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a b s t r a c t

Poly(ε-caprolactones) (PCLs) belong to the first generation of synthetic aliphatic polyesters. Their
biodegradability motivated their extensive exploration as resorbable materials, particularly in controlled
drug release applications. While PCL fell out of fashion due to the increasing popularity of shorter chain
polyglycolides and derivatives, there has been a noticeable renewed interest in ε-caprolactone derived
components for copolymer systems with advanced functions in the last decade or so. PCL has particular
properties that are attractive for the design of tunable biomaterials such as slow crystallization kinetics
and lowmelting temperatures in the physiological range. Slow degradation rates, with relatively minimal
acid generation, can be valuable for prolonged drug release or longer-term stability of implants. Herein
we cover recent developments of PCL chemistry, focussing on innovative uses of ε-caprolactone-based
segments in sophisticated polymer architectures such as multiblock copolymer networks, and micellar
systems. Such polymer constructs are of high interest for biomedical applications.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Poly(ε-caprolactone) (PCL) is one of the most important and
widely studied degradable polymers with a history dating back to
the very first synthetic polyesters in the 1930s. It is a saturated
aliphatic polyester with hexanoate repeat units, and can be classed
as semicrystallinewith degrees of crystallinity up to 70% depending
on weight average molecular weights (Mw) typically ranging from
3000 to 800,000 g mol�1. At higher molecular weights, crystallinity
is reducedwith increasingmolecular weighte due to chain folding,
such that atMw¼ 200,000 gmol�1, 33% crystallinity is observed [1].
One of the first booms in interest in PCL came about when it was
discovered that PCL materials could be completely degraded by
bacterial and fungal enzymes making it of particular interest in
biodegradable material applications. In addition to expected
degradation by esterases, there is much evidence of PCL being
susceptible to enzymatic degradation by lipase enzymes [2].
Degradation is possible within the body due to the ester bonds
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chemical lability towards hydrolysis, but the rate of ester hydrolysis
under physiological conditions declines sharply as the number
of chain carbon atoms increases. This became a factor in the
movement away from PCL materials for degradable biomaterial
applications; relative to the a-hydroxy alkanoates such as poly-
glycolides, PCLs degrade so slowly in the body it is difficult to gauge
long term toxicities from degradation. PCL has a very low glass
transition temperature and shows elastic behaviour at room tem-
perature. In addition, relatively low melting temperatures, of
around 60 �C, make PCL materials easy to fabricate or process into
highly structured forms such as foams prepared in conjunction
with super-critical CO2 [3]. PCL is highly soluble in a range of non-
polar solvents and is well known to be soluble with a wide range of
other polymers for effective blending [4,5].

The degradation of PCL is complicated by the presence of
distinct crystalline and amorphous domains, as access of water
molecules into a bulk polymer is an important factor governing
degradation rate in systems that undergo bulk hydrolysis. As water
is able to diffuse in the amorphous regions of PCL, erosion does
occur in bulk, as opposed to surface only. As has been observed
in vivo, degradation occurs by an enzyme independent hydrolysis
of exposed amorphous regions to liberate lower molecular weight
crystalline fragments (Mw< 3000 gmol�1), which have been traced
to intracellular degradation with the sole metabolite being 6-
hydroxycaproic acid. Due to the more hydrophobic nature and
 license.
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less frequent ester linkages of PCL relative to polyglycolides, the
release of acidic hydrolysis byproducts is reduced. This could cause
less inflammatory responses in implant materials but the process is
difficult to study and costly when considering that full degradation
of PCL implants can take a number of years. Multiple studies point
toward PCL-based materials having good biocompatibility. Despite
reservations on the long term fate of PCL as a biomaterial, as
covered in recent literature, there has been a marked upwards
trend in investigations of such materials as particulate drug de-
livery vehicles, in cell cultivation, and in implants for regenerative
medicine and drug release [6]. In addition, the rheological prop-
erties of PCL have also been valuable to studying the very complex
and poorly understood principles of polymer crystallization [7].

Although it is feasible to produce PCL by direct condensation of
6-hydroxycaproic acid, by far the most standard method for large
scale synthesis of highmolecular weight, low dispersity polymers, is
via ring-opening polymerization of the 7membered ring cyclic ester
ε-caprolactone. Cyclohexanol can be oxidized by microorganisms to
produce a mixture of ε-caprolactone and 6-hydroxycaproic acid. The
most economical route to ε-caprolactone however comes from
BaeyereVilliger type oxidative ring expansions of cyclohexanone
(Scheme 1). There are some reports of producing PCL withMw up to
10,000 g mol�1 by enzymatic means or by vigorously forcing
removal of condensation byproducts to drive the equilibrium. The
ROP polymerization chemistry of PCL largely mirrors that of other
common lactones and dilactones such as glycolide and as such a
large amount of research has been conducted in optimizing pro-
cedures. Anionic, cationic, and nonionic-nucleophile initiators can
be used although problems with back-biting exist. Recent research
seeks to utilize supramolecular interactions to enhance polymeri-
zation control by organocatalysis, or by using crown ethers to
modulate counterion influences in anionic polymerization. Enzy-
matic methods are becoming more popular, screening lipase en-
zymes from various organisms. The method of choice though is to
use a metal-based catalyst to polymerize ε-caprolactone by
coordination-insertion mechanism [8,9]. Metal complexes based
around tin and aluminium are particularly effective in inhibiting
backbiting and allowing very high Mw PCl (up to 800,000 g mol�1)
with polydispersity approaching 1.1. These have certainly been used
extensively in lactone ROP chemistry. Tin(II)octanoate and alumi-
nium(III)isopropoxide are the most used catalysts but this is a rich
field with much effort going into optimizing specific reactions and
mechanisms, transition metal catalysts, and rare earth metal cata-
lysts. Synthetic methods for PCL have been covered inmore detail in
recent reviews (Scheme 2) [10], including detailed mechanistic
overviews [8,9].

It is then clear that PCL is an ideal starting point for fabrication of
synthetic materials for modern applications. In a quest to further
tailor material properties towards specific aims, copolymers of PCL
have been investigated for a range of comonomers by numerous
Scheme 1. Most common synthetic routes to ε-caprolactone monomers.
synthetic methods [11]. In the fields of tissue engineering and drug
delivery, PCL-based formulations as copolymers or as blends with
synthetic or biopolymers have received particular attention [12].
Of note, various investigations into di- and tri-component polyesters
have been conducted in efforts towards combining the elasticity of
PCL and the faster degradation times of the polyglycolides [13], or
polycarbonates [14]. The material properties of copolymers such as
PGLC (poly[glycolide-co-(L-lactide)-co-(ε-caprolactone)]) and PLC
(poly[(L-lactide)-co-(ε-caprolactone)]) were investigated [15]. Intro-
ducing a relatively low proportion (<10%) of caproyl units served to
lower glass transition temperatures to below or around body tem-
perature,which enabled use as drug releasing implantmaterials. Due
to the obvious differences in reactivities (diglycolide> dilactide> ε-
caprolactone) the abundance of homopolymer domains on PGLC
chains is difficult to avoid and lead to higher than expected crystal-
linity. It was found that using Zr(Acac)4 as a catalyst gave more
transesterification than the standard Sn(Oct)2 which leads to more
amorphous materials with more easily controlled degradation rates
and thermal transition temperatures [16]. PGLC copolyesters with
very defined sequences have beenprepared by polymerizing distinct
“segmers” of known composition [17]. This allowed for less ambig-
uous sequence analyses by NMR methods and insightful in-
vestigations into polymer sequence structure influence on thermal
transitions.

2. Content of the review

Applications of PCL as a bulk material are numerous, and have
been the subject of recent reviews [6,12]. This work will focus on
ε-caprolactone derived oligomeric components for building
advanced polymer architectures (oligo(ε-caprolactone); OCL).
Scheme 3 illustrates a selection of such architectures, which will be
discussed in the following. It is in such areas that ε-caprolactone
chemistry is attracting a great deal of interest. For the review
structure, sections covering the following areas are described:

- Telechelic oligomers and end group functionalization
- Multiblock copolymers
- Supramolecular polymers
- Star-shaped and miktoarm polymers
- Polymer networks

Additionally, some discussion will be made of ε-caprolactone-
based polymers for functional materials such as in drug delivery or
as shape-memory polymers.

