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Abstract 

The number of products with embedded software increases across all application areas continuously. Thus, the complexity between the 
hardware and software is steadily increasing. This leads to an increment of software defects. Therefore, new approaches are needed to ensure 
the product quality. In the context of PLM, virtualization can support crucial stages of the product development and test automation by 
providing virtual environments. This paper shows an architectural approach, and how to perform an integration of virtualization software in 
PDM systems. 
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1. Introduction 

During the last two decades, the proportion of software as a 
component in products has increased steadily. Thus, the 
worldwide market for embedded systems was around 60 
billion euros with an annual growth rate of 14 percent and up 
to 20 percent in certain domains [1, 2]. Nowadays, software is 
used in various fields of applications and forms. Embedded 
software systems are significantly more complex in an 
environment embossed by hardware than software systems 
without the interaction with the real world. While embedded 
software systems interacting with the real environment, they 
have to cope with a variety of constraints such as real-time, 
security, energy management as well as other resources such 
as memory management and communication [3]. Safety-
critical embedded systems are used in almost half of the 
stationary and mobile phones, network control and monitoring 
systems, transmission technologies, medical analysis and 
treatment devices as well as infotainment terminals [4].  

 

Embedded systems can perform several background tasks 
such as control and monitoring as well as direct interactions 
with the user perform. Due to the increasing complexity of the 
software, a comprehensive testing of embedded systems is 
necessary. Thus, the test automation represents the most 
important part of the development of embedded systems with 
the risk of delays in the delivery, which can quickly exceed 
the cost of a product caused by software errors. Companies 
must elicit, what can be done in the design phase, and have to 
seek for opportunities to automate the various phases [5].  

 
This issue is evidenced by a variety of recalls in the 

automotive industry because of software errors. Pontiac had to 
initiate a recall in 2004 because the software did not 
understand leap years. In 2005, Toyota recalled 75,000 
vehicles due to a software defect [6]. This subject matter 
refers not only to the automotive industry, but also to other 
industries. The test automation and software development of 
embedded systems can be supported by virtualizer through 
cloning, snapshots and more flexible disaster recovery of test 
environments (TEs). 
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This paper shows the benefits of the lifecycle management
integration for virtual machines (VMs) in Product Data
Management (PDM) systems. A modeling of processes for 
virtual infrastructures is shown as well as an architecture
approach is presented, which allows the lifecycle management
and the deployment of virtual environments (VEs) for 
embedded systems development. The paper is organized as 
follows: section two analyzes currently used virtualization 
approaches in the field of software testing. Section three
describes different virtualization techniques and virtualizer.
Section four presents the modeling of the lifecycle 
management of VMs in PDM system. Section five shows the
architecture and its limitations. Finally, in section six the
conclusion is formulated and suggested further research.

2. Related work

The integration of VEs in PDM system has not been
investigated. Meanwhile, the integration of Software
Configuration Management (SCM) in PDM systems has been 
studied. Muhammad et al. [7] discussed the integration of 
Product Lifecycle Management (PLM) and SCM systems and
the role of these systems to be applied during the development 
and maintenance. Do and Chae [8] propose an architecture 
that supports the extension of the data model version items for 
SCM systems. The application supports the functionalities of 
PDM and SCM as well as the integration of hardware and
software parts for product configurations and engineering
change management. Strong, Hayka and Langenberg [9] 
describe an approach and methods dealing with engineering
analysis problems for product development and manufacturing
in the context of computer-aided engineering (CAE)
applications, grid infrastructure and how they can be solved.

3. Virtualization techniques

Virtualization has brought significant benefits to the
operation of the IT infrastructure in companies. The key 
technical benefits are compatible with all standards x86
operating systems, the isolation of VMs, the encapsulation of 
software in a container, portability, rollbacks, high availability
and resource sharing. Entrepreneurial advantages include cost 
savings by consolidating server hardware on a central
instance, greater flexibility in the management, mobility and 
robustness of the infrastructure as well as a higher 
environmental impact by reducing the power consumption 
[10]. Especially the last point must be considered in terms of 
utilization, since physical environments rarely take a 
consistently high CPU power and therefore having increased 
power consumption by providing the power and cooling of 
hardware. A variety of factors acts on a VE (see Fig. 1).

