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Aim: Angiotensin II (Ang II) interacts with AT1 and AT2 receptors and, in some vertebrates, with an Ang II
binding site showing low affinity for AT1 and AT2 receptor antagonists. This study was carried out to charac-
terize the Ang II receptor, and the presence of an angiotensin-converting enzyme (ACE) in the aorta of the
Bothrops jararaca snake.
Main method: Contraction induced by Ang I or II in aortic ring from the snake was evaluated in the absence or
in the presence of ACE-blocker or Ang II antagonists.
Key findings: Ang II analogs, modified at positions 1 and 5, induced vasoconstriction with differences in their
potencies. The relative rank order was: [Asp1, Val5] Ang II=[Asp1, Ile5] Ang II⋙ [Asn1, Val5] Ang II. ACE-like
activity was detected, as well as an Ang II receptor with low affinity for AT1 and AT2 selective receptor antag-

onists (pKB values of 5.62±0.23 and 5.08±0.25). A disulfide reducing agent almost abolished the Ang II
effect, while an alpha adrenoceptor antagonist, or removing the endothelium, did not modify the Ang II
effect. These results indicate that the B. jararaca aorta has an Ang II receptor pharmacologically distinct
from AT1 and AT2 receptors, and the vasoconstrictor effect observed is independent of catecholamine or
endothelium modulation. ACE and the AT receptor in the aorta of B. jararaca may be part of a tissue renin–
angiotensin system.
Significance: The data contribute to the knowledge of the renin–angiotensin system in vertebrate species, and
provide insight into the understanding of snake Ang II receptor characteristics and diversity.
© 2012 Elsevier Inc. Open access under the Elsevier OA license.
Introduction

Functional and molecular studies have identified two angiotensin
II (Ang II) receptors in mammalian species. They are characterized by
their differential sensitivity to the selective antagonists, losartan and
PD123319, which binds to AT1 and AT2 receptors respectively
(Alexander et al. 2008). The AT1 is involved in almost all the actions
induced by Ang II, including actions that affect body fluid homeosta-
sis, cardiovascular control, and cell growth (De Gasparo et al. 2000;
Mehta and Griendling 2007). The AT2 has been implicated in the
hearing process and vascular injury, and it has an antiproliferative
function (De Gasparo et al., 2000; Lemarié and Schiffrin, 2010), in
contrast to the AT1, which stimulates cell growth.

Additional Ang II receptor sites, not characterized as AT1 or AT2
receptors based on their pharmacological profile, have been identified
in cells/tissues as neuroblastoma, heart, adrenal, brain or liver from
vertebrate including rodents (Chaki and Inagami, 1992; De Oliveira
et al., 1995), amphibians (Aiyar et al., 1994; Bergsma et al., 1993;
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Sandberg et al., 1991), birds (Brun et al., 2001; Kempf et al., 1996;
Murphy et al., 1993) and fishes (Olivares-Reyes et al., 1997). This
receptor has high affinity for the Ang II, and low affinity for the selective
AT1 and AT2 receptor antagonists. A similar profile of a non‐AT1/AT2
binding site was recently detected in human, mouse and rat brain, but
unlike the other non‐AT1/AT2 binding sites already reported, it is
revealed only after pretreatment of the tissue with the protease inhibi-
tor, p-chloromercuribenzoate (Karamyan and Speth, 2008; Karamyan
et al., 2008a; Karamyan et al., 2008b).

The concept that Ang II is the unique active effector of renin–
angiotensin system (RAS) has changed recently (Fyhrquist and
Saijonmaa, 2008; Haulica et al., 2005). Cleavage of Ang II gener-
ates bioactive peptides as Ang 3–8 (Ang IV) and Ang 1–7,
which act on their own receptors. Ang IV is the endogenous
ligand for the AT4 receptor, which was identified initially as an
insulin-regulated aminopeptidase, and has a role in the regula-
tion of local blood flow, cognitive processes, and sensory/motor
functions (Chai et al., 2004). Ang 1–7 interacts with its receptor
to produce vasodilation and inhibition of proliferation of vascular
smooth muscle cells, and as a counter-regulatory mechanism
against some AT1 effects (Santos and Ferreira, 2007).

