preceding lemma. 
hence 

.T, 
r, = 

i 
Ih(s + Z,)l”dC, = 

1 

(‘- 
” Ib(?c + Z,,)l”d.s = 

! 
‘P’ Ih(s + Z,,)/“d.s. 

0 0 0 

because of Lemma 1.6 in Engelbert and Schmidt (1985). 
Now consider the time changed process (Y, W) dehncd, for every t >, 0. by 

Y, = z,. w = (-Xc),,, where .xy, = .Fr,. t 2 (i. 

We want to show that the process (X. W) such that, for every t > 0 

x, = .Y + Y, 

is a solution of (2.1) on (Q, 9. W, P). 
Since the basis (Q 9, [F, P) satisfies the usual assumptions, the same 

for(Q. .F, W. P) (cf. 1, $a in Chap. X of Jacod, 1979). 

(3.1 I) 

(2.12) 

holds 

Furthermore. in case 1 < x < 2, Z is a purely discontinuous IF-martingale. Because 
of Theorem 10.16, p. 3 16 of Jacod and taking into account the continuity of T, we have 
the 

Now let /( denote the jump-measure of the T-stable motion (Z, F) i.e. the integer 
valued random measure p biven by 

/l(dt, ds) = 1 1 {AZ.,+ “+,,.,z,)(dr. d.G (2.14) 
s > 0 

x,,s,.yI denoting Dirac measure concentrated at point (s, x). Consider the time changed 
random measure fi = TF defined as follows, for all (o 

fi(t0. . ) = (Z/l)(OJ, ') = /L(OJ, .)z (C(w))- ' (2.151 

where 

C(to)(t, x) = (C,(to), x). 
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Then, because of Theorem 10.27(b) of Jacod (1979): 

the W-optional random measure ,G is the jump-measure of the process Y. (2.16) 

If v denotes the [F-dual predictable projection of p, from (e) of Theorem 10.27, taking 
account of Example 3.22, p. 75 in Jacod, it follows that: 

the W-dual predictable projection 72 of fi = rp is given by zv, i.e., for all (r) 

%(&I, .) = zv(w, .) = v(0, +(Qw))-‘. (2.17) 

Since v(ds, dx) = ds @ (K/lxl’+“)dx where K is a constant > 0, from (2.10), (2.12) 
it follows that the W-compensator ;;I of fi is given for all w by 

K 
%(w, ds, dx) = 1 b(X,(o))l”ds 0 1x11+1 dx. (2.18) 

Combining (2.13), (2.16) and (2.17) we see that the process (Y, W) can be represented 
as follows as a compensated sum of jumps 

Y, = 
j j 

x(fi - it)(ds, dx) (2.19) 
1O.d E 

(see Jacod, 1979), where E = R - (0). 
We also need the following 

Lemma 2.20. Set IV, = {s E R + : b(X,(w)) = b(x + Y,(w)) = 0} where X is defined in 
(2.12). Then /1(N,) = 0 for P-almost all cc). 

Proof. Set I, = (s E [w, : b(x + Z,(o)) = O}. B ecause of Lemma 2.7(a), for P-almost all 
LC), ),(I,) = 0. On the other hand, owing to (2.1 l), for all w, z(N,) c I,, z(N,) denoting 
the image under T.(O) of N, (of course ~(4) = 4). It follows that the Bore1 set z(N,) 
(cf. $3, Chap. 15 in Royden, 1968) verifies for P-almost all o 

E.(T(N,)) = 0. 

(Remark that, P-a.s., z is a homeomorphism of [w+ into rW+). 
Since for all o, C(t(N,)) 3 N,, it suffices to verify that, for P-almost all LL) 

i(C(J)) = Ofor euery Bore1 set J with i.(J) = 0. 

Taking into account (b) of Lemma 2.7, using Dellacherie (1972, Theorem 44, p. 92) we 
have P-a.s. 

i,(A) = jocU l.(t)dt = j; l,(C(t))dC(t), 

A denoting any Bore1 set in [w. Since C is strictly increasing, lcc,a,(C(t)) = IA(t), hence 

/I(C(A)) = 
j 

= lA(t)dC(t) 
0 



and the above assertion follows from the fact that the Stieltjes measure generated by 
C is absolutely continuous with respect to A. ??

Now add the point 6 = or) to E and denote by E;, the locally compact space Eu 1 hi. 
by A (resp. R6) the Bore1 o-algebra of E (resp. Eh). 