3. Recent advances in ε-caprolactone derived polymer
architectures

3.1. Telechelic oligomers and end group functionalization

As an important note as to terminology, telechelic polymer diols
may be sometimesmore appropriately referred to as oligomer diols,
as the free end groups play a significant role in the chemistry of the
materials. The distinction should be made depending on the func-
tional use of a telechelic segment, which is often dependent on the
chain length. Shorter chains (average molecular weight approxi-
mately <5000 g mol�1), prepared as segments for multiblock co-
polymers may be termed as oligomers, although the distinction is
not always made in literature. OCL diols, generally prepared by
ε-caprolactone ring opening initiated by a low molecular weight
diol [18,19], are versatile telechelic segments with widespread uses
in polyurethane chemistry [20]. It is also possible to prepare co-
oligoester diols from diol initiators, by ring-opening polymeriza-
tion of ε-caprolactone with cyclic diesters like diglycolides or other



Scheme 2. Most common synthetic routes to PCL.
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Scheme 3. Different advanced polymeric architectures employing PCL segments. PCL
segments are represented by red polymer chains.
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reactive lactones [21]. Depending on conditions employed, random,
block, or statistical copolymer sequence structures can be prepared
with tunable thermal properties and degradation profiles. In a study
of copolymers of ε-caprolactone, diglycolide, and L,L-dilactide, there
is a strong correlation between glass transition temperature varying
from e 60 �C for OCL homopolymer diol and 40 �C for copolymer
diols with high lactate content. Melting temperatures of crystalline
domains are also decreased in copolymers. However, above certain
glycolate/lactate contents, only amorphous diols are formed and
melting transitions are not observed. The degradation rate is
increased by incorporation of the hydrolytically more labile ester
bonds such as from a-hydroxy ester subunits. OCL diols can also be
accessed directly by using a reductive initiator for ring opening such
as Nd(BH4)3(THF)3 [22]. An alternative route to ABA block co-
polymers with PCL as the central block follows the ring opening of
caprolactone with a monovalent initiator such as poly(ethylene
glycol) monomethyl ether (mPEG), and then subsequent conden-
sation of mPEG-b-PCL terminal alcohols with a diisocyanate [23].
Multiblock copolymers can be prepared bycondensation of PCL-diol
with PEG-bis-chloroformate with molecular weights as high as
100,000 g mol�1 achievable [24]. OCL diol macromonomers have
also been crosslinked as silylethers by a palladium catalyzed
dehydro cross-coupling reaction with a bis-silylbenzene [25]. The
resulting materials had stepwise degradation profiles due to the
relatively labile silylether bond. Chain extension of OCL diol and PEG
using fumaryl chloride leads to a variety of multiblock copolymers
which can be crosslinked photochemically to produce promising
materials for tissue engineering applications [26]. Novel procedures
have also been developed to functionalize OCL with electrophiles
such as benzaldehyde and naphthoylchloride after deprotonation
with lithium diisopropylamide [27].

OCL-based telechelics with a range of functional end groups are
accessible from the parent alcohol (Scheme 4). Condensation of OCL
diol with nitrophenylchloroformate and subsequent reduction
gives an amino terminated telechelic macromolecule which can be
extended by ring-opening polymerization with various amino acid
N-carboxyanhydrides to give ABA polypeptide triblocks with an
OCL core [28]. An alternative route to diamino telechelic PCL is the
esterification of the terminal hydroxyl groups with protected
glycine and subsequent deprotection [29]. A less conventional ac-
cess to diamino OCL is possible via capping OCL terminal diols with
isophorone diisocyanate via carbamate linkage [30]. Under the
correct conditions only one isocyanate of isophorone reacts,
resulting in an isocyanato functionalized telechelic. Hydrolysis of
the remaining isocyanate groups gives the free amines which were
used to form ABA triblock polymers of polycaprolactam and OCL.
Polypeptide triblocks were again produced via this method as novel
biomaterial candidates. Methacrylate groups have been appended
to OCL diol by reaction with isocyanatoethyl methacrylate; the
resulting telechelics could be photocrosslinked [31]. Nitroxide
mediated radical polymerization of OCL diacrylate with hydrox-
ymethyl methacrylate (HEMA) was used to produce the triblock
poly(HEMA-b-CL-b-HEMA) in a controlled fashion [32].

Monofunctional PCL initiated by aluminium isopropoxide was
end group functionalized by quantitative esterification of the ter-
minal alcohol with benzyl carbamate (Z) protected glycine or 6-
aminohexanoic acid [33]. After Z deprotection the resulting PCL
amine group was reactive towards various electrophiles. Alterna-
tively, direct initiation of ε-caprolactone ROP with t-butyl carba-
mate (Boc) protected aminopropanol catalyzed by ZnEt2
successfully led after deprotection to amino functionalized PCL,
which was used to prepare poly[(ε-caprolactone)-b-glutamate]
amphiphilic polyesterepolypeptide (Scheme 5) [34]. These block
copolymers were able to aggregate to form micelles with implica-
tions for controlled release applications. Epoxy functionalized PCL
could be formed by initiationwith glycidol catalyzed by lipase [35].
The subsequent monoglycidyl PCLs were esterified through the
terminal hydroxyl group with succinic anhydride and the resulting
carboxylic acids could react with the epoxy groups at elevated
temperatures, yielding branched structures. PCL azide can be pro-
duced by ROP initiated by ethylaluminium 12-bromo-1-dodecanol
with subsequent nucleophilic displacement of bromide with so-
dium azide [36]. Grafting of PCL chains onto buckminsterfullerenes
has been achieved via this method, leading to photoactive nano-
hybrid materials when electrospun into fibres with PEG-b-PCl
copolymers. A related method of grafting PCL chains onto buck-
minsterfullerenes proceeded via the PCL amine derived from the
aforementioned azide by hydrogenation [37]. PCL can also be
esterified with pentynoic acid containing an alkyne group which is
a versatile substrate for copper catalyzed “click” cycloaddition to
azides [38]. Alternatively, alkyne bearing PCL can be prepared by
ROP initiated by 4-pentyne-1-ol in the presence of a rare earth
catalyst at low temperature [39]. Intricate star shaped block
copolymer architectures have been formed using click conjugation
[40,41]. The preparation of thiol functionalized PCL is also possible
through either initiation of ROP by a protected thiol-containing
alcohol, or by appending a protected thiol group to PCL alcohol
by esterification [42]; more recently, these transformations have
been performed without needing thiol protection by using a lipase
enzyme [43].

Methods to introduce chain ends with living polymerization
initiators have been developed [44e46]. Conversion of the terminal
PCL alcohol to a methyl methacrylate ester provides a substrate
which undergoes ATRP copolymerization with dimethylamino
methacrylate (DMEAMA) to afford the graft copolymer
poly(DMEAMA-g-CL) [47]. In the same study, aiming towards
amphiphilic copolymers, PCL esterifiedwith bromobutyric acid was
used as a macroinitiator for ATRP to produce the block copolymer
poly(CL-b-DMEAMA). Much recent attention on living polymeriza-
tions has focussed on the synthesis of exotic star polymer archi-
tectures. In early work, star-shaped PCL was end group
functionalized with bromobutyrate containing dendrons which
served as a macroinitiator for the ATRP of various methacrylate
monomomers or comonomers leading to a range of block
copolymers with very narrow polydispersity [48]. Nanoaggregate-
forming triblock copolymer amphiphiles have been prepared
using this methodology based around PCL stars grown from a
hyperbranched poly(2-hydroxyethyl methacrylate) core; an outer
shell of 2-polydimethylaminoethyl methacrylate or poly-t-butyl
methacrylate was appended by ATRP [49]. Unimolecular micelles
have been prepared by appending a dense poly(ethylene glycol)



Scheme 4. Synthetic routes to PCL-based telechelics.
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methacrylate shell to a hydrophobic star shaped PCL core by ATRP
[50]. The method is proposed as a straightforward alternative to
standard PEGylation techniques which may require prohibitive re-
action conditions. This chemistry has been extended to include the
polymerization of styrene derivatives [51,52]. Hydrophilic meth-
acrylamide shells have been added to PCL cores with thiol end
groups by free radical polymerization of N-(2-hydroxypropyl)
methacrylamide [53].

3.2. Multiblock copolymers

3.2.1. Synthetic block copolymers
Amphiphilic block copolymers of PEG and PCL were introduced

in the 1970s and since attracted considerable attention (Scheme 6)
[54]. PCL-b-PEG-b-PCL triblock copolymers prepared by standard
ring-opening polymerization of poly(ethylene glycol) show inter-
esting thermosensitive solegel behaviour in aqueous solution
[55,56]. Studies reveal that such transitions are dependent on block
lengths and are governed largely by the crystallization kinetics of
PCL [57]. Such behaviour is based upon the microphase separation
of such polymers and is closely related to their heavily studied
micellization. Hydrophobic drugs can be loaded within PCL-b-PEG-
b-PCL micelles with potential for controlled release [58]. Such
polymeric micelles showed minimal in vitro toxicity and were
hemocompatible; cellular uptake was found to depend on polymer
architecture in a comparison between triblock polymers and cor-
responding amphiphilic star polymers [59]. A more controlled
synthesis of the ABA triblock copolymer has been developed via
ring opening polymerization of ε-caprolactone with a macrocylic
tin-alkoxide PEG initiator. The resulting telechelics were used as
components of drug releasing polymer networks [60]. With regards
to studying tissue engineering aspects, it has been shown that PEG-
b-PCL diblock and ABA copolymers degrade more rapidly than the
PCL homopolymer due to an increased hydrophilicity and water
uptake in PBS buffer [61]. However, there is evidence that PEG
blocks have less effect on enzymatic degradation rates of PEGePCL
block copolymers [62].

