
2212-8271 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientifi c Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair – Ashutosh Tiwari
doi: 10.1016/j.procir.2013.07.014

 Procedia CIRP 11 (2013) 346 – 351

p

2nd International Through-life Engineering Services Conference

Integration of virtualized environments in PDM systems for embedded
software product development

 Michael Hopf *, Jivka Ovtcharova
Karlsruhe Institute of Technology (KIT), Institute for Information Management in Engineering, Zirkel 2, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-163-7320509; E-mail address: michael.hopf@partner.kit.edu (M. Hopf)

Abstract

The number of products with embedded software increases across all application areas continuously. Thus, the complexity between the
hardware and software is steadily increasing. This leads to an increment of software defects. Therefore, new approaches are needed to ensure
the product quality. In the context of PLM, virtualization can support crucial stages of the product development and test automation by
providing virtual environments. This paper shows an architectural approach, and how to perform an integration of virtualization software in
PDM systems.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of the "2nd International Through-life Engineering
Services Conference" and the Programme Chair – Ashutosh Tiwari.

 Keywords: Lifecycle Management; PDM; PLM; Virtualization; Virtual Machine; Embedded System; Process Definition; Workflow; Product Development

1. Introduction

During the last two decades, the proportion of software as a
component in products has increased steadily. Thus, the
worldwide market for embedded systems was around 60
billion euros with an annual growth rate of 14 percent and up
to 20 percent in certain domains [1, 2]. Nowadays, software is
used in various fields of applications and forms. Embedded
software systems are significantly more complex in an
environment embossed by hardware than software systems
without the interaction with the real world. While embedded
software systems interacting with the real environment, they
have to cope with a variety of constraints such as real-time,
security, energy management as well as other resources such
as memory management and communication [3]. Safety-
critical embedded systems are used in almost half of the
stationary and mobile phones, network control and monitoring
systems, transmission technologies, medical analysis and
treatment devices as well as infotainment terminals [4].

Embedded systems can perform several background tasks
such as control and monitoring as well as direct interactions
with the user perform. Due to the increasing complexity of the
software, a comprehensive testing of embedded systems is
necessary. Thus, the test automation represents the most
important part of the development of embedded systems with
the risk of delays in the delivery, which can quickly exceed
the cost of a product caused by software errors. Companies
must elicit, what can be done in the design phase, and have to
seek for opportunities to automate the various phases [5].

This issue is evidenced by a variety of recalls in the

automotive industry because of software errors. Pontiac had to
initiate a recall in 2004 because the software did not
understand leap years. In 2005, Toyota recalled 75,000
vehicles due to a software defect [6]. This subject matter
refers not only to the automotive industry, but also to other
industries. The test automation and software development of
embedded systems can be supported by virtualizer through
cloning, snapshots and more flexible disaster recovery of test
environments (TEs).

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientifi c Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair – Ashutosh Tiwari

Available online at www.sciencedirect.com

ScienceDirect

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82186698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

347 Michael Hopf and Jivka Ovtcharova / Procedia CIRP 11 (2013) 346 – 351

This paper shows the benefits of the lifecycle management
integration for virtual machines (VMs) in Product Data
Management (PDM) systems. A modeling of processes for
virtual infrastructures is shown as well as an architecture
approach is presented, which allows the lifecycle management
and the deployment of virtual environments (VEs) for
embedded systems development. The paper is organized as
follows: section two analyzes currently used virtualization
approaches in the field of software testing. Section three
describes different virtualization techniques and virtualizer.
Section four presents the modeling of the lifecycle
management of VMs in PDM system. Section five shows the
architecture and its limitations. Finally, in section six the
conclusion is formulated and suggested further research.

2. Related work

The integration of VEs in PDM system has not been
investigated. Meanwhile, the integration of Software
Configuration Management (SCM) in PDM systems has been
studied. Muhammad et al. [7] discussed the integration of
Product Lifecycle Management (PLM) and SCM systems and
the role of these systems to be applied during the development
and maintenance. Do and Chae [8] propose an architecture
that supports the extension of the data model version items for
SCM systems. The application supports the functionalities of
PDM and SCM as well as the integration of hardware and
software parts for product configurations and engineering
change management. Strong, Hayka and Langenberg [9]
describe an approach and methods dealing with engineering
analysis problems for product development and manufacturing
in the context of computer-aided engineering (CAE)
applications, grid infrastructure and how they can be solved.