Consider the mapping fi : (Q x R+ xE..-1PO~)-,(nxR+xE,~,.‘POA,)definedby 

(2.21) 

where .d denotes the o-algebra of the W-predictable sets and we adopt the convention 
.u/h(X,._ (([I)) = 6 whenever b(X,_ (to)) = 0. This mapping is clearly measurable. 

Moreover set, for each c/J, p,,,( .:) = fi(co;;) and consider the R_ x &-valued 
random measure 

j(1(W,‘.‘). (0E.Q~ where, for each (0, p(~. . ,) = Pc,(fi(ro,. )). (2.22) 

Lemma 2.23. Thr just defined randottz twasure p is II W-Pois.son rundotn tneasuw \\,it/t 
(detcmninistic) W-compemutor 

q(d.s, dx) = ds @ o(ds), 

Proof. Let us verify that, for P-almost all m 

1 
on W,. x E, [j<,,(5) = ds @ K LF; dx. (2.24) 

Indeed, combining (2.18) and the fact that h(X, ) = h(X,) for all s outside a i-nullset. 
a simple computation shows that one has for all co, BE 8, 

1 dx)P,(~)(dS, d.x) 

From this equality, by the change of variable r/[h(X, (to))] = J we have. for 
P-almost all (0 

/ -Kd, l,(J) ,y,l+’ _ 
i 

owing to Lemma 2.20. 
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From (2.24) by Theorem 2.8 we obtain the conclusion, after having noted that, for 
P-almost all o one has, independently of t 

because of (2.18)’ 0 

On the basis of the last Lemma, we can choose a version of p such that, for all w, 

P(W R+ x {SS) = 0. 
Now define the process (Z*, W) by 

z,* = 
s s 

x(p - q)(ds, dx): (2.25) 
lo%tl E” 

still because of the last lemma, (Z*, W) is P-indistinyuishable from an x-stable motion. 
Combining the Definition (2.12) of X, and (2.10) P-a.s. we have for all t 

s 

r 
Ib(X,_)l”ds < + xj 

0 

and because of Theorem 3.1(a), in Kallenberg (1992), there exists the stochastic 
integral of the process b(X,-) with respect to (Z*, W). Recall that Z* is a (purely 
discontinuous) W-martingale and set 

M, = b(X,_)dZ,*, t 3 0. 

Lemma 2.26. The process (Y, W) (2.11) is P-equal to the process (M, [HI). 

Proof. M is a purely discontinuous W-local martingale as well as Y (2.13). In order to 
verify that M, Y are indistinguishable, it suffices to show that they have the same jump 
processes (up to an evanescent set) (cf. Jacod and Shiryaev, 1987, Corollary 4.19, p. 43). 

Indeed, the jump process of M, AM, = b(X, )dZ,* is the same as 

AYt4b~X,-,#O)(d 

because p does not charge [w, x {6}. So AM, AY differ by the process 

Ayt4bcXr )=0)(t) 

which is P-equal to 0: in fact, for all t 

s;t (“d2 l(b(X,, )=0)(s) = s s X2 lw-)=o)fi(ds, dx) = 0 
1o,r1 E 

P-a.s., owing to (2.18) and the fact that b(X,-) = b(X,-) up to a R-nullset. 0 

’ Recall the convention 0. co = 0 



From the above Lemma it follows that the process (X. W) (2.12) is a solution ol 
Eq. (2.1) and taking (2.11) into account, it’s obvious that such a solution is non-trivial. 

So the proof of part (a) in Theorem 2.5 is concluded. 
It remains to prove assertion (b) where the case 0 < 1 < 1 is considered. 
One starts with an c-stable motion (Z. E) defined on (Q. 3, [F. P). such that Z. = 0 

(0 < :! < I). Recall that in the case. Z is of pure jump type with finite variation. Thctn 
one defines the time changed process (Y, IH) as in (2.11) and one shows that the process 
(X, W) (2.12) is a solution of (2.1). 

The proof follows exactly the same lines as above. It uses the properties of 
time-changed processes and random measures studied in N. 1, Chap. X of Jacocl 
(1979) (in particular, the invariance of the finite-variation paths property under a time 
change. in the sense of Theorem 10.16 of Jacod) as well as some results in Kallcnbcrp 
(lYY2). 

So we omit going into details. [] 

Now WC need some integrability properties of z-stable transition densities. 
If Z denotes an x-stable motion (0 < 8 < 2) \vith transition density f: the scaling 

property gives, for all J'E R. t > 0, 

Hence ,f’ verifies, for all J', t > 0 

.f’(L y) ,( ct-1’” (2.27) 

with a suitable constant C. 
Moreover, since for all y,,f’(l, 4;) < const(1 + 1~1” I) -’ (see Zolotarev. 1986, 42.7). 

