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0. Introduction

In the paper [1], Bahturin and Giambruno described the group gradings by finite abelian groups

G on the matrix algebra Mn(F) over an algebraically closed field F of characteristic different from 2,

which are respected by an involution. Besides, under some restrictions on the base field, they classified

all G-gradings on all finite-dimensional involution simple algebras.

In this paperwedealwithfinite-dimensional associative superalgebras that are simplewith respect

to some superinvolution ∗ over an algebraically closed field of characteristic zero or coprime to the

order of G. First, we give a description of such associative superalgebras. Second, we classify all group

gradings on ∗-simple associative superalgebras that are not simple associative algebras.

In the samewayas thedescriptionof involutiongradingson involution simpleassociativealgebras is

important for the determination of group gradings on classical simple Jordan and Lie algebras [3,5] the

descriptionof superinvolutiongradingson superinvolution simple associative algebras is important for

�
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thedeterminationof groupsgradingson simple JordanandLie superalgebras. The caseof superalgebras

that are simplealgebras isdue to the secondand the thirdauthors, and is tobe submitted forpublication

shortly.

1. Definitions and introductory remarks

Let R be an associative superalgebra, or, in other words, an associative algebra with a fixed Z2-

grading R = R0̄ ⊕ R1̄. Since all algebras and superalgebras considered in this paper are associative we

will normally drop the word associative in what follows. Also, if not stated otherwise, all subalgebras,

ideals and homomorphisms are Z2-graded. We say that R is simple if it has no non-trivial proper (Z2-

graded) ideals. It is well-known [12] that any finite-dimensional simple (associative) superalgebra

over an algebraically closed field of characteristic different from 2 is isomorphic to either Mk,l(F), the
full matrix algebra Mn(F) with a Z2-grading completely determined by two non-negative integers

k, l, k + l = n, or a subalgebra R = Q(n) of M2n(F) consisting of all matrices of the form

(
X Y

Y X

)
with R0̄ =

(
X 0

0 X

)
and R1̄ =

(
0 Y

Y 0

)
. A convenient notation for R = Q(n) is R = A ⊕ tA where

A∼=Mn(F), t
2 = 1. Then R0̄ = A and R1̄ = tA.

Definition 1. Let R be a superalgebra. A superinvolution on R is a Z2-graded linear map ∗ : R → R

such that (x∗)∗ = x for all x ∈ R and (xy)∗ = (−1)|x||y|y∗x∗ for all homogeneous x, y ∈ R, of degrees

|x| and |y|, respectively. A more general notion is that of superantiautomorphism, that is, a linear map

ϕ : R → R such that ϕ(xy) = (−1)|x||y|ϕ(y)ϕ(x) for all homogeneous x, y ∈ R, as above.

In this paper we will be interested in superinvolution simple superalgebras.

Definition 2. Let (R, ∗) be a superalgebra endowed with a superinvolution ∗. We say that R is super-

involution simple if R2 /= {0} and R has no non-trivial ideals stable under ∗.
If ∗ is a superinvolution on R, then obviously the restriction of ∗ to R0̄ is an ordinary involution.

The same is true for superantiautomorphisms. Thus, there is no confusion to abbreviate the terms

superinvolution and superantiautomorphism to involution and antiautomorphism, respectively. In

particular, superinvolution simple superalgebras will be simply called involution simple.

The following are examples of involution simple superalgebras.

Example 1. The orthosymplectic involution on R = Mr,2s(F) is given by(
X Y

Z T

)osp

=
(
Ir 0

0 Q

)−1 (
X −Y

Z T

)t (
Ir 0

0 Q

)

where t denotes the usual matrix transpose, Q =
(

0 Is−Is 0

)
, and Ir , Is are the identity matrices of

orders r,s, respectively.

Example 2. Let us consider R = Mr,r(F). We will call the following involution defined on Mr,r(F) the
transpose involution:(

X Y

Z T

)trp

=
(
Tt −Yt

Zt Xt

)
.