Several components of the RAS are present in the plasma
(angiotensinogen, dipeptidyl hydrolase similar to the angiotensin
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converting enzyme) and kidney (renin) of the snake Bothrops jararaca
(Gervitz et al., 1987; Lavras et al., 1978). Furthermore, Ang II induces a
dose-dependent increase in mean arterial blood pressure and increases
the plasma corticosterone concentration in this reptile (Breno and
Picarelli, 1992; Breno et al., 2007; Lázari et al., 1994). B. jararaca has a
circulating angiotensin converting enzyme (ACE) that produces the bio-
active Ang II from inactive angiotensin I (Breno and Picarelli, 1992). Ang
II causes a pressor response partly by a direct action and also indirectly
by stimulating catecholamine release (Breno and Picarelli, 1992). The
Ang II receptor in the cardiac membrane of B. jararaca is insensitive to
the AT1 and AT2 antagonists losartan and PD123319, respectively
(Breno et al., 2001), a pharmacological profile distinct from that charac-
terized in mammals.

Snakes are particularly interesting for studies related to cardiovas-
cular function, both because their elongated shape and also because
they had to adapt to wide range of habitats, gravitational influences
and variable demand for metabolic energy, which requires a prompt
adjustment of the blood flow (Lillywhite et al., 1997; Secor and
White, 2010; Seymour and Arndt, 2004). In our laboratory, important
endogenous systems related to cardiovascular homeostasis, such as
autonomic (Yamanouye et al., 1992), kinin–kallikrein (Abdalla et al.,
1989) and endothelin systems (Borgheresi et al., 2006), have been
characterized in some South American snakes. Although their physio-
logical function seems to be relatively well conserved, peculiarities
related to ligand or receptor structure have been detected (Breno et
al., 2007). Regarding the renin–angiotensin system, an Ang II receptor
with a distinct pharmacological profile has been characterized in the
heart of B. jararaca (Breno et al., 2001), however, its functionality,
evaluated by the activation of phospholipase C/inositol trisphosphate
(IP3) and adenylylcyclase/adenosine 3′5′-cyclic monophosphate
(AMPc) could not be found (Breno et al., 2001). Thus, this study
was undertaken to characterize pharmacologically and functionally
an Ang II receptor in the aorta of B. jararaca. It is well known that
the overall actions of RAS involve a local activity, represented by
the tissue renin-angiotensin system (Haulica et al., 2005), and
also the circulating RAS, already detected in vivo in B. jararaca
(Breno and Picarelli, 1992). To investigate a local RAS in the
aorta of B. jararaca, two main components of the cascade were
evaluated: the Ang II receptor and ACE, which is an important
rate-limiting step in generating the active peptide Ang II from its
inactive form Ang I (Fyhrquist and Saijonmaa, 2008). Moreover,
previous studies performed in rabbit and rat arteries have shown
that removing the endothelial layer modifies the contractile effect
induced by Ang II (Chen et al., 1995; Le Tran and Forster, 1996),
and that this peptide also induces vasoconstriction in the arteries
of rat, rabbit and dog or vasopressor action in domestic fowl, partly
due to the facilitation of catecholamine release (Cox et al., 1996;
Guimarães et al., 2001; Nishimura, 2001; Storgaard and Nedergaard,
1997). Therefore, in order to evaluate any modulatory action of the
catecholamine and/or endothelium-derived factors on the final Ang II
response in B. jararaca, experiments were carried out in the snake
aorta pretreated with catecholamine antagonist, and also in the vascu-
lar tissue without endothelium.

Materials and methods

Animals

Adult male and female B. jararaca snakes were captured in the
wild (São Paulo, Minas Gerais and Santa Catarina States — South
and Southeast regions of Brazil) and were identified by the Laborato-
ry of Herpetology of Instituto Butantan. Animals weighing 130–300 g
were kept as described by Breno et al. (1990). Water was offered ad
libitum, and snakes were not fed before the experiments. All the pro-
cedures involving animals were in accordance with the ethical princi-
ples in animal research adopted by the Brazilian College of Animal
Experimentation, and this work was also approved by the Brazilian
Institute of the Environment and Renewable Natural Resources
(IBAMA, License # 38-02001005104/2008).