3. Virtualization techniques

Virtualization has brought significant benefits to the
operation of the IT infrastructure in companies. The key
technical benefits are compatible with all standards x86
operating systems, the isolation of VMs, the encapsulation of
software in a container, portability, rollbacks, high availability
and resource sharing. Entrepreneurial advantages include cost
savings by consolidating server hardware on a central
instance, greater flexibility in the management, mobility and
robustness of the infrastructure as well as a higher
environmental impact by reducing the power consumption
[10]. Especially the last point must be considered in terms of
utilization, since physical environments rarely take a
consistently high CPU power and therefore having increased
power consumption by providing the power and cooling of
hardware. A variety of factors acts on a VE (see Fig. 1).

Virtualization is divided into two main areas, hardware
virtualization and software virtualization. The hardware
virtualization refers to the creation of virtual instance of the
entire system or individual physical hardware components
whereas the software virtualization emulates the operating
system or only single application(s) through the virtualizer.

Fig. 1. Relevance factors for virtualized environments

A summary of current virtualization techniques was
discussed by Rodríguez-Haro [11] as well as a comparison
between software and hardware virtualization for x86
architectures was conducted by Adams and Ole [12].
Schlosser et al. examine the effects of network throughput of
virtualized systems [13]. In this work, the lifecycle
management for PDM systems is studied for the software
virtualization of the entire operating environment, including
applications. The system virtualization is enabled by a
virtualizer that provides a runtime environment within an
enclosed container, the so-called virtual machine VM. A VM
is an implemented software abstraction of the real hardware,
which is presented to the operating system (OS). The OS
within the VM cannot directly access the system interfaces on
the host system and interfaces need to be emulated. The
emulation is necessary for virtualizers such as Oracle
VirtualBox, QEMU or VMware ESXi. The Virtual Machine
Monitor (VMM) or so-called hypervisor is responsible for the
allocation and management of hardware resources, so that the
OS within the VM can use all resources on request. This
requires that all defined hardware components for the VM are
emulated for the guest OS. Test scenarios can be performed in
an unadulterated virtualized run-time environment to
minimize subsequent problems in physical production
environments. The disadvantage of this approach results in the
emulation of the hardware resources that may lead to
performance reduction. The disadvantages that may arise
through virtualization must be individually analyzed and taken
into account for the particular technical context of the
embedded system.

4. Modeling in PDM systems

In order to perform the modeling of lifecycles for VMs, the
characteristics of software products must be analyzed. Thus,
there are products that can fulfill its function completely
autonomously while other products cannot operate without
prior configuration. The majority of embedded systems is
involved in a technical context and depends on it in order to
carry the application purpose. For example, the software
inside time recording terminals with fingerprint authentication
cannot operate without a fingerprint sensor, a navigation
device software without a GPS receiver cannot calculate a
route, and Point of Sale (POS) terminal software cannot
perform cashless payments without a card reader. Such
examples show that certain requirements must be placed for
virtualized environments, in order to perform software

348 Michael Hopf and Jivka Ovtcharova / Procedia CIRP 11 (2013) 346 – 351

development and software test automation. Thus, certain
functionality could be emulated by software inside the VM, if
this seems possible. Smartphones already use emulators for
the development of mobile applications (apps) that imitate a
fully functional mobile device. Google provides for the
Android mobile operating system the so-called Android
emulator whereas Apple provides iOS Simulator and
Microsoft the Windows Phone Emulator. More software
emulation in other fields of embedded product would support
the approach of VEs and requires a closer collaboration of
hardware and software development teams.