Example 3. Let A be a superalgebra. Consider a new superalgebra Asop which has the same Z2-graded

vector space structure as A but the product of Asop is given on homogeneous a, b of degrees |a|, |b| by
a ◦ b = (−1)|a||b|ba.
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Let S = A ⊕ Asop be the direct sum of two ideals A and Asop. This is a Z2-graded algebra with

R0̄ = A0̄ ⊕ A
sop

0̄
, R1̄ = A1̄ ⊕ A

sop

1̄
. We denote an arbitrary element x from R as a pair of elements from

A, i.e. x = (a, b)where a, b ∈ A. The product in R is given by

(a0 + a1, b0 + b1) · (a′
0 + a′

1, b
′
0 + b′

1)

= (a0a
′
0 + a1a

′
1 + a0a

′
1 + a1a

′
0, b

′
0b0 − b′

1b1 + b′
1b0 + b′

0b1),

where a0, b0, a
′
0, b

′
0 ∈ A0, a1, b1, a

′
1, b

′
1 ∈ A1̄.

A linear mapping defined by (a, b)ex = (b, a) is an involution called exchange involution. If A is

simple then (S, ex) is an involution simple superalgebra.

Definition 3. Let R and S be two superalgebras endowed with involutions ∗ and †. We say that (R, ∗)
and (S, †) are isomorphic if there exists an isomorphism of superalgebras ϕ : R → S such that ϕ(x∗) =
ϕ(x)† for all x ∈ R. If R = S then ϕ is an automorphism of R and ∗, † are called conjugate by ϕ. In this

case we have † = ϕ ◦ ∗ ◦ ϕ−1.

If (R, ∗) is an involution simple superalgebra then a standard argument shows that either R is a

simple superalgebra or else there is a (Z2-graded) ideal A in R such that R = A ⊕ A∗. In the latter

case the mapping ϕ : R → S defined by ϕ(a + b∗) = (a, b) where a, b ∈ A defines an isomorphism

of involution simple superalgebras between (R, ∗) and a standard superalgebra (S, ex) of Example 3

above, where A is simple.

In [10, Propositions 13 and 14] Racine described all types of involutions onA = Mn,m(F) = A0̄ + A1̄.

It appears that if ϕ is an involution on A such that A0̄ is an involution simple algebra under ϕ restricted

to A0̄, then n = m and ϕ is conjugate to the transpose involution. Otherwise, ϕ is conjugate to the

orthosymplectic involution. Also, it was shown in [8, Theorem 3.1], a superalgebra of the type Q(n)
has no involutions. We can summarize all the remarks above as the following.

Proposition 1. Any finite-dimensional involution simple superalgebra over an algebraically closed field of

characteristic different from 2 is isomorphic to one of the following:
(1) R = Mn,m(F) with the orthosymplectic or transpose involution.
(2) R = Mn,m(F)⊕ Mn,m(F)

sop with the ordinary exchange involution.
(3) R = Q(n)⊕ Q(n)sop with the ordinary exchange involution.

2. Group gradings

One can define gradings of superagebras by the elements of very general sets with operations but

as it turns out if the superalgebra is involution simple we can restrict ourselves to the case of abelian

groups. A phenomenon of this kind was, probably, first mentioned in [9]. In the case of involutions see

[3,1].

Definition 4. Given a semigroup G and a superalgebra R we say that R is graded by G if R = ⊕
g∈G Rg

where each Rg is a Z2-graded vector subspace and RgRh ⊂ Rgh, for any g, h ∈ G. The subset Supp R =
{g ∈ G | Rg /= {0}} is called the support of the grading.

Asemigroupwith1 is called cancellative if eachofxg = xh,gx = hx impliesg = h, for anyx, g, h ∈ G.

Proposition 2. Let R be a G-graded superalgebra, G a cancellative semigroup. Suppose R has an invo-

lution ∗ compatible with this grading, that is, R∗
g = Rg , for any g ∈ G, and also that R is ∗-simple. Then,

given any g, h ∈ Supp R we have that gh = hg. If, additionally, 1 ∈ Supp R then any g ∈ Supp R is

invertible.
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Proof. Let g, h ∈ Supp R. Suppose RgRh /= 0. We have to show that (RgRh)
∗ ⊆ Rhg . Since we deal with

a superalgebra G-grading, Rg = R0̄g + R1̄g and Rh = R0̄h + R1̄h where R0̄g , R
0̄
h are even components, R1̄g ,

