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Extremal rotating cohomogeneity-1 black holes in Einstein–Maxwell theory feature two branches. On
the branch emerging from the Myers–Perry solutions their angular momentum is proportional to their
horizon area, while on the branch emerging from the Tangherlini solutions their angular momentum
is proportional to their horizon angular momentum. The transition between these branches occurs at
a critical value of the charge, which depends on the value of the angular momentum. However, when
a dilaton is included, the angular momentum is always proportional to the horizon area.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Although in D = 4 dimensions the Kerr–Newman solution rep-
resents the unique family of stationary asymptotically flat black
holes of Einstein–Maxwell (EM) theory, the corresponding D > 4
charged rotating black holes have not been obtained in closed
form yet. Only certain subsets are known: the generalization of
the static black hole to higher dimensions pioneered by Tangher-
lini [1], and the rotating vacuum black holes, obtained by Myers
and Perry (MP) [2]. Other subsets could be constructed perturba-
tively [3–7] and numerically [8,9].1

Nevertheless, if additional fields and/or interactions are allowed
into the theory, exact higher dimensional charged rotating black
holes can be obtained by solution generating techniques. For exam-
ple, in the simplest Kaluza–Klein (KK) case, a boost is done to the
D + 1 embedding of the uncharged D-dimensional MP black holes
along the extra dimension. After dimensional reduction the result
is a charged D-dimensional black hole in Einstein–Maxwell-dilaton
(EMd) theory. The dilaton coupling constant h for this solution has
a particular value, which we denote hKK, that depends on the di-
mension D [10]. To generate rotating EMd black hole solutions
with other values of the coupling constant h, currently perturba-
tive or numerical techniques must be used.

D-dimensional stationary black holes possess, in general, N in-
dependent angular momentum J i associated with N orthogonal
planes of rotation [2], where N is the integer part of (D − 1)/2,
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1 In this Letter we will consider only asymptotically flat black holes with spherical
horizon topology.
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corresponding to the rank of the rotation group SO(D − 1). As a
result, we can distinguish between odd-D and even-D black holes,
where the latter have an unpaired spatial coordinate [2]. In the
particular case in which all N angular momenta are equal in mag-
nitude, the EMd equations simplify considerably, yielding, for odd
dimensions, cohomogeneity-1 equations from which the angular
dependence can be extracted analytically. Hence, the equations
reduce to a more tractable system of ordinary differential equa-
tions.

When the N angular momenta are of equal magnitude, J = | J i |,
it is interesting to note that, for extremal MP black holes, the an-
gular momentum J and the horizon area AH are proportional:
J = √

2(D − 3)AH. This is a special case of a more general type
of relations for MP black holes in terms of the non-degenerate in-
ner and outer horizon areas of non-extremal black holes [11], and
was pointed out in 4 dimensions before [12–18]. In the case of
charged black holes, the relation for the product of the horizon
areas can be typically written as a sum between the squares of
the angular momentum and some power of the charge [11–19]. In
this context, several inequalities between angular momenta, area,
electric charge and magnetic fluxes were studied for axisymmetric
stably outer marginally trapped surfaces, for EMd theory in 4 di-
mensions [20], and in 5 dimensions [21].

In this Letter we study relations between area, angular momen-
tum and charge for extremal EM and EMd black holes with equal
angular momenta. We construct the global solutions numerically
and local solutions in the near horizon formalism. The EM case is
special since two different branches of charged extremal solutions
exist. One branch emerges from the uncharged MP black holes, and
the other branch emerges from the static Tangherlini black holes.
The area relations are different on each branch: the first branch
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retains the proportionality between the angular momentum and
the area of the MP solutions. Thus the area of these charged black
holes is independent of the charge. In contrast, the second branch
exhibits a proportionality between the angular momentum and the
horizon angular momentum, while the charge enters into the area
relation yielding A2

H = C1 J 2 Q −3/2 + C2 Q 3/2, where C1 and C2 are
some constants and Q is the electric charge. However, as soon as
the dilaton is coupled, the branch structure changes, and only a
single branch – similar to the first branch of the EM case – is
found. Again along this branch the proportionality between the an-
gular momentum and the area persists for all extremal solutions.
We will proceed by first presenting the D = 5 results and then dis-
cussing their generalization to odd D > 5 dimensions.

2. 5D EMd near horizon solutions

In 5 dimensions, the EMd action can be written as

I =
∫

d5x
√−gL

=
∫

d5x
√−g

[
R − 1

2
∂μφ∂μφ − 1

4
e−2hφ Fμν F μν

]
, (1)

where R is the curvature scalar, φ the scalar dilaton field, h the
dilaton coupling constant and Fμν = ∂μ Aν − ∂ν Aμ the field
strength tensor, where Aμ denotes the gauge vector potential.
The units have been chosen so that 16πG = 1, G being Newton’s
constant. If we set h = 0, the pure EM action is recovered, while

hKK =
√

2
3 is the KK value.