4.1. Determination of the VM states

Products such as ZENworks Orchestrator by Novell or the
open source virtualization toolkit libvirt have already defined
rudimentary lifecycles for VMs. The purpose of such software
is primarily related to the remote management of
infrastructure components. The integration of virtualization
into an existing process landscape for product engineering in
PLM is not considered. An integration of such products can
only be achieved by customization and through the
development of additional interfaces and components. In order
to represent systems lifecycle management for VEs in PDM
systems, a division into the following three areas must be
made:

Lifecycle in the context of product development
Lifecycle in the context of product testing
Lifecycle of VMs

4.1.1. Lifecycle in the context of product development

The product lifecycle with embedded software is complex
through partitioning and co-design of hardware and software
(see Fig. 2). The architecture and modeling for software
development and hardware development run through different
phases. However, different development stages are passed
through and while the engagement with each other and
coordination between these two developments has an
enormous importance. The success of the subsequent
integration as well as the testing and validation depends
largely on the collaboration of these two development phases.
The creation of prototypes is made in the integration phase
through components of the software development which are
linked with those of the hardware design into a functional
prototype. Designers can make changes on the prototype in
this phase, before the final product for the customer will be
built and deployed. The specification of the prototype defines
the risk factors for the product to be published. The integration
of VEs can be made for software development throughout the
entire development phases (see Fig. 3). After the partitioning
of hardware and software, the PDM systems could provide an
appropriate VE for software engineers, which include all the
tools needed for development. Such software can be CASE
tools, integrated development environments (IDEs) and other
tools used for the development that software developers need
in the field of embedded software systems to perform their
tasks.

Fig. 2. Product lifecycle view for embedded systems [14]

Fig. 3. Virtualization for embedded systems

4.1.2. Lifecycle in the context of software testing

Considering the development lifecycles with dependence
on software, it can be seen that the complexity rapidly
increases for a variety of hardware devices with different
hardware versions and individual software versions. Software
features, enhancements, bug fixes as well as specific hardware
devices and versions must be tested. Test results for completed
test cases must be documented and considered for further
quality measures. Different Bill of Materials (BOMs) helps to
consolidate information about the allowable combinations of
compatible hardware and software versions of a product. The
question is formulated by the configuration management
perspective which hardware and software combinations
represent valid configurations. This question can only be
answered by development and testing teams. Virtualization
could assist these teams to provide VEs for the test case
execution. The test case results would be transferred back
from the VE to the PDM system to generate a matrix of
different hardware and software combinations.

4.1.3. Lifecycle of the VM

A lifecycle must be defined for the VE provision to manage
the different VM states in the context of PDM (See Fig. 4). It
is not meant to manage the operational states such as "VM
powerOn" or "VM powerOff".ff

349 Michael Hopf and Jivka Ovtcharova / Procedia CIRP 11 (2013) 346 – 351

Fig. 4. Generic lifecycle for the provision of a VM

Rather, the relevant test conditions and boundary
conditions should be considered in advance during the VM
creation or selection to re-play a specific test scenario within a
VE. Thereby factors such as the definition of VM hardware
properties, guest OS type, virtual hardware interfaces and
specific modifications within the guest OS represent important
parameters in test scenarios. The VE provision lifecycle
should manage tasks of an administrative level. These include
the VM selection and identification from a pool, the
configuration of selected VEs based on a specified profile and
the deployment, archiving and disposal of VEs.

4.1.4. Process definition

The process definitions are one of the core functions of
each PDM system. Therefore, the workflow management is
the most pronounced component that uses visualization tools
for the description of parallel and sequential processes [15].
Thus the basic functions of such tools only differ in the
implementation by the respective manufacturers. For themm
definition of processes, tools such the Business Modeler
application in ENOVIA V6 and the Workflow Designer in
Teamcenter are used. For the process modeling, activities can
be defined that allow branching within a process. Likewise,
processes can include sub-processes which are nested with
each other. Tasks may be defined properly that the user
intervention is necessary or that they are performed
automatically. Actions automated tasks can be defined to call
external applications.

5. Architecture

The architecture describes the following six parts: process
definitions for software development, software testing and
VM management; action handlers to trigger VM tasks;
virtualization engine for the provision of VMs; VM
management application for VM operations; VM hardware
interfaces as well as the limitations of this architecture.

5.1. Process definitions

Firstly, the processes for the three areas Software
Development, Software testing and VM Management must be
defined. Secondly, the workflow instances are generated from
the pre-defined processes which are used for the respective
context.