R1̄h are odd components. It follows from RgRh = (R0̄g + R1̄g)(R
0̄
h + R1̄h) ⊆ R0̄gR

0̄
h + R1̄gR

1̄
h + R0̄gR

1̄
h + R1̄gR

0̄
h

that (RgRh)
∗ ⊆ (R0̄h)

∗(R0̄g)∗ + (R1̄h)
∗(R1̄g)∗ + (R1̄h)

∗(R0̄g)∗ + (R0̄h)
∗(R1̄g)∗ = R0̄hR

0̄
g + R1̄hR

1̄
g + R1̄hR

0̄
g +

R0̄hR
1̄
g ⊆ Rhg . On the other hand, RgRh ⊆ Rgh, (RgRh)

∗ ⊆ R∗
gh = Rgh. Hence, Rgh = Rhg , gh = hg.

Now, pick g, h ∈ Supp R, and consider I = Rg + RRg + RgR + RRgR. It is easily seen that I is a graded

ideal. Nextwewant to show that I∗ = I. SinceRRg = ∑
lRlRg , (

∑
l RgRl)

∗ ⊆ ∑
lR

0̄
l R

0̄
g + R1̄l R

1̄
g + R1̄l R

0̄
g +

R0̄l R
1̄
g = ∑

l(R
0̄
l + R1̄l )(R

0̄
g + R1̄g) = ∑

lRlRg = RRg . In a similar manner we can show that (RRgR)
∗ =

(
∑

l,kRlRgRk)
∗ = ∑

l,k(RlRgRk)
∗ = ∑

k,lRkRgRl . Therefore, I is agraded∗-invariantnon-zero ideal, hence,
I = R. In particular, Rh ⊂ Rg + RRg + RgR + RRgR. The homogeneous components on the right-hand

side are of one of the forms: g, kg, gl, pgq, for some k, l, p, q ∈ G. So, h is one of these forms. It follows

that one of the spaces Rg (if g = h), or RkRg , or RgRl , or RpRgRg is different from zero, with either h = g,

or h = kg, or h = gl, or h = pgq. The case h = g being trivial, if RkRg /= 0 with h = kg then kg = gk

by what was proven before and then hg = (kg)g = g(kg) = gh, as needed. Similarly, if RgRl /= 0with

gl /= 0. Now if RpRgRq /= 0 with h = pgq, then RpRg /= 0 and RgRq /= 0 so that pg = gp and gq = qg.

Again, hg = (pgq)g = (pg)(qg) = gpgq = gh, as required.

The invertibility claim follows in exactly the same way as in [7, Proposition 1]. �

As a result, using Proposition 1, we will assume in what follows, that we deal with abelian group

gradings of finite-dimensional involution simple superalgebras. Actually, we restrict ourselves to the

case where G is finite and R is not simple as a superalgebras (Cases (2) and (3) of Proposition 1). As

mentioned earlier, Case (1) is to be published in a joint paper of the second and the third authors

[11].

Remark 1. If A is a superalgebra graded by an abelian group G then the same homogeneous subspaces

Ag , g ∈ G, define in Asop a G-grading. We will denote these subspaces by A
sop
g .

The techniquesweare going touse impose a further restrictionon the groundfield F . Namely,weare

going to use the correspondence between the gradings on a (super) algebra R by a finite abelian group

G and the actions on R of the dual group Ĝ by automorphisms (see, for example, [2, Section 2]). For this

to work, we need to make sure that if the order of G is d then F contains d different roots of 1 of degree

d. If this condition holds then each grading R = ⊕
g∈G Rg defines a homomorphism α : Ĝ → Aut R

given by α(χ)(r) = χ(g)r provided that r ∈ Rg , g ∈ G. Also the grading can be recovered if we have

a homomorphism α, as above.
We start with a general result (the Exchange Theorem below) obtained by the first author. An

important particular case can be found in [6]. Let G be a finite abelian group and V a vector space.