Virtualization is divided into two main areas, hardware
virtualization and software virtualization. The hardware
virtualization refers to the creation of virtual instance of the
entire system or individual physical hardware components
whereas the software virtualization emulates the operating
system or only single application(s) through the virtualizer.

Fig. 1. Relevance factors for virtualized environments

A summary of current virtualization techniques was
discussed by Rodríguez-Haro [11] as well as a comparison 
between software and hardware virtualization for x86
architectures was conducted by Adams and Ole [12]. 
Schlosser et al. examine the effects of network throughput of 
virtualized systems [13]. In this work, the lifecycle
management for PDM systems is studied for the software 
virtualization of the entire operating environment, including 
applications. The system virtualization is enabled by a
virtualizer that provides a runtime environment within an
enclosed container, the so-called virtual machine VM. A VM 
is an implemented software abstraction of the real hardware, 
which is presented to the operating system (OS). The OS
within the VM cannot directly access the system interfaces on 
the host system and interfaces need to be emulated. The
emulation is necessary for virtualizers such as Oracle 
VirtualBox, QEMU or VMware ESXi. The Virtual Machine
Monitor (VMM) or so-called hypervisor is responsible for the 
allocation and management of hardware resources, so that the
OS within the VM can use all resources on request. This
requires that all defined hardware components for the VM are 
emulated for the guest OS. Test scenarios can be performed in 
an unadulterated virtualized run-time environment to 
minimize subsequent problems in physical production 
environments. The disadvantage of this approach results in the
emulation of the hardware resources that may lead to 
performance reduction. The disadvantages that may arise 
through virtualization must be individually analyzed and taken
into account for the particular technical context of the 
embedded system.

4. Modeling in PDM systems

In order to perform the modeling of lifecycles for VMs, the 
characteristics of software products must be analyzed. Thus,
there are products that can fulfill its function completely 
autonomously while other products cannot operate without 
prior configuration. The majority of embedded systems is
involved in a technical context and depends on it in order to
carry the application purpose. For example, the software
inside time recording terminals with fingerprint authentication 
cannot operate without a fingerprint sensor, a navigation 
device software without a GPS receiver cannot calculate a
route, and Point of Sale (POS) terminal software cannot 
perform cashless payments without a card reader. Such
examples show that certain requirements must be placed for 
virtualized environments, in order to perform software
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development and software test automation. Thus, certain
functionality could be emulated by software inside the VM, if 
this seems possible. Smartphones already use emulators for 
the development of mobile applications (apps) that imitate a 
fully functional mobile device. Google provides for the
Android mobile operating system the so-called Android 
emulator whereas Apple provides iOS Simulator and
Microsoft the Windows Phone Emulator. More software 
emulation in other fields of embedded product would support 
the approach of VEs and requires a closer collaboration of
hardware and software development teams.

4.1. Determination of the VM states

Products such as ZENworks Orchestrator by Novell or the 
open source virtualization toolkit libvirt have already defined 
rudimentary lifecycles for VMs. The purpose of such software
is primarily related to the remote management of 
infrastructure components. The integration of virtualization 
into an existing process landscape for product engineering in 
PLM is not considered. An integration of such products can
only be achieved by customization and through the
development of additional interfaces and components. In order 
to represent systems lifecycle management for VEs in PDM
systems, a division into the following three areas must be 
made:

Lifecycle in the context of product development
Lifecycle in the context of product testing
Lifecycle of VMs

4.1.1. Lifecycle in the context of product development

The product lifecycle with embedded software is complex
through partitioning and co-design of hardware and software 
(see Fig. 2). The architecture and modeling for software 
development and hardware development run through different 
phases. However, different development stages are passed 
through and while the engagement with each other and 
coordination between these two developments has an 
enormous importance. The success of the subsequent 
integration as well as the testing and validation depends
largely on the collaboration of these two development phases.
The creation of prototypes is made in the integration phase
through components of the software development which are
linked with those of the hardware design into a functional
prototype. Designers can make changes on the prototype in 
this phase, before the final product for the customer will be
built and deployed. The specification of the prototype defines
the risk factors for the product to be published. The integration 
of VEs can be made for software development throughout the
entire development phases (see Fig. 3). After the partitioning
of hardware and software, the PDM systems could provide an
appropriate VE for software engineers, which include all the
tools needed for development. Such software can be CASE 
tools, integrated development environments (IDEs) and other 
tools used for the development that software developers need
in the field of embedded software systems to perform their 
tasks.