Ring opening polymerization initiated by monofunctional
methyl poly(ethylene glycol) (mPEG) leads to diblock copolymers
which have been extensively studied inmicellar systems. In a series
of studies, lower molecular weight amphiphiles such as mPEG17-b-
PCL5 have been found to influence cell membrane fluidity and effect
membrane proteins relevant to drug uptake and bioavailability
pathways [63,64]. There is evidence that these copolymers can
inhibit the expression of certain glycoproteins, thus suppressing
multidrug resistance in cancer cells [65]. mPEG-b-(PCL-ran-PLLA)
copolymers have been investigated as injectable in situ forming
gels [66]. These copolymers undergo solegel transitions around
body temperature and degrade over a much longer timescale than
poly(a-hydroxyalkanoate) copolymers such as mPEG-b-PLLA. Small



Scheme 5. Methods to introduce reactive functionality to PCL terminus.

Scheme 6. Linear (Section 3.2.1) and star shaped (Section 3.4.1) architectures derived by ROP.
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Scheme 7. Multiblock copolymer thermoplastic architecture, with crystallizable poly
[(3-R-hydroxybutyrate)-co-(3-R-hydroxyvalearate)] hard segments and poly[(ε-capro-
lactone)-co-glycolide] soft segments containing easily hydrolysable ester bonds.
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amounts of PLLA (<10%) were incorporated in the polyester chain
to allow for controlled degradation times. Gelation and immuno-
genicity tests were conducted in vivo with favourable results. The
surface active properties of mPEG-b-PCL were studied at the chlo-
roform/water interface and compared to the novel amphiphilic
graft copolymer PCL-g-PEG [67]. Interestingly, the graft copolymers
at similar compositions had comparable surface activity. These PCL-
g-PEG surfactants were evaluated as “stealth” conferring stabilizers
of hydrophilic PLLA nanoparticles with consequent reduction of
serum protein adhesion in vitro [68]. Star shaped amphiphilic A2B
copolymers (PCL)2-b-PEG can be synthesized by ring opening
polymerization of ε-caprolactone onto an end modified mPEG
diol [69].

Block copolymers of PCL and PLLA are difficult to handle due to
phase separation of both crystalline hydrophobic regions creating a
brittle material with unfavourable properties. An interesting
approach to circumvent this was reported by forming polymer
chain inclusion complexes with a-cyclodextrins prior to polymer
coalescence, with subsequent degradation of the cyclodextrins
from the final material [70]. A relatively low crystalline product
resulted which had dramatic influence on enzymatic degradation
rates; PCL-b-PLLA formed via inclusion complexation degraded
more rapidly than standardly produced diblocks of similar
composition as a result of the abundance of the amorphous phase
[71].

3.2.2. Polyesterurethanes
There has been a lot of interest in fabricating thermoplastic

elastomers based upon segmented polyesterurethanes (PEU) with
soft segments based on PCL-diol and oligourethane hard segments
obtained fromdiisocyanate extended by a lowmolecularweight diol
[20,72]. The urethane groups are responsible for physical cross-
linking through hydrogen bonds, and material properties can be
readily controlled by hard segment content [73,74]. Such polymer
networks were investigated for applications in tissue engineering at
an early stage; various aromatic and aliphatic diisocyanates with
different chain extenders could be incorporated [75].

Highly tunable multiblock copolymer systems with adjustable
degradation behaviour and mechanical properties were obtained
by co-condensation of poly[(3-R-hydroxybutyrate)-co-(3-R-hydro-
xyvalearate)]-diols and poly[(ε-caprolactone)-co-glycolide] diols
with low molecular weight diisocyanate as junction unit. The
average molecular weights of the telechelic diols ranged from
around 500 to 3000 g mol�1 [76] (Scheme 7). The mechanical
properties of such multiblock copolymers are governed by the
weight content of the crystallizable poly(hydroxy butyrate) hard
segments. The presence of glycolide units in the soft segments
could increase degradation rate. The ester bonds between two
glycolide units are the most easily hydrolysable links in the final
architecture and are therefore named ‘weak links’. In this way the
elastic properties and degradation rate could be controlled almost
independently from each other. Low molecular weight diols con-
jugated with a fluorescent dansyl-based moiety could be incorpo-
rated into such PEU systems in order to study degradation
behaviour relevant to biomedical applications [77]. This also serves
as a proof of principle that other moieties, for instance bioactive
compounds, could be incorporated into such materials and subse-
quently released through degradation. A PEU system derived from
soft oligo(ε-caprolactone) segments and hard oligo(p-dioxanone)
segments was reported as a degradable shape-memory polymer,
suitable for medical devices that undergo a change in shape upon
implantation [78]. As described in more detail in Section 4.3, the
crystalline PCL-segments are able to form physical netpoints to
stabilize a second temporary shape. Melting of PCL domains
induces the recovery of the original permanent shape (shape-
memory effect). As a further example of a PEU with interesting
thermal properties, PCL and poly(u-pentadecalactone) (PPDL)
could be condensed to form ‘temperature-memory’ materials
which can be deformed at a given temperature Tdeform, then set in
that geometry by cooling. Upon reheating the deformation is
recovered once the Tdeform is exceeded [79]. PCL and PPDL are both
crystallizable. The melting temperatures associated to the crystal-
line domains can be adjusted by varying the molecular weight of
the macrodiols in the starting material mixture of the synthesis.
These parameters, alongwith co-macrodiol ratio, could be varied to
give materials thermoresponsive in the range of 30 �Ce60 �C, and
applications as temperature-memory catheters with shape shifting
capabilities were demonstrated.

Material hydrophilicity can be controlled by incorporating PEG-
diols or pluronic PEG-b-PPG-b-PEG-diols alongside PCL-diol in
variable ratios [80]. This has implications in controlling degradation
rates with generally the more hydrophilic networks undergoing
more rapid mass loss [81]. Detailed studies on the relationships of
various chain extenders and bis-isocyantes and mechanical prop-
erties, degradation rates, and cytotoxicity have been performed
[82]. Highly biocompatible materials can be produced and studies
show fibroblasts proliferating well on material surfaces with no
disturbance to morphology. PCL-based PEUs can be blended with
natural-based biopolymers such as plasticized starch where the
hydrogen bonding interactions between urethane groups and
starch hydroxyl groups can be manipulated to greatly increase the
mechanical properties of the starch blend and control degradation
rates [83]. Such materials are of great potential interest as biode-
gradable materials owing to the abundance of starch [84].

Stimuli-sensitive polyurethanes may be prepared by using a
functional chain extender such as the carboxylic acid containing diol
bicine [85]. Ionizable PEUs were prepared that could be cast into
elastic membranes with good mechanical strength. Reversible
swelling of the membranes was observed with increasing pH owing
to the increasing hydrophilicity of the ionized carboxyl groups. At
pH 8.5 the bulk membrane was completely disassembled as full
dissolution of the polymer chains occurs. Cationic drugs and pro-
teins were loaded into the networks with release being highly
dependent on pH and ionic strength as expected. Conversely,
incorporation of a tertiary amine containing diol can lead to cationic
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PEUs. Films prepared with dipeptide and N-methyldiethanolamine
chain extenders exhibited a cationic surface in aqueous solution,
which was shown to bind heparin (leading to a heparinized biofilm
surface) with potential as an anticoagulation material [86]. It has
been shown that bioactivemolecules can be incorporated covalently
into the polyurethane linkage as for example the amine containing
antibacterial agent ciprofloxacin [87]. During polymer degradation
the drug undergoes a slow and controlled release, potentially useful
in antimicrobial applications. A polyurethane graft copolymer was
prepared by employing a bis-isocyanate terminated poly(butyl
acrylate) [88]. When reacted with PCL-diol, segmented copolymers
were produced which aggregated into well defined nanofibers and
were studied for use as adhesives. Varying amounts of non-
polymeric bis-isocyanate could be added to alter the copolymer
composition and ratio of each polymer block.