Functional assay

Snakes were anesthetized with sodium pentobarbital (30 mg/kg,
administered into the coelomic cavity) and euthanized. Three to
eight snakes were used in the experimental treatments. A segment
of almost 5 cm of the aorta, caudal to the heart (right systemic artery
and after the junction between left and right systemic arteries), was
removed and dissected free of connective tissue. Four aortic rings
(1 cm length) were obtained from each snake aorta. The aortic ring
was suspended between two L-shaped steel hooks into a 10 ml
organ chamber containing a solution of the following composition
(mM): NaCl 147.17, KCl 4.95, CaCl2·2H2O 2.75, MgSO4·7H2O 1.21,
NaH2PO4·H2O 1.2, NaHCO3 29.6 and glucose 5.5 (pH 7.3–7.7); the
solution was aerated with 95% O2 and 5% CO2 (Yamanouye et al.,
1992). The rings were placed under 1.0 g resting tension for 60 min
at 37°C, and the isometric contraction was recorded with a force
transducer connected to a polygraph (ECB — Ampère System, São
Paulo, Brazil).

Effect of Ang II analogs, Ang II receptor antagonists and angiotensin-
converting enzyme inhibitor in the snake aorta

Three Ang II analogs ([Asp1, Ile5] Ang II; [Asp1, Val5] Ang II; [Asn1,
Val5] Ang II), with amino acid variation at positions 1 and 5, were
used to evaluate their potencies in the vascular tissue of B. jararaca.
Cumulative concentration–effect curves were obtained for each Ang
II analog, and the data were expressed in g of tension. The pD2

value (the negative logarithm of the molar concentration of Ang II
required to produce 50% of the maximum effect) and Emax value
(the maximum effect) were calculated by nonlinear regression analy-
sis for each individual cumulative concentration–effect curve, using
GraphPad Prism (GraphPad Software, San Diego, CA. USA), and are
presented as the mean±S.E.M. n represents the number of snakes
used. To avoid desensitization, only one cumulative concentration–
effect curve to Ang II was made in each aortic ring obtained from a
snake, where this was considered an individual value. Except for
this experimental group, all the other groups had [Asp1, Ile5] Ang II
as the agonist peptide.

To characterize the receptor subtype, cumulative concentration–
effect curves to Ang II were obtained in the absence (control) and in
the presence of three concentrations of the nonselective Ang II recep-
tor antagonist ([Sar1, Ala8] Ang II — 10−5, 3×10−5, 10−4 M), the
selective AT1 antagonist (losartan—3×10−5, 10−4, 3×10−4 M) and
the selective AT2 antagonist (PD 123319 — 3×10−6, 10−5, 10−4 M).
Four aortic rings obtained from the same snake were used to construct
the Ang II curve in the absence and in the presence of the antagonist
(one antagonist concentration per ring), which was added 20 min
before recording the Ang II curve. Preliminary experiments showed a
similar sensitivity to Ang II among the four aortic rings obtained from
the same snake (data not shown). The potency of the antagonist was
expressed as the pKB value, the negative logarithm of the dissociation
constant KB, which is equal to themolar concentration of the antagonist
divided by the ratio of concentrations of the agonist that produces 50%
of the maximum response in the presence and in the absence of the
antagonist minus one (Besse and Furchgott 1976). Since similar pKB

values were obtained with the three different concentrations of each
antagonist, they were averaged to give the reported pKB values.

The presence of a functional tissue angiotensin-converting
enzyme in the aorta was investigated in the absence (control) and
in the presence of the ACE blocker captopril (10−6 M), applied
20 min before recording cumulative concentration–response curves
to Ang I ([Asp1, Ile5, His9] Ang I) or Ang II ([Asp1, Ile5] Ang II).



Table 1
pD2 and Emax values for Ang II analogs in the aorta isolated from the Bothrops jararaca
snake. Data are mean±S.E.M.; the number of snakes used is indicated in parentheses.