For cohomogeneity-1 solutions the isometry group is enhanced
from R × U (1)2 to R × U (2), where R represents time transla-
tions. This symmetry enhancement allows to factorize the angular
dependence and thus leads to ordinary differential equations.

Following the near horizon formalism [22,23], we now ob-
tain exact near horizon solutions for these extremal EM and
EMd black holes. In terms of the left-invariant 1-forms σ1 =
cosψ dθ̄ + sin ψ sin θ̄ dϕ , σ2 = − sin ψ dθ̄ + cosψ sin θ̄ dϕ , and σ3 =
dψ + cos θ̄ dϕ , the near horizon metric can be written as

ds2 = v1

(
dr2

r2
− r2 dt2

)
+ v2

4

(
σ 2

1 + σ 2
2

)

+ v2 v3

4
(σ3 + 2kr dt)2, (2)

where we have defined 2θ = θ̄ , ϕ2 − ϕ1 = ϕ , ϕ1 + ϕ2 = ψ , θ ∈
[0,π/2], (ϕ1,ϕ2) ∈ [0,2π ]. The horizon is located at r = 0, which
can always be achieved via a transformation r → r − rH. Note, that
the metric is written in a co-rotating frame.

The metric corresponds to a rotating squashed AdS2 × S3 space-
time, describing the neighborhood of the event horizon of an ex-
tremal black hole. The corresponding Ansatz for the gauge poten-
tial in the co-rotating frame reads

Aμ dxμ = q1r dt + q2 sin2 θ(dϕ1 − kr dt)

+ q2 cos2 θ(dϕ2 − kr dt). (3)

The dilaton field is simply given by φ = u. The parameters k, vi , qi
and u are constants, and satisfy a set of algebraic relations, which
can be obtained, according to [22,23], in the following way.

Evaluating the Lagrangian density
√−gL for the near horizon

geometry (2) and integrating over the angular coordinates yields
the function f ,

f (k, v1, v2, v3,q1,q2, u) =
∫

dθ dϕ1 dϕ2
√−gL, (4)

from which the field equations follow. In particular, the derivatives
of f with respect to the parameters vanish except for
∂ f

∂k
= 2 J ,

∂ f

∂q1
= Q , (5)

where J is the total angular momentum and Q is the charge. From
these equations a set of algebraic relations for the near horizon
expressions (2), (3) is obtained.

The entropy function is obtained by taking the Legendre trans-
form of the above integral with respect to the parameter k, asso-
ciated with both angular momenta, J1 = J2 = J , and with respect
to the parameter q1, associated with the charge Q ,

E( J ,k, Q ,q1,q2, v1, v2, v3, u)

= 2π
(
2 Jk + Q q1 − f (k, v1, v2, v3,q1,q2, u)

)
. (6)

Then the entropy associated with the black holes can be calculated
by evaluating this function at the extremum, S = Eextremal .

The horizon angular momenta JH(k) of the black holes are
obtained from the Komar expressions associated with the corre-
sponding Killing vector fields η(k) ≡ ∂ϕk

JH(k) =
∫
H

β(k), (7)

where H represents the surface of the horizon and β(k)μ1μ2μ3 ≡
εμ1μ2μ3ρσ ∇ρησ

(k)
. Note that JH(1) = JH(2) ≡ JH, since we are con-

sidering solutions with equal angular momenta.
For the discussion of the solutions we need to consider the EM

and the EMd case separately. In the EM case, i.e. for h = 0, the
system of equations yields two distinct solutions, depending on
two parameters. These two solutions of the near horizon geometry
have been found independently by Kunduri and Lucietti in [24].2

Here we now calculate the charges and entropies associated with
these two branches. The solution containing the MP limit, and thus

the first branch, has v2 = 4v1, v3 = 2 − q2
2

v1
, q1 = 0, k = 1

2 and

J = 32π2 v1

√
2v1 − q2

2, Q = −32π2q2

√
2v1 − q2

2,

S = 2π J , JH = 16π2(2v1 − q2
2

)3/2
, (8)

while the solution containing the Tangherlini limit, and thus the

second branch, has v2 = 4v1, v3 = 1
4k2+1

, q1 = − (2k+1)(2k−1)
√

3
2 ×√ |v1|

4k2+1
, q2 = −2

√
3k

√ |v1|
4k2+1

and

J = 128π2k

( |v1|
4k2 + 1

)3/2

, Q = 32
√

3π2 v1

4k2 + 1
,

S = 64π3 |v1|3/2

√
4k2 + 1

, JH = J/4, (9)

where JH is the horizon angular momentum. The two solutions
match at k = 1/2, where q1 = 0. At this critical point the angular
momentum can be written as

J = 1

2
√

2π

1

33/4
Q 3/2. (10)

Thus we have the surprising result that along the first branch, the
proportionality of the angular momentum and the area known for
the MP black holes, continues to hold in the presence of charge un-
til the critical point is reached. In contrast, on the second branch
we have proportionality of the angular momentum and the hori-
zon angular momentum.