By incorporating diamino chain extenders instead of diols,
poly(urethane urea)s (PUUR) can be produced with higher tensile
strength and moduli compared to the less hydrogen-bonded
polyurethanes. PUURs derived from PCL-diols, various diamino al-
kanes and diphenylmethane diisocyanate, were prepared and spun
into fibres with mechanical properties ideal for ligament recon-
struction tissue engineering applications [89]. Incorporation of the
elastase sensitive tripeptide motif AlaeAlaeLys as a chain extend-
ing diamine leads to an interesting class of enzyme responsive
PUURs with PCL as a soft segment [90]. A high tensile strength
material resulted and degradation studies showed that elastase, an
enzyme intimate to extracellular matrix degradation, greatly
increased the erosion rate. The surface could be functionalized with
RGD containing peptides and the proliferation of varying endo-
thelial cell lines was studied.

3.2.3. Segmented copolymers based on biopolymers
Natural biopolymers are good candidates for copolymerization,

with polysaccharides being a versatile, biodegradable, and abun-
dant pool for polymer science. Chitosans (CS) are a group of water
soluble cationic copolymers of glucosamine and N-acetylglucos-
amine derived from partial deacetylation of chitin. Graft co-
polymers CS-g-PCl can be prepared by linkage of PCL to either free
hydroxyl or free amino groups on the chitosan backbone. PCL-OH
can be directly coupled to free amine groups by carbon-
yldiimidazole coupling but it is necessary to protect the free hy-
droxyl groups of the biopolymer [91]. Amphiphilic copolymers
with up to 90 wt.% PCL were prepared and seen to aggregate into
well defined nanoparticles with a cationic surface, with potential
to bind polynucleotides for transfection. When free amino groups
are protected with phthalic anhydride, it is possible to directly
initiate ROP by standard tin catalyzed procedures initiated by
primary alcohols on chitosan; microwave heating has been shown
to aid this process [92,93]. Subsequent liberation of the amino
groups gives highly amphiphilic graft copolymers. An intriguing
direct route to chitosan functionalized with PCL through only the
alcohol groups uses cationic ring opening polymerization of CL
with methanesulfonic acid as solvent and catalyst [94]. Graft co-
polymers of variable ratio were found to show favourable low
toxicity and could be electrospunwhen blended with PCL into very
well defined nanofibres for potential tissue engineering applica-
tions. Phthaloyl protected CS was esterified with maleic ester
functionalized mPEG-b-PCL to give the graft block copolymer CS-
g-(mPEG-b-PCL) with variable compositions [95]. Upon amine
deprotection, highly defined nanoaggregates were formed in
aqueous solution, which could encapsulate hydrophobic species
and are expected to show interesting degradation profiles. Isocy-
anate functionalized PCL (prepared by selective reaction with an
asymmetric bis-isocyanate) can also be linked to amine protected
CS by carbamate linkage to give amphiphilic copolymers for drug
encapsulation and release [94]. Heteroarm graft copolymers have
been produced by sequentially linking mPEG-COOH and PCL (via
ROP) to the CS hydroxyl groups with protected amino termini [96].
The resultant miktoarm graft copolymers aggregated to form
stimuli sensitive nanoparticles with proposed switchable struc-
tural orientations depending on pH and solvent. In addition to
chitosan, PCL has been attached to starch polymers or granules by
either ring opening polymerization [97,98], or through urethane
linkage [99].

3.3. Supramolecular polymers

Although many properties of polymeric materials have some
underlying supramolecular basis (e.g. the hard segments in the
block copolymers described above), supramolecular polymer ar-
chitectures are distinct as structures of physically crosslinked mac-
romolecules bound together by moieties, which undergo specific
and strong physical interactions by non-covalent bonds [100]. Due
to the transitory nature of the crosslinks, a range of stimuli
responsive behaviours can be achieved. Typically, crosslinks are
made by complementary binding of polymer bound moieties
through hydrogen bonding or other electrostatic effects. In essence,
host/guest interactions between end-group functionalized oligo-
mers act as non-covalent chain-extenders, leading to two- or three-
dimensional architectures of higher order. In order to achieve a high
level of integrity multiple interactions must operate cumulatively.

Various examples of defined architectures based around su-
pramolecular interactions have been reported. Luminescent star
block copolymers were prepared by coordination of bipyridyl-PCL
(bpyPCL) and dibenzoylmethane-PLLA (dbmPLLA) macroligands
to a Europium ion core to give a range of homo and heteroarm
complexes such as Eu(dbmPLA)3(bpyPCL2) [101]. Thin films cast
from heteroarm complexes showed highly defined microphase
separation into lamellar structures; heating the films induced
morphological changes due to the labile nature of the metaleligand
bonds. PCL grafted onto a dipyridinylpyradizine ligand was shown
to complex Cu(I) ions in a highly stable [2� 2] grid orientationwith
4 macroligands per complex, leading essentially to a tetraarm star
PCL with metal ion core [102]. This “supramolecular click”
complexation was likened to the Sharpless/Huisgen copper cata-
lyzed click conjugation of PCL-alkyne to an azide functionalized
cyclodextrin core. PCLs attached to bipyridyl ligands have been
shown to complex Ruthenium salts to form complexes termed as
“metallopolyesters”which were incorporated into polymeric films;
applications in metallopharmaceuticals and imaging are conceiv-
able [103,104].

PCL chains are well known to complex cyclodextrins (CD) to
form pseudorotaxanes. Studies have shown that CD inclusion in
PCL films can modulate the enzymatic degradation rate as the CD
lowers the hydrophobicity of the material [105]. Star ternary
block copolymers based around a poly(ethyleneimine) (PEI) core
with PCL-b-PEG arms were subjected to a detailed study in the
ability to complex DNA and facilitate transfection [106]. Inter-
estingly, solegel transitions were highly sensitive to the amount
of a-CD added to the polymer in aqueous phase. The naked
polymer caused a turbid suspension, which could fully dissolve
at intermediate CD concentrations as the hydrophobic PCL arms
were shielded (Fig. 1). At higher CD concentrations gelation oc-
curs, presumably due to supramolecular crosslinking. DNA poly-
plex formation was also highly sensitive to CD concentration.
mPEG-b-PCL-b-mPEG copolymers were shown to undergo rapid
supramolecular hydrogelation in the presence of a-CD; as neither
component alone exhibits gelation, the system is ideal for use in
injectable hydrogel applications [107]. Such biocompatible gels
were able to slowly release encapsulated dextran as a test



Fig. 2. Schematic drawing of supramolecular polymers formed through hydrogen
bonding of ureidopyrimidinone functionalized PCL telechelics and copolymers with
poly(valerolactone). Reprinted with permission from Ref. [110]. Copyright 2007
American Chemical Society.

Fig. 1. Phase transition phenomena of PEI25k-g-(PCL2k-b-PEG2k)2.8 (a) and PEI25k-g-
(PCL1.2k-b-PEG2k)5.1 (b) upon adding a-CD solution. g is the weight ratio of added a-
CD and copolymer. Reprinted with permission from Ref. [106]. Copyright 2005
American Chemical Society.
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substrate and were able to encapsulate mesenchymal stem cells
without affecting cell morphology. A study on site-isolated
porphyrin core 4-arm PCL star polymers showed that the addi-
tion of a-CD could suppress crystallization of the PCL chains and
also increase hydrophilicity and compatibility towards peptide
drugs [108]. Porphyrin containing nanoarchitectures is of
considerable interest for targeted photodynamic therapy and
bioimaging.

Hydrogen bonding interactions can be utilized to control poly-
meric architectures with access to novel smart materials. PCL diol
telechelics were functionalized to present self-complementary
ureidopyrimidinone (UPy) quadruple hydrogen bond acceptor/do-
nors either at the terminal ends or within the middle segment of
the polymer chains [109]. Intimate mixing of such polymer chains
in different ranges led to films with widely differing rheological
properties. Similar materials with UPy functionalized PCL,
poly(valerolactone) (PVL), and PCL-ran-PVL telechelics were
investigated (Fig. 2) [110]. Intimate mixing of PCL and PVL tele-
chelics led to segmented supramolecular copolymers with rheo-
logical properties tunable by composition; in comparison, random
supramolecular PCL-ran-PVL allowed less control over thermal and
mechanical properties. Star-shaped UPy functionalized PCL with up
to 4 arms was subjected to a detailed study on the rheological
properties of supramolecular networks formed at different
composition ratios [111]. Pronounced differences in thermal tran-
sition temperatures andmechanical properties were observed with
the incorporation of reversible supramolecular linkages leading to a
very complex system [111]. A series of polyureas based upon PCL as
a component in a poly(urea urethane) were prepared and found to
organize into nanoscale fibres by supramolecular interactions
[109]. The resulting polymers could be processed into highly elastic
films with good biocompatibility and mechanical properties com-
parable to soft tissues. Oligourea conjugated dyes could be incor-
porated into the filmswith slow release dependent on the degree of
matching betweenpolyureamotifs in the polymer chains and in the
dye. Incorporation of urea-labelled cell adhesion promoting pep-
tide RGD into the films was possible. It is postulated that slow
gradient release of RGD peptide from such films could initially
promote cell adhesion and stimulate deposition of an extracellular
matrix leading to a compatible biofilm. Fibroblasts could proliferate
and adhere to the film surface comparable to cell-culture poly-
styrene. Hydrogen bonding between poly(acrylic acid) chains and
the ester linkages in PEG-b-PCL has also been used to form biode-
gradable supramolecular gels with possibilities to encapsulate hy-
drophobic therapeutics [112].
3.4. Star shaped and miktoarm polymers