Ang II analog pD2 Emax

[Asp1, Ile5] Ang II 6.76±0.20 (6) 1.43±0.20
[Asp1, Val5] Ang II 7.11±0.11 (8) 1.71±0.21
[Asn1, Val5] Ang II 5.92±0.09 (4)⁎ 1.44±0.23

⁎ Significantly different from the other two Ang II values, Pb0.05.
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Contribution of disulfide bridge in the Ang II receptor structure, and
influence of endothelium-derived factors or catecholamine to Ang II-
induced vasoconstriction

The presence of a functionally important disulfide bridge in the
snake Ang II receptor structure was evaluated using the reducing
agent dithiothreitol. Cumulative concentration–effect curves to Ang
II in aortic rings were compared after exposure to 0, 3, or 10 mM
dithiothreitol for 20 min. This compound abolishes or potentiates,
respectively, the response of AT1 or AT2 receptors to Ang II in mam-
malian tissues.

In order to verify the role of the endothelium layer as a modulator
of Ang II response, the cumulative concentration–response curve to
this peptide was compared in intact (control) and denuded-
endothelium aorta from B. jararaca snake. The Ang II responses in
denuded-endothelium aortic ring were expressed as percentage of
the maximum response to this peptide obtained in intact aortic ring.
Denuded rings were prepared by gently rubbing the luminal surface
with cotton. Removal of the endothelium was confirmed by the
absence of relaxant effect of acetylcholine (10−9 to 10−7 M) at the
end of the Ang II cumulative curve. Acetylcholine is well known to
produce an endothelium-dependent dilatation response in vascular
tissue of vertebrates (Furchgott and Zawadzki, 1980; Knight and
Burnstock, 1996).

To investigate the influence of catecholamines on Ang II vasocon-
striction (Cox et al., 1996; Nishimura, 2001), concentration–effect
curves to Ang II were obtained in the absence (control) and in the
presence of phenoxybenzamine (10−7 M, 15 min). The Ang II
responses in the presence of this alpha1 adrenoceptor antagonist
were expressed as percentage of the maximum response to Ang II
obtained in aortic rings without antagonist. Phenoxybenzamine was
also assayed against noradrenaline (10−9 to 10−5 M) to determine
its effectiveness as a catecholamine-blocker in snake tissue.

Drugs and chemicals

[Asp1, Ile5, His9] Ang I, [Asp1, Ile5] Ang II, [Asp1, Val5] Ang II, [Asn1,
Val5] Ang II, [Sar1, Ala8] Ang II, captopril, and phenoxybenzamine
were purchased from Sigma Chemical Co. (USA). Losartan and PD
123319 were gifts from DuPont Merck Pharmaceutical Co. (USA)
and Park Davis Pharmaceutical Research Division (USA), respectively.
DL-dithiothreitol was purchased from Jersey Lab. (USA). Chemicals
not specified here were from Sigma Chemical (USA) or Merck
(Germany).

Statistical analysis

The data were expressed as mean±S.E.M. The mean pD2, Emax and
pKB parameters were analyzed by analysis of variance (ANOVA)
followed by the Bonferroni test for multiple comparisons, or by
two-tailed Student's t-test to compare two mean data. P valuesb0.05
were accepted as significant.

Results

Effect of Ang II analogs, Ang II receptor antagonists, and angiotensin
converting enzyme inhibitor in the snake aorta

Three Ang II analogs that varied at amino acid positions 1 and 5
produced concentration-dependent contraction in aortic rings of the
B. jararaca snake. The maximum effect of these analogs was similar.
[Asn1, Val5] Ang II was the least potent Ang II analyzed, with pD2

being significantly different from that of the two other Ang II analogs
(Pb0.05). The relative order of the potency for angiotensin analogs in
snake aorta was: [Asp1, Val5] Ang II=[Asp1, Ile5] Ang II⋙ [Asn1,
Val5] Ang II. Emax and pD2 values are shown in Table 1.
[Sar1, Ala8] Ang II (nonselective Ang II receptor antagonist),
losartan (selective AT1 receptor antagonist) and PD123319 (selective
AT2 receptor antagonist) shifted the concentration–effect curve to
[Asp1, Ile5] Ang II to the right and reduced the maximum effect
(Fig. 1A, B and C). The potency of these antagonists, expressed as
pKB values, is summarized in Table 2. The selective AT1 and AT2 antag-
onists produced an Ang II-curve displacement only at high concentra-
tions, suggesting that the angiotensin receptor in the snake aorta is
not similar to the AT1 and AT2 receptors.