Suppose we have two G-gradings on V :

V = ⊕g∈GVg , α : Ĝ → Aut V , (1′)
V = ⊕g∈GṼg , β : Ĝ → Aut V , (2′)

whereα,β : Ĝ → Aut V are homomorphisms of the dual group Ĝ corresponding to the above gradings

in the following way. Given χ ∈ Ĝ we define α(χ) on an element v of Vg , for each g, by α(χ)(v) =
χ(g)v. Similarly for (2′). SupposeΛ ⊂ Ĝ is a subgroup such that α(λ) = β(λ), for each λ ∈ Λ. Let us

denote by H the orthogonal complement Λ⊥ = {g ∈ G| λ(g) = 1, λ ∈ Λ}. Assume further that the

subgroups α(Ĝ) and β(Ĝ) commute elementwise.

Let us consider a homomorphism γ : Ĝ → Aut V given by γ (χ) = α−1(χ)β(χ). In this case we

can define H-grading of V as follows: V (h) = {v| γ (χ)(v) = χ(h)v,χ ∈ Ĝ}.
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Theorem 1 (Exchange Theorem). The three gradings defined above are connected by the following equa-

tions

Vg = ⊕h∈H(Ṽgh ∩ V (h)), Ṽg = ⊕h∈H(Vgh ∩ V (h
−1)) (3′)

If V is an algebra and (1′) and (2′) are algebra gradings, then (3′) are relations for the algebra gradings.

Proof. Let us prove the first equality. Since all gradings are compatible, we have Vg = ⊕h∈H(Vg ∩
V (h)). Thus it is enough to prove, for any g ∈ G, h ∈ H, that Ṽgh ∩ V (h) = Vg ∩ V (h). If v ∈ Ṽgh ∩ V (h)

then β(χ)(v) = χ(gh)v and γ (χ)(v) = χ(h)v. Hence also γ (χ)−1(v) = χ(h)−1v. Now

α(χ)(v) = α(χ)β(χ)−1β(χ)(v) = γ (χ)−1β(χ)(v) = χ(h)−1χ(gh)v

proving Ṽgh ∩ V (h) ⊂ Vg ∩ V (h).

If b ∈ Vg ∩ V (h) then α(χ)(b) = χ(g)b, γ (χ)(b) = χ(h)b. Therefore

β(χ)(b) = α(χ)α(χ)−1β(χ)(a) = α(χ)γ (χ)(a) = χ(g)χ(h)a = χ(gh)a.

It follows that Vg ∩ V (h) ⊂ Ṽgh ∩ V (h). Finally, Vg ∩ V (h) = Ṽgh ∩ V (h) for any g ∈ G and thuswe have

the first equality in (3′). The second is similar. It is easy to check that if V is an algebra and (1′) and (2′)
are algebra gradings, then (3′) provides us with the relations between algebra gradings as well. The

proof is complete. �

One of the important tools in the proof of the main results of our work is a recent result from [5],

as follows.

Theorem 1. Let Mn(F) = A = ⊕
g∈G Ag be a G-grading on Mn(F) over a field F of characteristic not 2,

which contains d different roots of 1, d = |G|. Suppose there is a graded antiautomorphism ϕ whose

restriction to Re is an involution. Then there is a G-graded automorphismψ of R such that ϕψ = ψϕ and

ψ2 = ϕ2.

A consequence of this result which interests us is as follows. Let us denote by Aut (A) the group of

automorphisms and antiautomorphisms of A. In the case A = Mn(F), [Aut (A) : Aut (A)] = 2.

Theorem 2. Let P be a finite abelian subgroup in Aut (A), A = Mn(F) over a field F of characteristic not

2, which contains d different roots of 1, d = |G|. Suppose ϕ ∈ P \ Aut (A). Then there existsψ ∈ Aut (A)
commuting with all elements in P andψ2 = ϕ2.

Proof. SetQ = P ∩ Aut (A). ThenQ is a subgroup of index 2 in P. Let G be a finite abelian groupwhose

dual isQ . That is, the elements ofQ can be viewed asmultiplicative characters onG. As noted earlier, in

this caseAbecomesG-graded if onesetsAg = {a ∈ A |χ(a) = χ(g)aforanyχ ∈ Q}. Sinceϕ commutes

with the elements of Q , the antiautomorphism ϕ is a G-graded map. Also, because ϕ2 ∈ Q , we have

that the restriction of ϕ to Re is an involution. Applying Theorem 1, we find a G-graded automorphism