3.4.1. Star shaped polymers
Ring opening polymerization by polyvalent initiators opens up

numerous possibilities for PCL star polymers which have received
much interest for various applications such as studying thermal
behaviours, unimolecular micelles, and as components for polymer
networks [113]. Simple polyvalent initiators include trimethylol-
propane, pentaerythritol and dipentaerythritol leading to 3, 4 and 6
armed stars respectively (Scheme 6) [114]. It has been shown that
the melting temperature, crystallization temperature and degree of
crystallinity reduce as the number of arms increases in compari-
sons between linear, tetrameric, and hexameric stars [115,116]; star
PCLs of more arms also crystallize slower than less branched ana-
logues [117]. Loweredmelting temperatures were also observed for
trivalent glycerol-based PCL stars, which could be end functional-
ized with maleic anhydride as potential substrates for further re-
action [118]. Thermal studies on porphyrin (8 arms) [119],
phosphazene (6 arms) [120,121], resorcinarene (4 arms) [122],
cyclodextrin (7 arms) [123], star polystyrene (8 arms) [121], and
silsesquioxane [124] (average 30 arms) star PCLs showed the same
trend of lowering melting temperatures and in many cases signif-
icantly enhanced thermal stability compared to linear polymers of
corresponding molecular weight. A silsesquioxane core was used to
form 8 armed PCL stars where the arms were able to form inclusion
complexes with a-cyclodextrin to afford novel architectures,
although star PCLs complexed less cyclodextrin units relative to
linear PCL due to steric hindrance near the core [125]. Some
physical crosslinking of stars was postulated (one cyclodextrin can
complex 2 distinct PCL chains). Porphyrin and pyrene cores have
been modified with PCL arms to effectively isolate the chromo-
phore and modify fluorescence quenching and FRET processes
[126,127]. Additionally, ε-caprolactone can be copolymerized with
AB2 monomers such as bis(hydroxymethyl)butyric acid to give
hyperbranched copolyesters [128].
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A series of 5-arm star poly(ethylene glycols) were used as
macroinitiators to prepare a range of star-shaped block copolymers
in parallel [129]. The resulting inverse unimolecular micelles were
screened for encapsulation of various guests in two phase aqueous/
organic systems. The behaviour of these amphiphilic copolymers at
the water/air interface was studied in detail and was shown to be
surface active [130]. As another polyether core, hyperbranched
polyglycerol was used as a macroinitiator to form stars with up to
52 arms of variable length [131]. Such star PG-co-PCL blocks have
been used to prepare size controlled silver nanoparticles by
reduction of encapsulated silver salts [132]. A detailed study into
the preparation of PG-co-PCL stars starting from linear and
branched polyglycerol initiators was conducted using chemical
(Zn(Oct)2) or enzymatic (Lipase B) means to promote ring opening
polymerization of ε-caprolactone [133]. The enzymatic method left
a greater proportion of sterically hindered polyglycerol hydroxyl
groups unreacted, leading to substantially different microstruc-
tures of the product.

Various other block copolymer stars have been constructed by
growing PCL chains from dendritic cores. Hyperbranched
poly(ethyleneimine) cores were used as amacroinitiator to produce
PEI-b-PCL stars with up to 270 arms [134]. Polar dyes could be
encapsulated within the formed unimolecular micelles and addi-
tionally the individual stars were found to self assemble to some
extent and encapsulate material as an aggregate; the free hydroxyl
groups on each PCL terminus could also be modified by esterifica-
tion to modify this behaviour. In a similar fashion, amphiphilic star
polymers with hyperbranched poly(ester amide) cores showed
excellent uptake of polar dyes into non-polar media with arm
length and core sizes having a large influence on observed uptake
[135]. Stars based around a dendritic poly(ether amide) core were
prepared with the PCL chains having greater thermal stability and
lower melting temperatures and crystallinity than linear analogues
[136]. The free hydroxyl termini were esterified with PEG chains to
make PEA-b-PCL-b-PEG stars with an inverse liposome architec-
ture; such stars aggregated in water to form defined nanoparticles
at low critical concentrations. Structurally related PEA-b-PCL-b-
PNIPAM stars were then studied by esterifying poly(N-iso-
propylacrylamide) (PNIPAM) to the free PCL hydroxyl termini [137].
Once again nanoparticle aggregates were formed at low concen-
tration and hydrophobic drugs could be solubilized in aqueous
systems. Interestingly raising the temperature above LCST for
PNIPAM renders the block hydrophobic leading to aggregate
disruption; drug release from such systemswasmore rapid at 40 �C
than 20 �C (LCST was observed around 32 �C). Dendritic poly-
amidoamine was used as a core to prepare structurally similar
PAMAM-b-PCL-b-PEG stars which also showed good uptake of
hydrophobic drugs in aqueous solutions below a critical aggrega-
tion concentration [138].

3.4.2. Miktoarm polymers
Very interesting complex star architectures as miktoarm or

“mixed arm” polymers are possible via utilization of orthogonal
polymerization reactions, such as ring opening polymerization,
ATRP, NMP, RAFT and click conjugation, starting from a hetero-
multifunctional core [113]. As with conventional star PCLs, A2B2
PCL-b-PS miktoarm polymers radiating from a pentaerythritol core
showed lower thermal transition temperatures and less crystal-
linity than linear analogues [139]. A basic building block for A2B
stars is the bromobutyrate monoester of trimethylolpropanewhich
present two free hydroxyl groups for ROP of CL and one initiator for
ATRP; miktoarm A2B polymers of PCL copolymerized with meth-
acrylates or styrenes were produced in an early example [140].
Typical access to ABC miktoarms can be gained by starting with a
low molecular weight initiator bearing a free hydroxyl group, an
ATRP initiator branch (e.g. bromobutyrate), and an NMP initiator
branch (e.g. TEMPO alkoxamine). Well controlled PCL-b-PS-b-PtBA
miktoarms can be produced in this fashion by sequentially growing
each chain, with PCL initiated by the free hydroxyl group in ROP
[141]. Other methods of access to ABC miktoarms utilize click
chemistry via PCL propargyl ether [142], or by initiating ROP of
caprolactone at the junction of preformed AB block copolymers
[143]. ABCD miktoarms of PCL-b-PtBA-b-PS-b-PMMA have been
prepared by sequential NMP and free-radical polymerization
addition of PS and PMMA at the junction of the PCL-b-PtBA mac-
roinitiator preformed by diels-alder coupling [144]. A further
example of an ABCD miktoarm by sequential polymerizations uti-
lized ROP for CL, RAFT for MA and click conjugation of a PEG chain
to give the PCL-b-PS-b-PMA-b-PEG miktoarm architecture [145].
Elegant access to A3B3 PCL-b-PMMAmiktoarm star was reported by
sequential polymerization on a six armed dendrimer with alter-
nating free hydroxyl and bromobutyrate end groups by ROP and
ATRP respectively [140]. Cholic acid, a carboxylic acid containing
triol steroid, was employed as a heterofunctional initiator to pre-
pare A3B PCL-b-PNIPAM with a combination of ROP and amide
coupling of PNIPAM amine to the carboxyl end [146]. The resultant
non-cytotoxic amphiphiles assembled into micelles in aqueous
systems which could encapsulate hydrophobic drugs and exhibited
thermosensitive drug release above the LCST of the PNIPAM chains
(at approximately 37 �C).

Larger systems with multiple arms are possible from polyfunc-
tional initiators. A block copolymer PCL-b-PS “macrodendron”with
AB8 architecture was prepared by sequential ROP followed by NMP
on an aromatic oligoether initiator [147]. b-Cyclodextrin can be
used as a core; chemical differentiation of the 7 primary and 14
secondary hydroxyl groups can be achieved to give A14B7 miktoarm
PCL-b-PEG facially amphiphilic polymers [148]. These structures
self assembled to produce well defined nanoparticle aggregates
which could be loadedwith hydrophobic drugs. A PAMAMmicrogel
with free amino and hydroxyl groups on the surface was sequen-
tially decorated with discrete PEG and PCL chains through the
amines and alcohols respectively [149]. With relevance to drug
loading, interesting changes in the particle structurewere observed
in varied solvents such as in water (PCL chains collapse), in chlo-
roform (PAMAM core collapsed) and in dimethysulfoxide (particle
fully swollen) (Fig. 3). Microgel cores with discrete PCL and PS arms
have also been prepared in an elegant fashion [150]. PCL with a
bromobutyrate end group was crosslinked with divinyl benzene by
ATRP leading to a core shell microparticle with free bromide “living
chain” end groups for further PS grafting to core. The resulting
particles were used to template the formation of inorganic nano-
particles. Microgels surface functionalized with discrete PCL arms
and either PS or PMMA heteroarms were produced in a similar
fashion with a range of different cores including hyperbranched
polyvinyl and hyperbranched polyester cores [151]. A wide variety
of architectures were produced with interesting degradation pro-
files depending on the composition.