Captopril (10−6 M), an angiotensin-converting enzyme inhibitor,
shifted the Ang I curve to the right (pD2 value: 6.04±0.10 to 4.94±
0.15, n=5; Fig. 2A) but not the Ang II curve (pD2 value: 6.80±0.11
to 6.79±0.16, n=5; Fig. 2B). These results suggest the presence of
ACE-like activity in the snake aorta. Differences between Ang I and
Ang II pD2 values in the absence of captopril may be indicative of an
incomplete conversion of the first peptide.

Effect of the disulfide reducing agent dithiothreitol on the vascular
response to Ang II

Dithiothreitol (3 or 10 mM) blocked contractions induced by
almost all [Asp1, Ile5] Ang II concentrations (Fig. 3). However, higher
concentrations of Ang II (above 10−6 M) induced a gradual response.
The two concentrations of dithiothreitol had similar effects on Ang II
concentration–effect curve, which could indicate the presence of a
disulfide bond in the Ang II receptor structure.

Influence of catecholamine and removal of the endothelium on Ang II-
induced contraction

The irreversible alpha1 adrenoceptor antagonist phenoxybenzamine
(10−7 M) did not modify the Ang II concentration–effect curve
(Fig. 4A). However, this antagonist concentrationwas able to block nor-
adrenaline responses (10−9 to 10−5) in this tissue, indicating its effec-
tiveness as a pharmacological tool (data not shown),while therewas no
involvement of catecholamine in the vasoconstriction induced by Ang
II.

The removal of the endothelial layer also did not modify the
concentration–effect curves to Ang II (Fig. 4B), but abolished the
vasodilation induced by acetylcholine (10−9 to 10−7 M, data not
shown), which is an endothelium-dependent agonist. Endothelium-
derived factors do not seem to contribute to Ang II response in the
snake aorta.

Discussion

The RAS is present in vertebrates throughout the phylogenetic scale,
and plays an important physiological role (Brown et al., 2005;
Nishimura, 2001). A previous study from our laboratory has shown
that Ang II produces a dose-dependent increase in carotid blood pres-
sure in the B. jararaca snake, due to a direct action on its receptor and
an indirect action resulting from catecholamine release (Breno and
Picarelli, 1992; Breno et al., 2007). Outside the cardiovascular system,
Ang II induces a concentration-dependent contraction in isolated uterus
and increases plasma corticosterone concentration in B. jararaca (Lázari
et al., 1994). A specific and saturable Ang-II binding site, with low



Table 2
pKB values for Ang II receptor antagonists in the aorta isolated
from the Bothrops jararaca snake. Data are mean±S.E.M.; the
number of the snakes used is in parentheses.

Ang II antagonist pKB

[Sar1, Ala8] Ang II
(7)

5.10±0.08

Losartan
(4)

5.62±0.23

PD123319
(5)

5.08±0.25
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Fig. 2. Cumulative concentration–response curves to Ang I (A) and Ang II (B) obtained
in aortic rings from Bothrops jararaca, in the absence (control,■) and in the presence of
captopril (▼ 10−6 M; n=5). Each point and each vertical line represent the mean±
S.E.M., n=number of snakes used.
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Fig. 1. Cumulative concentration–response curves to Ang II obtained in aortic rings
from Bothrops jararaca, in the absence (control, ■) and in the presence of [Sar1,
Ala8] Ang II (A — nonselective antagonist, ● 10−5 M; ▲ 3×10−5 M; ▼ 10−4 M;
n=7), Losartan (B — selective AT1 antagonist, ● 3×10−5 M; ▲ 10−4 M; ▼
3×10−4 M; n=4) and PD123319 (C — selective AT2 antagonist, ● 3×10−6 M; ▲
10−5 M; ▼ 10−4 M; n=5). Each point and each vertical line represent the
mean±S.E.M., n=number of snakes used.
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affinity for AT1 and AT2 receptor antagonists, has also been detected in
the heart of the B. jararaca (Breno et al., 2001). However, there is no
information in the literature about the presence of a functional Ang II
receptor and the enzyme responsible for generating Ang II, ACE, in the
vascular tissue of this snake.