Fig. 2. Product lifecycle view for embedded systems [14]

Fig. 3. Virtualization for embedded systems

4.1.2. Lifecycle in the context of software testing

Considering the development lifecycles with dependence
on software, it can be seen that the complexity rapidly 
increases for a variety of hardware devices with different 
hardware versions and individual software versions. Software
features, enhancements, bug fixes as well as specific hardware 
devices and versions must be tested. Test results for completed 
test cases must be documented and considered for further 
quality measures. Different Bill of Materials (BOMs) helps to
consolidate information about the allowable combinations of 
compatible hardware and software versions of a product. The 
question is formulated by the configuration management
perspective which hardware and software combinations
represent valid configurations. This question can only be
answered by development and testing teams. Virtualization 
could assist these teams to provide VEs for the test case
execution. The test case results would be transferred back 
from the VE to the PDM system to generate a matrix of
different hardware and software combinations.

4.1.3. Lifecycle of the VM

A lifecycle must be defined for the VE provision to manage
the different VM states in the context of PDM (See Fig. 4). It 
is not meant to manage the operational states such as "VM 
powerOn" or "VM powerOff".ff
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Fig. 4. Generic lifecycle for the provision of a VM

Rather, the relevant test conditions and boundary
conditions should be considered in advance during the VM
creation or selection to re-play a specific test scenario within a 
VE. Thereby factors such as the definition of VM hardware
properties, guest OS type, virtual hardware interfaces and
specific modifications within the guest OS represent important 
parameters in test scenarios. The VE provision lifecycle 
should manage tasks of an administrative level. These include 
the VM selection and identification from a pool, the
configuration of selected VEs based on a specified profile and
the deployment, archiving and disposal of VEs.

4.1.4. Process definition

The process definitions are one of the core functions of 
each PDM system. Therefore, the workflow management is
the most pronounced component that uses visualization tools
for the description of parallel and sequential processes [15]. 
Thus the basic functions of such tools only differ in the
implementation by the respective manufacturers. For themm
definition of processes, tools such the Business Modeler
application in ENOVIA V6 and the Workflow Designer in 
Teamcenter are used. For the process modeling, activities can
be defined that allow branching within a process. Likewise, 
processes can include sub-processes which are nested with 
each other. Tasks may be defined properly that the user 
intervention is necessary or that they are performed
automatically. Actions automated tasks can be defined to call
external applications.

5. Architecture

The architecture describes the following six parts: process
definitions for software development, software testing and
VM management; action handlers to trigger VM tasks;
virtualization engine for the provision of VMs; VM
management application for VM operations; VM hardware
interfaces as well as the limitations of this architecture.

5.1. Process definitions

Firstly, the processes for the three areas Software 
Development, Software testing and VM Management must be 
defined. Secondly, the workflow instances are generated from 
the pre-defined processes which are used for the respective
context.

5.1.1. Process definition for software development

The process definition for the provision of software
development environments was determined as follows: firstly, ff
an existing software development environment is selected 
from a pool of existing VEs. If no appropriate VE is available,

it must be requested. Such a request results in a new task that
is created and assigned to a person who is responsible for the
generation of a virtual software development environment.
This person adds the created VE in form of a template to the
pool of existing VE templates and registers this template
against the PDM system. Once this newly created VE template
is available, the workflow owner will be informed. Secondly,
the hardware requirements for the VE are selected. Therefore,
the workflow owner can set parameters such as memory, disk 
space and hardware interfaces applying to the VE that has
been previously selected. Finally, the automated tasks are 
processed in order to enable the provision of the VE. The tasks
include the selection of the virtualization system, the
deployment process, the compilation of information as well as
the notification to the developer getting access to the provided 
VE. Once the VE is no longer required by the developer, it can
be transformed in the state of archiving or disposal. It should 
be noted that one developer can have one or more VE
instances. Moreover, a single instance could be used by 
several developers. The number of VE instances can be
flexible adapted to the developers’ needs.