3.5. Polymer networks

ε-Caprolactone derived oligomers and polymers are interesting
precursors for the preparation of covalent polymer networks due to
their crystallization behaviour. Such networks have physical be-
haviours dependent on the density of the covalent network points.
Below the melting temperature of the PCL-domains they exhibit
physical crosslinks in addition to the covalent crosslinks, which can
result in interesting thermoresponsive functions. An established
method to produce PCL-based networks relies on the covalent
photochemical crosslinking of functionalized prepolymers. PCL
diacrylate telechelics can be prepared through reaction of PCL with



Fig. 3. Solvent dependent switching of micellar structure of a PAMAM microgel with
discrete PEG and PCL chains, modified from Ref. [149]. Copyright � 2008 Wiley Peri-
odicals, Inc.
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acryloyl chloride; photopolymerization then leads to networks
having lowered melting points and crystallinity relative to the
preformed macromonomers [152]. As chain sections near covalent
network points have restricted mobility due to steric reasons,
crystallization behaviour is influenced. Degradation rates of such
materials are more rapid than linear PCL due to the lower crystal-
linity. Highly porous foams have been prepared by photo-
polymerization of PCL diacrylate in ‘high internal phase emulsion’
systems with the products showing good biocompatibility sup-
porting fibroblast proliferation [153]. PCL-based PEUs have also
been functionalized with photopolymerizable groups by incorpo-
rating hydroxyethyl methacrylate to the polymerization [154]. The
resultant polyurethane acrylates were used as injectable gel
forming systems with photopolymerization in situ.

Polymer networks derived from OCL dimethacrylates (obtained
from the parent telechelic diol), are known to show shape-memory
effects due to the interplay of the permanent polyacrylate covalent
network and the thermoresponsive oligoester units. Switching
temperatures are related to the melting temperature of the oli-
goester units, a property dependent on the average molecular
weight of the macromonomers [155]. Additionally, macroscopic
properties can be further influenced by incorporation of chain
extender n-butyl acrylate, wherein a wide range of mechanical and
thermal properties are achievable depending on crosslink density
and composition [156]. Degradable networks composed of oligo
[(ε-caprolactone-co-glycolide)] dimethacrylate and n-butyl acrylate
with varying compositions are semicrystalline at room tempera-
ture with melting temperatures variable in the physiological range
[157]. Increasing the amount of glycolate units in the parent
dimethacrylate increases degradation rate, whereas an increase of
the hydrophobic n-butyl acrylate component slows down degra-
dation. Such systems have been studied for uptake and degradation
promoted release of drugs in vitro and in vivo [158]. Crystallizable
monomethyl PEG methacrylate has been copolymerized with OCL
dimethacrylates to give covalent networks with varying chain
crystallization behaviours at different temperatures, leading to
multiple thermoresponsive phenomena.

An alternative method to produce covalently linked networks,
utilizes diisocyanate-based condensation of star shaped PCL-based
multi-ols to give (co)PEU networks, similar to multiblock copol-
ymer synthesis mentioned previously. Such approaches are highly
modular, as the valency of the network point ‘stars’ can be modi-
fied, as well as the lengths of the polymer chain arms, and the
chemical composition of copolymer systems. Star shaped PCL and
PPDL segments, prepared from triol and tetraol initiators have been
used to prepare co-PEU networks [159]. The application of two
distinct crystallizable segments in a covalent network again leads
to interesting thermoresponsive behaviours, variable by controlling
the length of the polymer chain segments. Polymer networks
subjected to constant strain underwent reversible melting-induced
contraction (MIC) or crystallization-induced elongation (CIE) at
temperatures relating to the melting temperatures of the distinct
PCL and PPDL segments (Scheme 8). Detailed investigations into
the crystallization kinetics and behaviour of such segments in
copolymer networks have been conducted in order to rationalize
the observed shape-changing capabilities of the PCL/PPDL-based
PEU architectures [160].

PCL diol can be chain extended by fumarate chloride to give a
poly(caprolactone fumarate) macromonomer containing double
bonds, which are susceptible to further crosslinking reactions [161].
Free radical initiated crosslinking in the presence of sodium chlo-
ride gave, after salt leaching, porous crosslinked materials with
good biocompatibility. Poly(caprolactone fumarate) can also be
crosslinked photochemically [162]. Three arm PCL, end group
functionalized with maleic anhydride, was photochemically cross-
linked with PEG diacrylate to give highly swellable polymer net-
works with hydrophobic and hydrophilic blocks for controlled
release applications [163]. Star shaped PCLs based around a poly-
glycerol core were end functionalized with maleic anhydride or
acrylate derivatives and crosslinked either photochemically or
thermally with a peroxide initiator to give high gel content net-
works [164].

Various other copolymer networks have been prepared by
assorted methods of physical or covalent crosslinking. PCLs were
blended with poly(trimethylene carbonate) or the corresponding
copolymers and crosslinked by gamma irradiation leading to soft
elastic networks which were shown to be biocompatible and un-
derwent controlled surface erosion [165]. Networks could be
formed by chain extension of PCL diol with bisoxazolines with the
resulting materials proving to bemuchmore sensitive to enzymatic
surface erosion compared to PCL diol alone. Semi interpenetrating
networks prepared by the crosslinking of PEG diacrylate in the
presence of PCL were studied for uptake and release of drugs with
physical parameters such as degree of swelling and degradation
rates being controlled by the ratio of macromonomers used [166].
Poly(ester anhydrides) prepared by copolymerization of sebacic
acid and PCL derived anhydrides were studied as surface eroding
films with the ability to slowly release bioactive agents for use in
antifouling coatings [167]. Physical networks resulting from blends
composed of PCL and biodegradable polymers such as chitosan
[168], and poly(D,L-lactide) [169], have also been investigated for
drug uptake and release applications. PCL stars with functional end
groups can also be used as additives to other network forming
systems such as epoxy networks to modify material properties
[170].

4. Current applications of ε-caprolactone-based polymers

4.1. Particulate systems for drug release

PCL as a biocompatible and biodegradable polymer is suitable
for long-term sustained delivery of bioactive agents over a period of
one year [171]. Products generated by hydrolysis are metabolized
by the body either via tricarboxylic acid cycle or by renal secretion



Scheme 8. Reversible shape change phenomena showing contraction or elongation of co-PEU networks prepared from star-shaped PCL and PPDL. Taken from Ref. [159]. Copyright �

2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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[172]. The major problem with some biodegradable polymers such
as PLA and PLGA is the generation of acidic environments during
degradation resulting in a pH of 2e3, which may lead to efficiency
loss of the entrapped bioactive agent [173]. Slow degradation of PCL
and the absence of acidic environment generation during its
degradation make this polymer suitable for long term drug release.
Furthermore, PCL’s high solubility in organic solvents and its ability
to blend with other macromolecules facilitate the creation of
various potential structures as therapeutic agents [174]. The semi-
crystalline nature of PCL helps adjusting the release profile of the
encapsulated agent. It has been reported that an increase in the
crystallinity in the structure reduces the permeability by
decreasing the solubility of the entrapped drug and increases the
tortuosity of the diffusional pathway [175].

Colloidal PCL-based systems have attracted great interest over
the last three decades in view of their application as drug delivery
vehicles [176,177]. Self-assembled (micellar) and particulate
structures have been widely investigated as encapsulators of
several drugs and proteins [178]. Utilization of nanocarrier agents
in drug delivery emerged from the need for new delivery vehicles
for bioactive agents which would provide the pharmacokinetic
profiles that mimic the normal pattern of those agents [179], where
the effectiveness of many of those agents, in the context of their
therapeutic index and selectivity, is restricted [179,180]. Encapsu-
lation methods enhance and prolong the stability of the bioactive
agents [181], improving the therapeutic efficiency by adjusting the
exact amount of the agent for the right therapeutic response, pre-
venting degradation and nonspecific uptake by the cells, thus
minimizing side effects [182]. The structure of a carrier systemhas a
strong impact on the loading of bioactive agents, and affects their
release, cellular internalization, and in vivo biodistribution
[183,184]. Micellar structures and micro or nanoparticles of various
morphologies allow for more control over degradation rates, drug
release behaviour, or partitioning within the body (Fig. 4) [185,186].