Many species of fishes have [Asn1, Val5] Ang II, and tetrapods have
[Asp1, Val5] Ang II endogenously (Nishimura, 2001; Takei et al., 2004),
but the plasma of B. jararaca contains [Asp1, Ile5] Ang II and [Asp1,
Val5, Tyr9] Ang I (Borgheresi et al., 1996). Previous studies in B. jararaca
showed reduced potency for [Asn1, Val5] Ang II compared to [Asp1, Ile5]
Ang II and [Asp1, Val5] Ang II at increasing arterial pressure and in uter-
ine and cardiac tissue assays of this snake (Breno and Picarelli, 1992;
Breno et al., 2001; Lázari et al., 1994). The present results showed a
concentration-dependent contraction response for [Asp1, Ile5] Ang II,
[Asp1, Val5] Ang II, and [Asn1, Val5] Ang II, with a similar Emax, but
potency varied. A contraction effect for Ang II was also observed in rep-
tile, such as turtle (Pseudemys scripta, Stephens, 1984) and snake (Naja
naja and Ptyas korros, Yung and Chiu, 1985), but in fowl, Ang II induces
an endothelium-dependent relaxation response (Hasegawa et al., 1993;
Yamaguchi and Nishimura, 1988). In rabbit aorta and fowl blood pres-
sure, [Asp1, Ile5] Ang II and [Asp1, Val5] Ang II were also equipotent as
in the aorta of B. jararaca, and [Asn1, Val5] Ang II was the least potent
analog (Helmer, 1964; Nakamura et al., 1982; Nishimura et al., 1982).
Nevertheless, [Asn1, Val5] Ang II, an endogenous angiotensin in some
fish species (Takei et al., 2004), was equipotent to [Asp1, Ile5] Ang II in
calcium mobilization, inositol trisphosphate (IP3) formation, and [125I]
Ang II displacement in hepatocytes of the catfish Ictalurus punctatus
(Olivares-Reyes et al., 1997). Thus, amino acid variation at position 1,
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Fig. 4. Cumulative concentration–response curves to Ang II obtained in aortic rings
from Bothrops jararaca. A — Rings with intact (control, ■) and denuded-endothelium
(▲, n=5). B — Rings in the absence (control, ■) and in the presence of
phenoxybenzamine (10−7 M, ▼, n=3). Each point and each vertical line represent
the mean±S.E.M., n=number of snakes used.
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Fig. 3. Cumulative concentration–response curves to Ang II obtained in aortic rings
from Bothrops jararaca, in the absence (control,■) and in the presence of dithiothreitol
(● 3 mM, n=8; ▲ 10 mM, n=3). Each point and each vertical line represent the
mean±S.E.M., n=number of snakes used.
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more than at position 5, seems to affect the potency of these Ang II
analogs in B. jararaca.

The angiotensin molecule is phylogenetically ancient and well
conserved (Takei et al., 2004). Most variation occurs at positions 1,
5 and 9. Residue 1 of the Ang I is Asn in fish and Asp in species from
amphibians to mammals, although there are exceptions, as Asp in
the holostean fish Amia calva (Takei et al., 1998), and Asn in the
amphibian Xenopus laevis. Residue 5 is Val in nonmammalian, and
Ile in mammals, although there are exceptions here as well: dogfish
(Triakis scyllia, Takei et al., 1993a), flounder (Platichthys flesus,
Balment et al., 2003) and amphibians (X. laevis, Takei et al., 2004)
have Ile, and cattle have Val. Residue 9 has the largest amino acid var-
iation. In the plasma of B. jararaca, residue 1 is Asp, and both forms
with Val and Ile at position 5 are present (Borgheresi et al., 1996).
Based on our results in the aorta, and those obtained with blood pres-
sure and uterine/cardiac tissues of the same snake, it appears that the
spatial arrangement of [Asp1, Ile5] Ang II and [Asp1, Val5] Ang II offers
a better adjustment to the B. jararaca receptor binding pocket than
that of [Asn1, Val5] Ang II.