5.1.1. Process definition for software development

The process definition for the provision of software
development environments was determined as follows: firstly, ff
an existing software development environment is selected
from a pool of existing VEs. If no appropriate VE is available,

it must be requested. Such a request results in a new task that
is created and assigned to a person who is responsible for the
generation of a virtual software development environment.
This person adds the created VE in form of a template to the
pool of existing VE templates and registers this template
against the PDM system. Once this newly created VE template
is available, the workflow owner will be informed. Secondly,
the hardware requirements for the VE are selected. Therefore,
the workflow owner can set parameters such as memory, disk
space and hardware interfaces applying to the VE that has
been previously selected. Finally, the automated tasks are
processed in order to enable the provision of the VE. The tasks
include the selection of the virtualization system, the
deployment process, the compilation of information as well as
the notification to the developer getting access to the provided
VE. Once the VE is no longer required by the developer, it can
be transformed in the state of archiving or disposal. It should
be noted that one developer can have one or more VE
instances. Moreover, a single instance could be used by
several developers. The number of VE instances can be
flexible adapted to the developers’ needs.

5.1.2. The deployment process definition of software testing

The deployment of VEs for software testing differs only
slightly to software development. Each deployment subject
has its own pool of VE templates. A VE is assigned to a
specific pool based on safety reasons. In a more
comprehensive process definition it should be possible to
choose a VE template which is exclusively provided to
departments or groups. Based on the test scenario, the user is
able to modify VE parameters more flexible to meet the
hardware requirements.

5.1.3. Process definition for VM management

The VM process definition was designed simply. It
contains only the basic steps (see Fig. 5). This means that no
process branches or vendor specific steps were made in the
definition to ensure the independence of the virtualization
vendor. Thereby, vendor specific logic has been placed into
the integration module. A complex modeling of the VM
process depends on the depth of the virtualization integration
into the PDM system. The advanced process steps include, for
example, the physical location of VEs (required for site-
related deployment), the deployment process (e.g. copy,
modify and register the VM) and the power management (e.g.
power on, power off, suspend, resume and pause).

Fig. 5. VM process definition in ENOVIA Business Modeler

350 Michael Hopf and Jivka Ovtcharova / Procedia CIRP 11 (2013) 346 – 351

5.2. Action handlers

PDM systems offer a variety of options to recognize
triggered process events. For the occurrence of expected
events, predefined actions can be performed. This
functionality is represented in ENOVIA V6 as triggers and in
Teamcenter by Action handlers. An action can perform a wide
range of activities, for example, send notifications to process
involved persons, call external applications and scripts or
execute custom applications running within the PDM system.
To define actions for events that occur, the current workflow
state must be known. A workflow has defined several states,
for example, begin, finish, stop, pause, resume, apply, undo or
skip. The keyword for the corresponding status depends on the
particular PDM system. In order to integrate the workflow
process directly into an application, PDM systems offer an
appropriate integration. The workflow component of PDM
system directly calls the API when events occur. Therefore,
applications must implement the integration of the workflow
component. After the process definitions were completed and
the associated action handler was defined by the individual
process steps, external tools can be called by trigger
applications. Therefore, the API interface of the virtualization
software is used by the external application which was
previously defined as trigger application in the PDM system.

5.3. Virtualization engine

As virtualizer, the VMware ESXi was used. The underlying
hardware of the virtualization software is dictated by the
respective manufacturers through compatibility lists, which
previously had to pass a certification process. In recent years,
blade servers have prevailed as a suitable hardware in
companies for virtualization purposes. Blade servers are an
assembly of independent hardware units, which have a
compact size and allow a space-saving installation inside a
blade chassis. While standard rack-mount server can
independently work with power cord and network cable, blade
server cannot operate without the blade chassis [16]. The ESXi
software was developed as bare metal embedded hypervisors
which is installed without an underlying OS. VMware
provides as administration tools the VMware vSphere Client
and the associated SDKs. The SOAP API allows a complete
server administration systems and is suitable for the
integration into existing automation systems, ERP systems and
PDM systems.

5.4. VM management application

This component within the architecture represents the link
between the PDM system with its lifecycle and processes as
well as the virtualization software. The objective is to process
incoming requests that were triggered by occurred events in
the workflow and to return an appropriate response. The
integration must ensure the dialogue with the PDM system
and the virtualization software. For example, such tasks
contain the physical access management to VM repositories,
to process configurations modification of VMs, to initiate and
manage deployment processes for virtualization server as well

as to monitor and track the appropriate results to the PDM
system. Further tasks include the VM power management as
well as the archiving and disposal of VM instances which are
no longer required. To allow the interaction between these two
worlds, proprietary APIs of the respective manufacturers must
be provided and implemented.