5.1.2. The deployment process definition of software testing

The deployment of VEs for software testing differs only
slightly to software development. Each deployment subject 
has its own pool of VE templates.  A VE is assigned to a 
specific pool based on safety reasons. In a more
comprehensive process definition it should be possible to
choose a VE template which is exclusively provided to
departments or groups. Based on the test scenario, the user is 
able to modify VE parameters more flexible to meet the
hardware requirements.

5.1.3. Process definition for VM management

The VM process definition was designed simply. It
contains only the basic steps (see Fig. 5). This means that no 
process branches or vendor specific steps were made in the
definition to ensure the independence of the virtualization 
vendor. Thereby, vendor specific logic has been placed into
the integration module. A complex modeling of the VM
process depends on the depth of the virtualization integration 
into the PDM system. The advanced process steps include, for 
example, the physical location of VEs (required for site-
related deployment), the deployment process (e.g. copy,
modify and register the VM) and the power management (e.g. 
power on, power off, suspend, resume and pause).

Fig. 5. VM process definition in ENOVIA Business Modeler
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5.2. Action handlers 

PDM systems offer a variety of options to recognize 
triggered process events. For the occurrence of expected 
events, predefined actions can be performed. This 
functionality is represented in ENOVIA V6 as triggers and in 
Teamcenter by Action handlers. An action can perform a wide 
range of activities, for example, send notifications to process 
involved persons, call external applications and scripts or 
execute custom applications running within the PDM system. 
To define actions for events that occur, the current workflow 
state must be known. A workflow has defined several states, 
for example, begin, finish, stop, pause, resume, apply, undo or 
skip. The keyword for the corresponding status depends on the 
particular PDM system. In order to integrate the workflow 
process directly into an application, PDM systems offer an 
appropriate integration. The workflow component of PDM 
system directly calls the API when events occur. Therefore, 
applications must implement the integration of the workflow 
component. After the process definitions were completed and 
the associated action handler was defined by the individual 
process steps, external tools can be called by trigger 
applications. Therefore, the API interface of the virtualization 
software is used by the external application which was 
previously defined as trigger application in the PDM system. 

5.3. Virtualization engine 

As virtualizer, the VMware ESXi was used. The underlying 
hardware of the virtualization software is dictated by the 
respective manufacturers through compatibility lists, which 
previously had to pass a certification process. In recent years, 
blade servers have prevailed as a suitable hardware in 
companies for virtualization purposes. Blade servers are an 
assembly of independent hardware units, which have a 
compact size and allow a space-saving installation inside a 
blade chassis. While standard rack-mount server can 
independently work with power cord and network cable, blade 
server cannot operate without the blade chassis [16]. The ESXi 
software was developed as bare metal embedded hypervisors 
which is installed without an underlying OS. VMware 
provides as administration tools the VMware vSphere Client 
and the associated SDKs. The SOAP API allows a complete 
server administration systems and is suitable for the 
integration into existing automation systems, ERP systems and 
PDM systems. 

5.4. VM management application 

This component within the architecture represents the link 
between the PDM system with its lifecycle and processes as 
well as the virtualization software. The objective is to process 
incoming requests that were triggered by occurred events in 
the workflow and to return an appropriate response. The 
integration must ensure the dialogue with the PDM system 
and the virtualization software. For example, such tasks 
contain the physical access management to VM repositories, 
to process configurations modification of VMs, to initiate and 
manage deployment processes for virtualization server as well 

as to monitor and track the appropriate results to the PDM 
system. Further tasks include the VM power management as 
well as the archiving and disposal of VM instances which are 
no longer required. To allow the interaction between these two 
worlds, proprietary APIs of the respective manufacturers must 
be provided and implemented. 