4.1.1. Micellar structures
The amphiphilic nature of block copolymers leads to a self-

assembled structure of various morphologies such as spherical
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micelles, worm-like micelles and vesicles [187]. Among those
morphologies, spherical micelles are the structures having a
diameter less than 200 nm consisting of a hydrophobic inner core
and hydrophobic outer shell in aqueous media, or the opposite in
non-aqueous media [188]. Choice of creating a hydrophilic or hy-
drophobic core is based on the entrapped bioactive agent’s hy-
drophilic or hydrophobic nature. PCL is one of the most commonly
used polymers to create the hydrophobic block in micellar struc-
tures for drug delivery. The development of di or triblock copol-
ymer micelles as drug delivery agents has greatly enhanced since
the beginning of the 1980s with many emerging variations in the
type of polymers used based on a hydrophobicehydrophilic block
structure [189,190]. Some examples investigated as hydrophilic
segments are poly(ethylene glycol) (PEG) [191], cationic polymers
such as poly(ethyleneimine) (PEI), poly(4-vinyl pyridine), poly-
lysine, poly(N-methyldietheneamine sabacate), chitosan [192], or
polyelectrolytes such as poly(aspartic acid) for stimuli sensitive
structures [193].

Poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL)
copolymer micelles were reported as delivery vehicles for dihy-
drotestosterone for androgen replacement therapy where many of
the oral androgen formulations have been found to have low effi-
ciency because of rapid clearance by the liver [179]. Related systems
were found to be able to deliver hydrophobic neurotrophic agents,
and stimulate neuronal outgrowth in selected cell lines in vitro
[191]. PEG-b-PCL micelles containing gold nanoparticles were
developed as a new approach for labelling biodegradable block
copolymer micelles of potential biological applications, such as
tissue and subcellular localization [194]. There is evidence that
worm-like micelles of PEO-b-PCL appear to be more promising as
nanocarriers with improved solubilization efficiency, and enhanced
stability when compared to spherical micelles [187]. Cationic chi-
tosan-graft-poly(ε-caprolactone) brush-like copolymers were
synthesized for 7-ethyl-10-hydroxy-camptothecin (SN-38) encap-
sulation as a topoisomerase I inhibitor against several tumour cell
lines [192]. A novel thermosensitive micellar structure composed of
poly(ethylene glycol)epoly(ε-caprolactone)epoly(ethylene glycol)
triblock copolymer, wherein chemotherapeutics are encapsulated,
was proposed as an injectable-gel delivery system, showing a sole
gel transition around body temperature [195]. Amphiphilic block
copolymeric micelles composed of mPEGePCL have been prepared
for indomethacin delivery [188]. The micelles formedwere less than
200 nm in diameter and exhibited efficient penetration through the
sinusoidal capillaries. Significantly, an increase of indomethacin, as a
hydrophobic drug, enhanced interactions between the hydrophobic
Fig. 4. Schematic showing PCL nanoparticle uptake by cells and consequent drug
release.
PCL blocks, resulting in a decrease of drug release. Hydrophobic PCL
was grafted onto a hydrophilic poly(vinyl alcohol) backbone to give
graft copolymers PCL-g-PVA which could assemble into nano-
structures able to encapsulate both hydrophilic and hydrophobic
drugs in different environments [196]. This is due to switching
between different self assembled states in polar or non-polar
environments.

4.1.2. Nano and microparticulate structures
Micro and nanoparticles are defined as solid spherical particles

presenting small size and volume, large surface area, ability to
diffuse and variety of size, surface chemistry, composition,
morphology and topography [172,197]. The direct preparation of
PCL in heterogeneous systems is an excellent method to prepare
nano and microscale materials with defined dimensions through
dispersion polymerization [198]. Particulate structures, which are
encapsulating various drugs (anaesthetics, antibiotics, anti-
parasites, antitumorals, enzymes, hormones, proteins etc.) [199],
have several routes of administration such as intravenous, oral,
pulmonary, nasal and ocular [200]. A commonly used method for
encapsulation of drugs within polymers such as PCL and its co-
polymers is the multiple emulsion solvent evaporation method
(Fig. 5) [197]. The desired polymer and drug are dissolved in an
organic solvent which is then emulsified in an aqueous or oil phase
containing emulsifier. During evaporation of the organic solvent,
the microspheres are hardened and can be collected by filtration
and drying [201]. The preparation and characterization of protein-
loaded PCL microparticles for oral vaccine delivery were investi-
gated, where bovine serum albumin (BSA) was used as a model
antigen for encapsulation. The study showed the BSA release from
the particles, which ensures the entrapped protein remains unal-
tered by the encapsulation process [173]. PCL microparticles are
reported in the literature and analyzed as an encapsulating agent
for the bioactive agents such as cyclosporine A (CsA) as an immu-
nosuppressive agent used primarily to reduce the incidence of graft
rejection in recipients of transplanted organs [178,202], atova-
quone [203], and amphotericin B [204], as in vitro antileishmaniasis
drugs, heparin as an anticoagulant used for the treatment and the
prevention of deep vein thrombosis and pulmonary embolism
[205], magnetic microparticles (MMP) as potential agents for utility
in magnetic resonance imaging (MRI) [206], levobunolol as an
agent used in the topical treatment of increased intraocular pres-
sure due to chronic open-angle glaucoma or ocular hypertension
[207], and felodipine, as a drug used in the treatment of hyper-
tension [197].

Both PCL homo and copolymers are used to prepare particulate
structures as drug carriers, with the high miscibility of PCL and
other polymers being advantageous. Nanoparticles were prepared
composed of nonionic methoxy poly(ethylene glycol)/poly(ε-
caprolactone) (mPEG/PCL) and amine-terminated mPEG/PCL
amphiphilic diblock copolymers with variations of copolymer
molecular weights and molar compositions of mPEG and PCL,
showing that mPEG/PCL nanoparticles with cationic charge groups
exhibited higher DNA transfection efficiencies when compared to
the nonionic mPEG/PCL nanoparticles, which is proposed as a
better potential carrier system for DNA delivery [208]. A novel
nanoparticle structure composed of a polyester and a poly-
saccharide was shown by using amphiphilic copolymers based on
dextran grafted with PCL side chains (PCLeDEX). Dextran was
proposed as an alternative to PEG to form nanocarriers where non-
specific protein adsorption is avoided [200].

Current technology necessitates the use of large amount of
organic solvents for micro and nanostructure preparation, which
should be avoided concerning environmental issues [209]. Super-
critical fluid (SCF) extraction method is proposed as an alternative



Fig. 5. Scheme showing the preparation of PCL nano/microparticles by a double emulsion method.
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to the traditional methods using organic solvents as the method
makes it possible to separate a particular component from a
multicomponent nature by the selective solvating method of the
SCF, which is due to the modification of density hence the solubi-
lizing power of the SCF with small changes in temperature and
pressure near the critical point [210]. A novel nanostructured
polymeric composite of PCL and ultra-high-molecular-weight
polyethylene (UHMWPE) was producible by using supercritical
carbon dioxide. With this method, PCL and UHMWPE could be
blended overcoming the difficulties in processing UHMWPE and
instability of PCL at elevated temperatures [211]. Another solvent
free preparation of caprolactone oligomer microspheres where
oestradiol, a hydrophobic drug, is encapsulated was reported. Mi-
crospheres were obtained by coaggregation of melted PCL and
mPEGePCL in the absence of any organic solvent and a subsequent
quenching process to 0 �C, and it was shown that the release ki-
netics of the entrapped drug was dependent on the loaded amount
[212].

4.2. Surface functionalization of PCL-based polymers

As the majority of research on PCL networks and films histori-
cally has been focussed on biomaterial applications, there are many
studies onmaterial surface interactions with biological moieties and
how surfaces can be tailored towards specific goals. A comparative
study on fibroblast and osteoblast adherence to film blends with
varying PLLA and PCL amounts was made along with films from
varied block copolymers PLLA-b-PCl [213]. All samples were suitable
for cell growth with few significant differences but certain block
copolymers showed outstanding results; surface patterning from
microphase separation can have a large effect on surface in-
teractions with cells [214]. Wettability is another important factor
governing surface interactions. Plasma treatment can be used to
incorporate carboxylate and hydroxyl groups to PCL surfaces
increasing the hydrophilicity and increasing roughness with ageing
[215]. Conversely, low surface energy hydrophobic films have been
prepared as polyurethanes based upon perfluroalkane terminated
PCLs and poly(g-t-butyl-ε-caprolactone)s [216]. Treatment of PCL
surfaces with alkaline solutions can hydrolyse surface esters and
add carboxylate functionality, thus changing the surface chemistry
markedly and increasing wettability. Absorption of common serum
proteins such as albumin, collagen and fibronectin occurs much
more readily to alkaline treated PCL membranes resulting in a sur-
face biofilm [217]. Biomarkers specific for heparin and/or insulin
were attached to plasma treated PCl surfaces by amide linkage to
give surfaces with enhanced biopolymer immobilization properties;
this had pronounced effects on fibroblast adhesion, particularly with
heparin [218]. Surface charge plays a critical role in interactions as
was investigated by studying endothelial cell adhesion to switching
positive and negative surfaces prepared by successive layer-by-layer
assembly of poly(styrene sulfonate) polyanion or collagen [219].
The initial PCL surface was rendered cationic by partial aminolysis
of surface esters by diamino alkanes. No proliferation occurred
on the anionic surface but the collagen surface was favourable
to the cells adhesion. Micropatterning techniques can be applied
to PCL surfaces, biomolecules such as chitosan and albumin were
microtransferred onto a preactivated aldehyde containing surface in
a well controlled and precise procedure [220].