5.5. VM – hardware interfaces

An essential component within the virtualization software
provides the I/O virtualization. Within the VE, the access to
required hardware interfaces is not comparable as it is for the
access of a real environment. Therefore, the I/O virtualization
provides an extensive range of functions that address different
topics such as security, I/O sharing, isolation and
consolidation. The guest OS must have installed tools which
provide a set of virtual drivers for graphics, storage, memory,
networking, and multimedia. The performance through I/O
virtualization by software is different compared to physical
systems that can directly access I/O interfaces. For this reason,
three primary approaches exist [17]: the direct I/O
virtualization through the hypervisor, Pass-Through I/O, and
Para-virtualized devices.

 Direct I/O virtualization: a virtual device is emulated by a

device driver. The I/O stack has the task to translate the I/O
requests from the guest OS to the host system. Therefore,
the I/O stack manages the internal communication between
the physical and virtual device. The performance of this
approach is limited by the CPU of the host system.
However, offers a complete independence from the
hardware.

 Pass-Through I/O: this approach is designed to use the
hardware of the host system directly for the guest OS.
Therefore, an enhanced performance compared to the I/O
virtualization is achieved by a low CPU utilization [18].
However, an independence of the complete hardware is no
longer guaranteed. Thus, this approach is only
advantageous for performance-critical applications.

 Para-virtualized devices: the guest OS interacts directly
with the API of the host system’s hardware. The API is
provided by the virtualization layer. The device drivers for
the guest OS are similar to those of the host system. Para-
Virtualized devices have the advantage that there are more
appropriate because they have a lower latency and higher
throughput for I/O intensive applications. The complexity
of the VMM is reduced, thereby specific drivers must be
provided for different guest OS.

5.6. Limitations

Based on the architecture, three restrictions have been
identified: performance, interface availability and offline
availability.

 The performance of a VE is an important and critical

element which has an enormous impact on the user
experience. This concerns in particular VEs that require
interactions with users. Users, who have to accept long

351 Michael Hopf and Jivka Ovtcharova / Procedia CIRP 11 (2013) 346 – 351

delays because of insufficient CPU power, will be quickly
discouraged. Therefore, a virtual infrastructure must hold
sufficient hardware resources to cover peaks in rush hours
and prevent major performance bottlenecks. During the
operation off-peak hours, enough hardware resources
would be available in order to assign VEs more dynamic
resources such as CPU or memory.

 Interface availability addresses the limitation of physical
available interfaces of the host system. For example, two
serial ports allow that only two serial devices can be
connected. The physical expansion interfaces is
particularly difficult and expensive for server hardware.
Therefore, the use of emulators within the guest OS is
advantageous as it is found already today for mobile OS
like Android and iOS.

 Offline availability describes the use of VEs without an
active connection to the corporate network. For safety
reasons, this option should be avoided. This means that an
active connection must always be available to the corporate
network to access hosted VEs by users. With respect to
safety, this limitation is advantageous because a higher
protection can be established for product developments as
it is the case for disconnected VEs.

6. Conclusions and future works

This paper has presented the architecture for the VE
integration that provides significant advantages in the product
development of embedded software systems. It is important to
capture requirements for VEs and to keep enough hardware
resources available. The limitation in accessing physical
interfaces can be eliminated by emulators within the VM, but
this could result in a reduction of performance. The
advantages of the presented architecture through virtualization
allow IT departments to manage resources more cost-effective
through dynamic hardware allocation, reduce the time delays
in provision and disaster recovery of VMs, and increase the
availability of VM through hardware independence and more
efficient data backup strategies. Further research is needed to
access physical interfaces from another host system over a
network protocol. Therefore, the implementation of emulators
could be avoided and the limitation of hardware interactions
through pure emulation could be repealed. For extensive
product developments with embedded software, an integration
of queuing systems in the process definition would be more
beneficial. A third research field has been identified in the use
and integration of cloud-based solutions for the deployment of
VEs that enables independent software testing automation for
embedded systems.

References

[1] ARTEMIS Joint Undertaking. The public private partnership for R & D
Embedded Systems, http://www.artemis-ju.eu/, Accessed April 4, 2013.