,f‘( 1.. ) is in L, i.e. J’,(f( 1. y))Ydy < 7, , y denoting any real number > I, Still because 
of the scaling property, for every q > 1 there exists a constant K (depending only on (1) 
such that 

1~ f’(t:)llq = K.t(‘+y).‘zq for all t > 0. (2.3) 

1:. Ily denoting the L,-norm. 

Proof. (a) In the case 1 < x < 2 the property follows from (2.27). 
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(b) In this case, because of Hiilder inequality and (2.28), we have for all p, 4 with 

P > 1, 4 > 1, (I/P) + (I/q) = 1 

Then it suffices to take p = 6/c( > l/r > 1 and to combine the local integrability 
property of lb/-” with that of sC1 m4)‘(aq) = s- 1’(ap) in order to conclude. 0 

Now we have the following necessary condition of existence of a nontrivial solution 
of (2.1). The proof is an application of Lemma 1.6 and uses the random time change 
representation of stab/e integrals studied in Kallenberg (1992). 

Proposition 2.30. Let 1 < CI < 2. Assume that the process (X, F) be dejined on 
(a, 9, F, P) and constitute a nontrivial (2.3) solution of Eq. (2.1) starting from the point 
x. Then there exists a real number E > 0 such that 

s 1 

,y,QE Ib(x + y)l” dy < + so. 

Proof. By assumption the process b(X,-(0)) is Z-integrable and thus P-a.s. one has 

Ib(X,-)(“ds < + a3 for all t > 0 

owing to Theorem 3.1, (a) of Kallenberg (1992). 
Now denote by A the process defined as follows, for all t 

A, = I b(X,-) 1’ ds. 

Becauses of the random time change representation theorem of stable integrals (see 
Theorem 4.1 of Kallenberg), there exists an a-stable motion (2, W) on an extension of 
the underlying stochastic basis in general, so that ~,,,,,b(X, )dZ, = zA,, thus 

X, = x + 2,, for all t 3 0, (2.31) 

holds. 
We consider all random variables as defined on this extension which we also denote 

by (Sz, F, K, P). Let T denote the right-inverse of A, i.e., for all t 3 0 

T, = inf{s 3 0: A, > t}. 



By time change in the integral (cf. Lemma 1.6 of Engelbert and Schmidt. 1985) WC 
have, P-as. 

T, 3 J ” Ib(X,s)I~‘.lh(X,s)l”ds = 
i 

Y; Ih(X,)l~“dA, 
0 0 

lh(X.,,)I-“ds for all t 3 0. 

It follows from (2.31), P-as. 

T, 3 Ih(.u + Z,)I-“ds for ail t 3 0 

Because of the nontriviality of the solution we have P( (A,, > 0; ) > 0 (otherwise. 
P-as. slo. .,h(X,x ) dZ,s = 0: cf. Lemma 4.3 of Kallenberg) and therefore it follows from 
the last relation 

P ‘Ib(.y+Z,)I-‘ds<ax. 

where 7 is a finite and strictly positive random variable such that T < A,. hence 
T, < XL. on the set (A,, > 01. (The existence of such a T is assured by Theorem 37. p 
18 of Dellacherie. 1972). The conclusion follows from Lemma 1.6. 0 

Now combining Theorem 2.5 (a) and Proposition 2.29 with Proposition 2.30. by 
a compactness argument we obtain the following extension of Engelbert and Schmidi 
theorem (cf. Theorem 4 of Engelbert and Schmidt, 1981 or Theorem 2.2 of Engelbert 
and Schmidt, 198.5). 

Theorem 2.32. Consider Eq. (2.1) vvith respect to un y-.stable motion Z with 1 < x < 2. 
Then the following properties are equiuulent: 
(a) For euer~’ .Y E R there exists u nontrit+al (2.3) solution c$‘(2.1) stcwtirlq ,fkm the, 

point x. 
(b) The function lh/m” is locully inteyrahle. 

3. “Local” existence conditions 

Begin by giving the following 

Definition 3.1. Let I = ]u, c[ (resp. I = [LI, c]) denote an open (resp. closed) interval ol’ 
the real line with - z < u < L’ < + CC (resp. - ~1 <u < c < + x) and .Y a real 
number in I (resp. in the interior of I). A process (X. IF) defined on a stochastic basis 
(Q, .F, F. P). is called a solution cf (2.1) on the interoal I stwtiny jbn x, if there exists 
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an z-stable motion (Z, F) such that 

exists for every t 3 0, where 

5 = inf {s >, 0 : X,$1) 

is the first exit time of I for X and such that, up to P-equality 

X tAT =x+ b(X, )dZ, for all t 3 0. 