Multiple techniques to synthetically adjust surfaces with com-
plex chemical modifications have been reported. In a well studied
procedure, aminolysis of estergroups by a diaminoalkane can be
used to append an amino functionalized chain, to which RGD
containing peptide sequences were conjugated. Fibroblast adhe-
sion tests were conducted on pure PCL, PCL amine and PCLeRGD
functionalized surfaces with very clear preference of cells to form
focal adhesion complexes on the peptide functionalized surface
(Fig. 6) [221]. An alternative method to include surface functional
groups utilizes copolymers of PCL and poly(g-keto-ε-caprolactone)
to introduce ketone functionality to the polymer chain which can
be transformed to a linker for further modification through
hydrazone linkage [222]. Through this process surfaces could be
modified with RGD peptide sequences or polylysines which again
had a pronounced effect on cell adhesion and surface chemistry
respectively. Poly(acrylic acid) can be grafted directly from the PCL
surface by an electron beam initiation method [223]. The resulting
carboxylate groups were conjugated to a linker and RGD peptides
attached. Poly(methacrylic acid) chains have been grafted from PCL
by photo-oxidizing the surface with peroxides which fragment into
radical initiators for graft polymerization in a controllable fashion
[224]. Such functionalization has profound effects on surface
wettability and chemistry. Biomolecules such as gelatin could be
covalently attached by amide chemistry and functionalized films
showed improved cytocompatibility. Photoinitiated polymerization
of acrylamide has been reported to prepare surface bound graft
copolymers [225]. Subsequent reduction of the polyacrylamide
chains to polyamines could be achieved, to which heparin was
conjugated by reductive amination for a 3-step biofunctionalization
procedure. Bone morphogenetic proteins could be immobilized
within the heparin coating and the whole system was used to
cultivate mesenchymal stem cells with enhanced proliferation over
non-modified surfaces. Access to a surface initiator for ATRP can be
gained by partial hydrolysis of surface PCL esters and esterification
to a bromobutyrate [226]. Poly(glycidyl methacrylate) chains were
polymerized and further reacted through the epoxy groups with
cell adhesion promoting groups such RGD peptides or collagen.

4.3. Shape-memory polymers

The “shape-memory effect” observed in polymer networks is an
interesting and potentially very useful phenomenon, in which a
material can be deformed from a permanent shape and fixed in a
temporary shape, which upon a given stimulus rapidly reverts to
the permanent shape [227,228]. The basis of this effect in ther-
moplastic shape-memory polymers is themicrophase separation of
networks into hard and switching domains. The hard segments
“remember” the network integrity of the permanent shape by
physical or covalent crosslinks. The switching domains are elastic
above a certain switching temperature, abovewhich external forces
are applied to produce a temporary shape. Upon cooling the
switching domains solidify and thereby fix the temporary shape.



Fig. 6. Scanning electron microscope micrographs (A and E PCL; B and F PCL-NH2; C and G PCL-linker-GYDGR; D, H, and I PCL-linker-GRGDY). Bar 50 mm. Reprinted, with permission
from Ref. [221]. Copyright 2010 American Chemical Society.
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The crystallization behaviour and biodegradability of PCLs have
made them particularly useful as switching segments in shape-
memory polymers with switching temperatures in a useful range
and excellent (generally up to 100%) shape recovery [78,79].
PCL-based polyurethanes are one class of materials that can show
shape-memory behaviour with the hard segments arising from the
polyurethane segments forming physical networks [229]. Multi-
block copolymers that phase segregate into hard and switching
domains are well known for shape-memory effects, particularly the
PEUs described in Section 3.2.2 and exemplified in Scheme 7.

Covalent polymer networks of the type described in Section 3.5
are also capable of exhibiting shape-memory behaviour. AB
copolymer networks prepared by photocuring of PCL dimethacry-
late and n-butyl acrylate showed excellent shape-memory effect
[156]. Changes in macroscopic properties such as reduced melting
temperature and modulus of the system were observed as the
amount of comonomer increased leading to a highly tunable sys-
tem. Homopolymer networks of crosslinked PCL dimethacrylate
also show shape-memory effect with switching temperatures and
other mechanical properties being dependent on the molecular
weight of the PCL prepolymers [155]. Triple shape-memory mate-
rials with two distinct switching temperatures and temporary
shapes have been prepared by urethane crosslinking star shaped
PCL and poly(u-pentadecalactone) segments with differentmelting
temperatures as shown in Scheme 8 [159].

Networks prepared by cross-linking multiarm polyglycerol-
based PCL stars with diisocyanates exhibited a shape-memory ef-
fect with sharp thermal transitions around body temperature. Such
networks were loaded with model drugs at the crosslinking stage
and slow controlled release was observed from the networks above
the switching temperature (37 �C) [230]. Likewise, shape-memory
materials based upon urethane linked star shaped PCLs with a sil-
sesquioxane core have been reported [231]. An interesting
approach to shape-memory networks makes use of photoreactive
cinnamic acid containing diacid chloride chain extender for block
copolymers of diol telechelic PCL and PLLA [232], or PEG [233]. The
cinnamic acid groups are crosslinked by photoinitiated [2 þ 2]
cycloaddition to form network points with switching temperatures
tuned to around 38 �Ce45 �C by controlling the prepolymer ratios
[234]. An alternative route to shape-memory materials goes via
direct crosslinking of blended polymers. Carboxylic acid terminated
telechelic PCL could be cross-linked with epoxidized natural rubber
at elevated temperature [235]. PCL blended with a poly-
methylvinylsiloxane has also been radiation crosslinked to provide
shape-memory networks [236]. It has been observed that films
derived from PCL with partial inclusion complexes of a-CD do
exhibit a supramolecular shape-memory effect as microdomains
form between crystallizable naked PCL chains and the fixed crys-
talline domains of the inclusion complex which serve to hold the
permanent shape [237].

5. Outlook

In the re-emergence of PCL as a polymer of modern interest,
much use has been found for ε-caprolactone-based segments in
advanced copolymer architectures. Here, telechelic OCLs are a
particularly versatile building block, along with ε-caprolactone-
based copolymer diols. Many methods have been developed to
substitute telechelic end groups or to utilize PCL as a macroinitiator
for block copolymer synthesis, such as by living polymerization
methods. These synthetic methods are also being applied to
biopolymer substrates to further expand the range of copolymers
under study. It is evident that there is much scope for designing
copolymer systems and architectures with highly defined material
properties.

Self assembled particulate structures such as block copolymer
micelles have been intensively investigated for drug delivery ap-
plications, and PCL chains being relatively mobile make ideal hy-
drophobic blocks. ‘Unimolecular micelles’ can be prepared
containing PCL segments as star shaped block copolymers. The
versatility of PCL chemistry is being employed in the preparation of
intricate miktoarm star polymers, where the hydrophobic nature of
the PCL chain leads to new amphiphile variants with novel be-
haviours. There have also been exciting developments in the field of
supramolecular polymers containing PCL segments, with applica-
tions such as thermoresponsive hydrogels being pursued.

There has been significant progress in medical devices
which are based on shape-memory polymers with switching
temperatures around body temperature. Uses include self
closing sutures and smart catheters. In this respect, recent advances
in PCL-based copolymer networks have shown excellent potential,
either through star shaped PCL-based PEUs, or through PCL
dimethacrylate-based systems, amongst others. Actively moving
implant materials that degrade to release a drug payload are an
example of complex multifunctional materials. Advances have also
been made in the fields of tissue engineering and implant mate-
rials, benefiting from the tunable properties of the more recent
PCL-based materials. With the renewed interest in PCL it can be
expected that commercial applications will be forthcoming in the
biomedical field. The last couple of decades have seen exciting
developments in synthetic polymer chemistry and it is clear that
PCL has a key role in the future.
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