2 We thank Hari Kunduri for pointing this out to us.
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In the case of the EMd black holes, only one solution is found.
It can be obtained by replacing q2 → q2e−hu, Q̄ = Q ehu in the first
branch solution of the EM case. Hence, as long as h �= 0, the angu-
lar momentum and the area are always proportional, independent
of h and Q . In particular, this includes the KK case, where the full
solution is known analytically.

3. 5D EMd black hole solutions

We now need to consider the full solutions, which we obtain by
numerical integration. For the metric we employ the parametriza-
tion

ds2 = − f dt2 + m

f

(
dr2 + r2 dθ2) + n

f
r2 sin2 θ

(
dϕ − w

r
dt

)2

+ n

f
r2 cos2 θ

(
dψ − w

r
dt

)2

+ m − n

f
r2 sin2 θ cos2 θ(dϕ − dψ)2, (11)

for the gauge potential we use

Aμ dxμ = a0 dt + ak
(
sin2 θ dϕ + cos2 θ dψ

)
, (12)

while the dilaton field is described by the function φ(r).
The resulting set of coupled ODEs then consists of first order

differential equations for a0 and n, and second order differential
equations for f , m, n, ω, ak and φ. The equation for a0 allows to
eliminate this function from the system.

To obtain asymptotically flat solutions, the metric functions
should satisfy the following set of boundary conditions at infinity,
f |r=∞ = m|r=∞ = n|r=∞ = 1, ω|r=∞ = 0. For the gauge potential
we choose a gauge such that a0|r=∞ = aϕ |r=∞ = 0. For the dilaton
field we choose φ|r=∞ = 0, since we can always make a transfor-
mation φ → φ − φ|r=∞ .

In isotropic coordinates the horizon is located at rH = 0. An ex-
pansion at the horizon yields f (r) = f4r4 + fαrα + o(r6), m(r) =
m2r2 + mβrβ + o(r4), n(r) = n2r2 + nγ rγ + o(r4), ω(r) = ω1r +
ω2r2 + o(r3), a0(r) = a0,0 + a0,λrλ + o(r2), ak(r) = ak,0 + ak,μrμ +
o(r2), φ(r) = φ0 + φνrν + o(r2). Interestingly, the coefficients α, β ,
γ , λ, μ and ν are non-integer. Only ω has an integer expansion.

To construct the solutions numerically, we employ a compact-
ified radial coordinate, x = r/(r + 1). We then reparametrize the
metric in terms of the functions f = f̂ x2, m = m̂, n(r) = n̂, ω(r) =
ω̂(1 − x)2, ak = âk/x2, and φ = φ̂/x2 to properly deal with the non-
integer coefficients in the horizon expansion, eliminating possible
divergences in the integration of the functions.

We employ a collocation method for boundary-value ordinary
differential equations, equipped with an adaptive mesh selection
procedure [25]. Typical mesh sizes include 103–104 points. The
solutions have a relative accuracy of 10−10. The estimates of the
relative errors of the global charges and other physical quantities
are of order 10−6.

Fig. 1 exhibits the ratios J/AH and J/ JH versus the charge
Q /M for extremal 5D EM (h = 0) and KK (h = hKK) black holes.
It clearly reveals the two branches of the extremal EM solutions,
together with their matching point. This is in contrast to the sin-
gle branch of the EMd solutions, shown here for the KK case.

We exhibit in Fig. 2 the domain of existence of the EM and EMd
black holes for dilaton coupling constants h = 0, 2, 0.5 and hKK.
Here we display the area AH/M3/2 versus the charge Q /M for ex-
tremal and static 5D black holes. All black holes of the respective
theories can be found within these boundaries. Again we note the
different structure for the EM case. The EM static extremal solu-
tion has finite area, whereas for h �= 0 the static extremal solution
is singular with vanishing area.
Fig. 1. The ratios J/AH and J/ JH are shown versus the charge Q /M for extremal
5D EM (h = 0) and KK (h = hKK) black holes. The asterisks mark the matching point
of the two EM branches.

Fig. 2. The area AH/M3/2 is shown versus the charge Q /M for extremal and static
5D black holes for h = 0, 0.5, hKK and 2.

4. EMd black holes in odd D > 5

In a straightforward generalization the near horizon solutions
can be constructed for arbitrary odd dimensions D > 5. In the EM
case we retain two branches of solutions, the MP branch with

J = √
2(D − 3)AH, (13)

and the Tangherlini branch with

J = (D − 1) JH. (14)

In the EMd case the near horizon solutions possess only a single
branch corresponding to the first branch, with J = √

2(D − 3)AH.
We have performed the respective set of numerical calculations

in 7D and in 9D , and obtained results that are analogous to the
5D case.