Definition 3.2. A solution (X, F) of (2.1) on ]u, v[ (resp. [u, v]) starting from x in ]u, v[ 
(resp. in the interior of [u, v]) and defined on (Q, 9, F, P) is termed triuial if 

P({X,,, = x for all t 3 0)) = 1, 

T denoting the first exit time of the interval ]u, v[ (resp. [u, u]) for X. 

The above definitions clearly extend Definitions 2.2 and 2.3: take ]u, v[ with 
U=-W,C=+x. 

Remark 3.3. In the case of a solution (X, F) on ]u, U[ (resp. on [u, c]) the condition of 
nontriviality is equivalent to the following one: There exists a real number E > 0 such 
that]x-E,x+E[c]U,U[and 

where z is the first exit time of ]u, a[ (resp. [u, v]) and z, is the first exit time of 
[x - e, x + c] or, in an equivalent way, the first exit time of ]x - c, x + e[ for X. 
This is easily checked showing that triviality (3.2) is equivalent to the contrary of the 
just stated condition. 

Now we have a “local” version of Theorem 2.5 which is based on the just given 
definitions and completely unifies the cases 0 < x < 1 and 1 < x < 2. 

Theorem 3.4. Consider Eq. (2.1) with respect to an x-stable motion Z such that 
0 < M < 1 or 1 < SI < 2. Let x be a real number. Assume that there exists a real number 
8 > 0 such that 

f denoting the cc-stable transition density. 
Then there exists a nontrivial solution of Eq. (2.1) on the inter& [x - E, x + E] 

starting from x. 



The proof is an easy consequence of Theorem 2.5 and of the following: 

Proof. Fix any t with t > c and set a( ) z= h(u + .). We have 

1 
lfl(y)I” f(S,?‘)dJ ! 

where owing to the assumption. 6, 0 < 6 < E has been chosen so that 

(3.7) 

Using the scaling property we see that ,f( .;) is continuous and strictly positive on 
IO. + y_[ x R. so there is strictly positive constant c’ such that 

/‘(.L .r) d Cf(d, I’) (3.X) 

for all couples (s, y) with 6 < s < t, - c < y < + L 
Combining (3.7) with (3.8) we see that the last integral in (3.6) is finite. Since ii < I: 

also the first integral on the right-hand side of (3.6) is finite. Conclusion follows. 0 

Proof of Theorem 3.4. Set S, = [x - c. .Y + E] and define the function 5 as follows: 

RI’) = h(J). ls,(l’) + 1 l.y(L’)~ .vEW. 

Owing to the last lemma, 5 satisfies condition (H) (2.4) with respect to s. Since 
E clearly satisfies also the second assumption in (b) of Theorem 2.5, there exists 
a nontrivial solution X of equation 

dX, = h(X, m) dZ, (3.9) 

such that X,, = 9. 
Now, if 7 denotes the first exit time of the interval S, for X, for all t < T. X, ES, hence 

X, E S, holds. As a consequence, on the set (t < m;c_ ), X, E S,, holds and thus, for each 
t > 0. on the stochastic interval [0, t A T] we have 5(X,$-) = h(X,- ). It follows. up to 
P-equality 

X ,A7 = 9 + 
I 

b(X, )dZ, for all t > 0. 
]n.I”r] 

P denoting the measure on the space where the solution is defined. 
Thus X is a solution of Eq. (2.1) on the interval S, starting from .Y. 
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Moreover, since X is a nontrivial solution of Eq. (3.9) (i.e. a nontrivial solution 
defined for all t 3 0), by Remark 3.3 there exists a p > 0 such that 

w7, -=c a>) > 0 (3.9) 

where zp is the first exit time of [x - p, x + p] for X. 
As a consequence, if p 3 E relation 7 d z,, implies P( (7 < m}) > 0; if p < i-: then 

]x - p, x + p[ c ]x - e, x + a[ and in both cases X is a nontrivial solution of (2.1) 
on S, because of Remark 3.3. 0 

Corollary 3.11. (a) Consider Eq. (2.1) with respect to an a-stable motion with 1 < u < 2. 
Let x E R be such that there exists a real number e > 0 with 

s 1 

I~I<& I& + ~4” dy < co. 