Angiotensin converting enzyme is a dipeptidyl-carboxypeptidase
that is a limiting step for generation of active Ang II from the inactive
Ang I. The ACE inhibitor captopril inhibited contraction in the aorta of
B. jararaca induced by Ang I, but not by Ang II, indicating that ACE-like
activity is present in the snake aorta, and that Ang II is the active mol-
ecule of RAS. Similar result was obtained in the carotid artery of this
snake (data not shown). Interestingly, exogenous Ang I, used in the
current work and in an in vivo assay with B. jararaca (Breno and
Picarelli, 1992), has a histidine at position 9 instead of a tyrosine
reported for endogenous Ang I in B. jararaca (Borgheresi et al.,
1996). This amino acid replacement does not seem to alter the enzy-
matic action of ACE in the aorta, as Ang I and Ang II had close pD2

values in the absence of the ACE-blocker. A vasopressor response to
Ang I was also reported for alligator (Alligator mississippiensis), quail
(Coturnix coturnix japonica) and rat, independent of the ninth residue
in the peptide molecule (Takei et al., 1993b).

AT1 and AT2 are classical Ang II receptors that have been charac-
terized extensively by molecular and pharmacological methods
(Alexander et al., 2008). Losartan and PD123319 are used as pharma-
cological tools to characterize both receptors, but they also aided in
the identification of an additional high-affinity Ang II-binding site in
some vertebrates, which has a low affinity for both selective antago-
nists (Nishimura, 2001). To characterize the Ang II receptor in the
aorta of B. jararaca, we used nonselective and selective Ang II receptor
antagonists. [Sar1, Ala8] Ang II shifted the Ang II concentration–effect
curve to the right and reduced the maximum effect, indicating the
presence of a functional Ang II receptor in the snake. The pKB

(5.10±0.08 n=7) is relatively close to the pKi (6.28±0.32 n=6)
parameter obtained for this antagonist in competition-binding stud-
ies using the cardiac membrane of the same snake (Breno et al.,
2001). However losartan and PD123319, selective antagonists, shifted
the Ang II curves to the right and reduced the maximum effect at high
concentrations, which are out of the nanomolar range used to charac-
terize the AT1 and AT2 in mammalian (De Gasparo et al., 1998). The
potencies of these antagonists, expressed by the pKB (Table 2), indi-
cate a low affinity for losartan and PD123319, as reported for the
Ang II receptor identified in turkey adrenal and amphibian myocardi-
um (Aiyar et al., 1994; Murphy et al., 1993; Sandberg et al. 1991).
Losartan also attenuated but did not completely block the pressor
response to native Ang II in the reptile Caiman crocodilus (Butler,
2006). Thus, our data suggest the presence of functional Ang II recep-
tor in the aorta of B. jararaca, with a distinct pharmacological profile
compared to the classical AT1 and AT2, but similar compared to the
Ang II receptor previously reported in the cardiac membrane of this
snake. Lack of sensitivity for both selective Ang II antagonists was
also shown for Ang II receptor in brain and kidney of gerbil (De
Oliveira et al., 1995; Moriuchi et al., 1998), adrenal of turkey
(Murphy et al., 1993) and heart of frog (Sandberg and Ji, 2001), in
which there was almost 60% amino acid homology with the AT1
(Sandberg and Ji, 2001). In this context, an important step for under-
standing the losartan-Ang II receptor interaction was made by mutat-
ing losartan-insensitive Ang II receptor from the amphibian X. laevis
(Ji et al., 1995). Replacement of thirteen amino acids with the
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corresponding amino acids of the rat AT1 generated a mutant that
was sensitive to the losartan. Thus, despite of both receptors binding
the Ang II with high affinity, specific epitopes are important for the
antagonist interaction. We can speculate that similar epitopes could
be present in the Ang II receptor of B. jararaca based on its pharmaco-
logical profile.