[2] Ebert C., Jones C., Embedded Software: Facts, Figures, and Future. In:
Computer, vol. 42, no. 4, pp. 42-52, April 2009.

[3] CTB Embedded Systems - Embedded Systems Guide, 2012: Application
Software Development, http://www.embedded-systems-
portal.com/CTB/Application_Software_Development,1001.html,
Accessed April 11, 2013.

[4] Bundesverband Informationswirtschaft, Telekommunikation und neue
Medien e. V. (BITKOM), 2008. Studie zur Bedeutung des Sektors
Embedded-Systeme in Deutschland.
http://www.bitkom.org/files/documents/embedded_systeme_mit_grusswo
rt_kleiner.pdf, Accessed April 16, 2013.

[5] Fabbre J., Entwicklungs-Tools: Wie sich der Entwicklungsprozess für
Embedded-Software optimieren lässt, 2010,
http://www.elektroniknet.de/embedded/entwicklungstools/artikel/30075/,
Accessed April 19, 2013.

[6] Prell M.J., 2006, Underdogma: How America's enemies use our love for
the underdog to trash American power, Dallas, TX, 2011.

[7] Muhammad A., Esque S., Aha L., Mattila J., Siuko M., Vilenius M.,
Järvenpää J., Irving M., Damiani C., Semeraro L., 2009, Combined
application of Product Lifecycle and Software Configuration
Management systems for ITER remote handling. In: Fusion Engineering
and Design, vol. 84, no. 7-11, pp. 1367-1371, 2009.

[8] Do N., Chae G., 2011. A Product Data Management architecture for
integrating hardware and software development. In: Computers in
Industry, vol. 62, no. 8-9, pp. 854-863, 2011.

[9] Stark R., Hayka H., Langenberg D., 2009, New potentials for virtual
product creation by utilizing grid technology. In: CIRP Annals -
Manufacturing Technology, vol. 58, no. 1, pp. 143-146, 2009.

[10] Jin S., VMware VI and vSphere SDK. Managing the VMware
Infrastructure and vSphere, Prentice Hall, 2009.

[11] Rodríguez-Haro F., Freitag F., Navarro L., Hernánchez-sánchez E.,
Farías-Mendoza N., Guerrero-Ibáñez J.A., González-Potes A., 2012. A
summary of virtualization techniques. In: Procedia Technology, vol. 3,
pp. 267-272, 2012.

[12] Adams K., Agesen O., A comparison of software and hardware
techniques for x86 virtualization. In: Proceedings of the 12th
international conference on Architectural support for programming
languages and operating systems (ASPLOS XII). ACM, New York, NY,
USA, pp. 2-13, 2006.

[13] Schlosser D., Duelli M., Goll S., 2011, Performance Comparison of
Hardware Virtualization Platforms. In: NETWORKING 2011 (Lecture
Notes in Computer Science), [Domingo-Pascual J., Manzoni P., Palazzo
S., Pont A., Scoglio C.], editors, vol. 6640, pp. 393-405,
Berlin/Heidelberg, Springer, 2011

[14] CTB Embedded Systems - Embedded Systems Guide, 2012: Product
Lifecycle View, http://www.embedded-systems-
portal.com/CTB/Product_Lifecycle_View,2.html, Accessed April 11,
2013.

[15] Eigner M.; Stelzer R., Product Lifecycle Management. Ein Leitfaden für
Product Development und Life Cycle Management. Berlin/Heidelberg,
Springer, 2009.

[16] Sobotta A. T., Sobotta I. N., Gøtze J., Greening IT. How a greening IT
can form a solid base for a low-carbon society, United States, Greening IT
Initiative, 2010.

[17] Hu K., Zhou W., Jin H., Shao Z., Chen H., High-Quality Sound Device
Virtualization in Xen Para-Virtualized Environment. In: Lecture Notes in
Electrical Engineering, [Park J. J., Jin H., Liao X., Zheng R.], editors, pp.
529–537, Netherlands, 2011.

[18] Ueno H., Hasegawa S., Hasegawa T., Virtage: Server Virtualization with
Hardware Transparency. In: Euro-Par 2009 – Parallel Processing
Workshops, [Lin H., Alexander M., Forsell M., Knüpfer A., Prodan R.,
Sousa L., Streit A.], editors, vol. 6043, pp. 404-413, Berlin/Heidelberg,
2010.