5. Comparison with other theories

Let us now compare these results with those of two theo-
ries whose extremal black holes also exhibit a branch structure
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with two distinct branches: the rotating dyonic black holes of
4-dimensional KK theory [26], and the 5-dimensional black holes
of Einstein–Maxwell–Chern–Simons (EMCS) theory (minimal D = 5
supergravity) [27].

In the first example the 4-dimensional black holes are charac-
terized by their mass M , angular momentum J , electric charge Q
and magnetic charge P .3 In the extremal case, only three of these
charges are independent and two distinct surfaces, S and W, are
found. The restriction to P = Q then yields two distinct branches.
The S branch, J > P Q , emerges from the extremal Kerr solution,
and presents all the normal characteristics of charged rotating so-
lutions, such as an ergo-region and non-zero angular velocity. On
the other hand, the W branch, J < P Q , possesses no ergo-region
and has vanishing horizon angular velocity, although the angular
momentum of the black holes along this branch does not vanish.
At the matching point of both branches, J = Q P , the horizon area
is zero and the configuration is singular.

Nevertheless, the area-angular momentum relation for these
extremal solutions can be written as

A2
H = 64π2

∣∣ J 2 − Q 2 P 2
∣∣. (15)

Note, that the electric and magnetic charges are entering the re-
lation for both branches, and that the only difference in the area
relation is an overall sign in the expression, depending on whether
we are on the S ( J > P Q ) or on the W ( J < P Q ) branch.

The second example exhibits rather analogous features. Here we
consider 5-dimensional black holes in EMCS theory for the super-
gravity value of the CS coupling constant, λ = 1 (in an appropriate
parametrization). In the extremal case, when both angular mo-
menta possess equal magnitude, the black holes are parametrized
by the angular momentum J and the charge Q .4 Again two
branches of extremal black holes are present. The first branch has
J 2 > − 4

3
√

3π
Q 3 and is the ordinary branch with an ergo-region,

while the second branch has J 2 < − 4
3
√

3π
Q 3 and is ergo-region

free with vanishing horizon angular momentum. The area-angular
momentum relation for both branches reads

A2
H = 64π2

∣∣∣∣ J 2 + 4

3
√

3π
Q 3

∣∣∣∣. (16)

At the matching point of both branches the horizon area is again
zero and the solution is singular, and again there is a change of
sign in the area-angular momentum relation depending on the
branch.

Thus in these cases, both charge and angular momentum are
entering the area relation. Moreover, the relations (15) and (16)
are in accordance with the general expressions obtained in [11],
which also depend on both, the charges and the angular momenta.

6. Further remarks

It is interesting to note that for the extremal rotating black
holes in EM theory with equal angular momenta, a branch struc-
ture with two distinct branches is found, where for one of the
branches – the one emerging from the MP solution – the area is
independent of the charge of the configuration. Along this branch
of solutions, the area remains proportional to the angular momen-
tum and the charge is not entering the relation. This is different
from other charged black holes considered before.

3 Note that cohomogeneity-1 is not possible in this theory since it is an even-
dimensional one.

4 The asymmetry in the electric charge of the Chern–Simons term gives rise to
different properties for solutions with opposite signs of the electric charge.
However, once the critical extremal EM solution5 is passed, the
charge enters again into the area relation, yielding the expression

AH = C1 J 2 Q −3/2 + 1

16C1
Q 3/2, (17)

where C1 = 31/4π√
2

in our normalization.

In contrast to the two branches of global extremal EM black
hole solutions, the two branches of EM near horizon solutions do
not end at the critical solution. Thus a study of only near hori-
zon solutions is insufficient to clarify the domain of existence of
extremal solutions, as was first observed for the extremal dyonic
black holes of D = 4 Gauß–Bonnet gravity [28].

Interestingly, in the general EMCS theory (with CS coupling
constant λ �= 1 [29,30]), there appear even more than two branches
of extremal black holes for sufficiently large CS coupling [31]. As in
the case discussed above, however, the area of these branches of
rotating charged black holes always depends on both, the charge
and the angular momentum.

Whereas the branch structure of these extremal black holes is
very intriguing, their relation with the corresponding near horizon
solutions is surprising as well. In particular, a given near hori-
zon solution can correspond to (i) more than one global solution,
(ii) precisely one global solution, or (iii) no global solution at all.
It would be interesting to perform an analogous study for the gen-
eral EMd theory (with dilaton coupling constant h �= hKK [32]),
since the analogy between the known black holes of both theo-
ries suggests that a similar more complex branch structure would
be present for sufficiently large dilaton coupling.
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