Then there exists a nontrivial solution of Eq. (2.1) on the interval [x - E, x + E] 
starting from x. 

(b) Consider Eq. (2.1) with respect to an ‘x-stable motion with 0 < a < 1. Let x E R be 
such that there exists two real numbers t: > 0 and 6 > 1 with 

1 

Ib(x + ~41” dy < co. 

Then there exists a nontrivial solution of Eq. (2.1) on the interval [x - 8, x + E] 
starting from x. 

Proof. As in the proof of Proposition 2.29 and using (2.27) in case (a), (2.28) in case (b), 
one shows that the assumption of the last theorem is verified. 0 

Now we prove a necessary condition for “local” existence in the case 1 < c( < 2. 
First we state the following: 

Lemma 3.12. Let u, v be real numbers with u < v. Let X be a nontrivial (3.2) solution of 
Eq. (2.1) on the interval [u, v] starting from a point x in the interior of [u, v]. Then 
X constitutes a nontrivial solution of (2.1) on the open interval ]u, v[. 

Proof. By definition, clearly X constitutes also a solution of (2.1) on the interval ]u, a[. 
So it suffices to verify that X is nontrivial as a solution on ]u, v[. 

Denote by ? (resp. 7) the first exit time of [u, a] (resp. ]u, v[). Then 7 < Z. 

Because of the assumption and Remark 3.3 there exists an E > 0 such that 
]x - E, x + a[ c ]u, v[ and P({Z < co)u{r, < co}) > 0,7, being defined as 
in (3.3). But the relation z d Z implies (7 < CG> c (7 < cx)}: it follows that 
P( {z < a}u{z, < co}) > 0 and X is a nontrivial solution on ] u, v[ owing to the same 
Remark 3.3. 0 



Proposition 3.13. Let 1 < IX < 2. Let I = ]u. c[ or I = [u, P] denote an intercal of rither 
,form considered in Dgfinition 3.1 and .x he a point in the interior of’ I. Assumc~ that thrrc 
exists a nontriaial solution of (2.1) 011 the inter& I .startiny ,fk)m x. 

Then there exists a strictly positire reld number t: such that 

Proof. Consider first the case of a solution on ]u, c[. Let (X, [F) denote a solution 
defined on (Q, 9, IF, P). By assumption. for all t > 0 we have 

X ,‘\T = s + 
r 

b(X.5 1 d-L (3.14) 
]O.rAIl 

T denoting the first exit time of ]u, I,[ for X. 
Set I = Ju. c[ and define the function i; as follows: 

i;(J) = h(y)l,(y). 

Since. for all y, $( y)( < Ih( it’s clear that i,O,lATlh(XS )dZ, exists for all t > 0. 
Moreover, for every s < Z(QI), X,(U) is in I and thus h(X, ((II)) = 6(X, (~1)) for all 
s < T(VJ) up to a j,-null set. It follows ~,0,,,,,6(X, )dZ,, = J,o,t,,,h(X,\ )dZ,. hcnct-. 
because of (3.14). 

for all t. up to P-equality. 
Now set. for all t 3 0 

When z < YI , note that X, is in I’, hence 6(X,) = 0, z( Y, ) = 0 for all s > T and from 
(3.15) we obtain 

Y, = u + s i;(Y,m)dZ, = 
s 

K(Y.7 )dZ, 
1O.f A r] JO. II 

for all t,P-a.~. So (Y, F) is a solution of the same equation as (2.1) but with ‘; as 

a coefficient and this solution turns out to be nontrivial because of Definition 3.2, the 
assumption on X and the very definition of Y. Because of Proposition 2.30 there exisls 
a real number 6 > 0 such that 

The conclusion follows in the present case. because of the definition of F. 
In the case of a solution on the closed interval [u, 1.1 it suffices to use the above 

lemma. ??
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Remark 3.16. Owing to the definition of 6, in the above proposition clearly F cannot 
be greater than the distance of x from the boundary of the interval. 

Combining the above proposition and Theorem 2.32, by using a compactness 
argument and Remark 3.3 we directly have the following theorem. 

Theorem 3.17. Consider Eq. (2.1) with respect to an z-stable motion Z with 1 < x < 2. 
Then the following properties are equivulent: 

(a) For every x E R there exists a nontrivial (2.2) solution starting from the point x. 
(b) For every x E R there exists an interval I, (of either form considered in (3.1)) 
containing x in its interior and a nontrivial solution on I, starting from x. 
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