AT1 and AT2 receptors can also be differentiated by their sensitivity to
the sulfhydryl-reducing agent dithiothreitol, which reduces/potentiates
responses mediated, respectively, by AT1 and AT2 (Heerding et al.,
2001; Ohyama et al., 1995; Zhang et al., 1994). The Ang II receptor in
the aorta of B. jararaca behaves like theAT1, since dithiothreitol abolished
the response to Ang II. However, concentrations above 10−6 M still
increased tension in the aorta treated with dithiothreitol. It suggests
that the Ang II receptor in B. jararaca could contain a functionally impor-
tant disulfide bond. A mutagenesis study carried out on AT1 and AT2
receptors demonstrated disulfide bonds that confer, respectively, DTT
inhibition/potentiation in AT1 and AT2 (Heerding et al., 2001). Molecular
analysis of the amphibian angiotensin II receptor showed cysteine resi-
dues located at similar positions, composing disulfide bridges important
for Ang II binding (Ji et al., 1993; Sandberg and Ji, 2001). We speculate
the existence of such disulfide bonds in the snake Ang II receptor, as
the Ang II responses were almost completely abolished by dithiothreitol.

Ang II induces vasoconstriction or vasopressor response partly due
to facilitation of catecholamine release in vertebrate species (Cox et
al., 1996; Guimarães et al., 2001; Nishimura, 2001; Storgaard and
Nedergaard, 1997). We reported that the hypertensive effect of Ang
II in B. jararaca was partly due to catecholamine release (Breno and
Picarelli, 1992). In the present study, we did not find the participation
of catecholamine in the vasoconstriction induced by Ang II, indicating
a direct action on its own receptor. Similar reports with vascular
preparations of fish (T. scyllia, Hamano et al., 1998), snake (N. naja,
P. korros, Yung and Chiu, 1985) and turtle (Pseudemys scripta elegans,
Stephens, 1984) also pointed to an Ang II vasoconstriction independent
of catecholamine release, as we observed in the aorta of B. jararaca.

It is known that endothelial cells modulate vascular reactivity
through the production of vasodilating and vasoconstricting factors
(Chen et al., 1988; Ignarro et al., 1987; Palmer et al., 1987). Removal
of the endothelial layer abolishes the relaxant response to acetylcho-
line (Furchgott and Zawadzki, 1980), and modifies the contractile
effect of Ang II in the rabbit aorta, and rat arteries (Chen et al., 1995;
Le Tran and Forster, 1996). However, removal of the endothelium did
not affect the vasoconstriction to Ang II in the aorta of B. jararaca,
but abolished the vasodilatation response to acetylcholine showing
the effectiveness of the procedure (data not shown). Therefore,
endothelium-derived factors did not contribute to the Ang II
response in this snake, and the endothelial layer has no Ang II recep-
tor involved in the contraction effect. This differs from fowl aorta,
where Ang II produces an endothelium-dependent relaxation, asso-
ciated with a rise in cGMP (Nishimura, 2001; Yamaguchi and
Nishimura, 1988).
Conclusion

These results show the presence of a functional Ang II receptor in
the aorta of B. jararaca, that has a low affinity for the selective AT1
and AT2 receptor antagonists. It behaves like those Ang II receptors
pharmacologically distinct from the classical AT1 and AT2 receptors.
The Ang II-vasoconstrictor effect observed in this tissue is indepen-
dent of catecholamine or endothelium modulation, and the snake
aorta contains an effective ACE-like activity. ACE and the AT receptor
in the aorta of B. jararaca may be part of a tissue renin–angiotensin
system of this snake. Our data contribute to the knowledge of the
renin–angiotensin system in vertebrate species, and provide insight
into the understanding of snake Ang II receptor characteristics and
diversity.
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