5.5. VM – hardware interfaces 

An essential component within the virtualization software 
provides the I/O virtualization. Within the VE, the access to 
required hardware interfaces is not comparable as it is for the 
access of a real environment. Therefore, the I/O virtualization 
provides an extensive range of functions that address different 
topics such as security, I/O sharing, isolation and 
consolidation. The guest OS must have installed tools which 
provide a set of virtual drivers for graphics, storage, memory, 
networking, and multimedia. The performance through I/O 
virtualization by software is different compared to physical 
systems that can directly access I/O interfaces. For this reason, 
three primary approaches exist [17]: the direct I/O 
virtualization through the hypervisor, Pass-Through I/O, and 
Para-virtualized devices. 

 
 Direct I/O virtualization: a virtual device is emulated by a 

device driver. The I/O stack has the task to translate the I/O 
requests from the guest OS to the host system. Therefore, 
the I/O stack manages the internal communication between 
the physical and virtual device. The performance of this 
approach is limited by the CPU of the host system. 
However, offers a complete independence from the 
hardware. 

 Pass-Through I/O: this approach is designed to use the 
hardware of the host system directly for the guest OS. 
Therefore, an enhanced performance compared to the I/O 
virtualization is achieved by a low CPU utilization [18]. 
However, an independence of the complete hardware is no 
longer guaranteed. Thus, this approach is only 
advantageous for performance-critical applications. 

 Para-virtualized devices: the guest OS interacts directly 
with the API of the host system’s hardware. The API is 
provided by the virtualization layer. The device drivers for 
the guest OS are similar to those of the host system. Para-
Virtualized devices have the advantage that there are more 
appropriate because they have a lower latency and higher 
throughput for I/O intensive applications. The complexity 
of the VMM is reduced, thereby specific drivers must be 
provided for different guest OS. 

5.6. Limitations 

Based on the architecture, three restrictions have been 
identified: performance, interface availability and offline 
availability. 

 
 The performance of a VE is an important and critical 

element which has an enormous impact on the user 
experience. This concerns in particular VEs that require 
interactions with users. Users, who have to accept long 
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delays because of insufficient CPU power, will be quickly 
discouraged. Therefore, a virtual infrastructure must hold 
sufficient hardware resources to cover peaks in rush hours 
and prevent major performance bottlenecks. During the 
operation off-peak hours, enough hardware resources 
would be available in order to assign VEs more dynamic 
resources such as CPU or memory. 

 Interface availability addresses the limitation of physical 
available interfaces of the host system. For example, two 
serial ports allow that only two serial devices can be 
connected. The physical expansion interfaces is 
particularly difficult and expensive for server hardware. 
Therefore, the use of emulators within the guest OS is 
advantageous as it is found already today for mobile OS 
like Android and iOS. 

 Offline availability describes the use of VEs without an 
active connection to the corporate network. For safety 
reasons, this option should be avoided. This means that an 
active connection must always be available to the corporate 
network to access hosted VEs by users. With respect to 
safety, this limitation is advantageous because a higher 
protection can be established for product developments as 
it is the case for disconnected VEs. 

6. Conclusions and future works 

This paper has presented the architecture for the VE 
integration that provides significant advantages in the product 
development of embedded software systems. It is important to 
capture requirements for VEs and to keep enough hardware 
resources available. The limitation in accessing physical 
interfaces can be eliminated by emulators within the VM, but 
this could result in a reduction of performance. The 
advantages of the presented architecture through virtualization 
allow IT departments to manage resources more cost-effective 
through dynamic hardware allocation, reduce the time delays 
in provision and disaster recovery of VMs, and increase the 
availability of VM through hardware independence and more 
efficient data backup strategies. Further research is needed to 
access physical interfaces from another host system over a 
network protocol. Therefore, the implementation of emulators 
could be avoided and the limitation of hardware interactions 
through pure emulation could be repealed. For extensive 
product developments with embedded software, an integration 
of queuing systems in the process definition would be more 
beneficial. A third research field has been identified in the use 
and integration of cloud-based solutions for the deployment of 
VEs that enables independent software testing automation for 
embedded systems. 
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