ψ such that ϕψ = ψϕ and ψ2 = ϕ2. Now if χ is an arbitrary element of Q and a a homogeneous

element of degree g ∈ G then ψ(χ(a)) = ψχ(g)a = χ(g)ψ(a) = χ(ψ(a)) because ψ(a) ∈ Ag . It

follows thatψχ = χψ andψ commutes with all elements of P, as required. �

3. Antiautomorphisms of graded superalgebras

Theorem 1 is no longer true in the case of (super) antiautomorphisms of matrix superalgebras. The

simplest example is the trivial grading and the (super) antiautomorphism defined on Mn,m, n,m odd,

by
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ϕ(X) =
(
A −B

C D

)t

,

where X =
(
A B

C D

)
, A and D arematrices of size n × n andm × m, respectively, B and C arematrices

of size n × m and m × n, respectively.

Luckily, the argument of [5] can be adapted to the case of superalgebras although we have to deal

with higher powers of the antiautomorphisms in question.We startwith a generalization of the results

of [3, Lemma 2] about fine involution gradings. Recall that a grading R = ⊕g∈GRg is called fine if for

any g ∈ G such that Rg /= {0}, dim Rg = 1.

Theorem 3. Let R = Mn,m(F), n,m� 1, be a non-trivial matrix superalgebra with an antiautomorphism

ϕ over an algebraically closed field F of characteristic zero or coprime to the order of G, where G is a finite

abelian group. Then R admits no fine G-gradings respected by ϕ.

Proof. Assume the contrary, that is R = ⊕g∈GRg is a fine G-grading respected by ϕ, ϕ(Rg) = Rg . Since

R is a superalgebra with a fine G-grading, according to [4], dim R0̄ = dim R1̄, that is, n = m. Let R0̄ be

denoted by A. Then

A = ⊕g∈G Ag ,

where Ag = R0̄ ∩ Rg . This grading is also fine and compatible with ϕ. Note that A = J1 ⊕ J2, the sum

of two isomorphic simple ideals.

Next let Ĝ be the dual group of G, and α : Ĝ → Aut A the homomorphism accompanying our grad-

ing. If for each η ∈ Ĝ, α(η)(Ji) = Ji, then a fine G-grading of A induces G-gradings on both ideals

such that Ag = (J1)g ⊕ (J2)g . In particular, Ae = (J1)e ⊕ (J2)e, where (Ji)e /= {0}. This contradicts the
fact that our G-grading is fine. Therefore, there exists ξ ∈ Ĝ such that α(ξ)(J1) = J2. Hence, Ĝ =
Λ ∪Λξ where Λ = {η ∈ Ĝ|α(η)(Ji) = Ji} and ξ2 ∈ Λ. Then H = Λ⊥ is a subgroup of G of order

2 and Ĝ/H ∼=Λ. Let H = {e, h} where h2 = e. Next we can consider the induced G = G/H-grading

of A. Let ḡ = gH for any g ∈ G. Then Aḡ = Ag + Agh. Since Ĝ/H ∗ Ji = Λ ∗ Ji =i where i ∈ 1, 2, Ji is a

G/H-graded ideal. It follows from Aē = (J1)ē ⊕ (J2)ē, (Ji)ē /= {0}, and dim Aē = 2 that dim (Ji)ē = 1.

Therefore, both G/H-gradings on J1 and J2 are fine.

The following two cases may occur.

Case 1. Let ϕ(J1) = J2. Note that Aḡ = (J1)ḡ ⊕ (J2)ḡ for each ḡ ∈ G. By Proposition 2 [6], we can

recover our original G-grading. In fact,

Ag = {X + ξ(g)−1(ξ ∗ X)| X ∈ Aḡ}. (1)

For example, let us take X =
(
Xḡ 0

0 0

)
, Xḡ ∈ (J1)ḡ . Then, by (1),

0 /= X + ξ(g)−1(ξ ∗ X) =
(
Xḡ 0

0 ξ(g)−1(ξ ∗ Xḡ)

)
∈ Ag .

Since dim Ag = 1, Ag = span

{(
Xḡ 0

0 ξ(g)−1(ξ ∗ Xḡ)

)}
. Recall that ϕ(Ag) = Ag where ϕ can be rep-

resented as follows:

ϕ ∗
(
X 0

0 Y

)
=
(
ϕ0(Y) 0

0 ϕ1(X)

)
,

where ϕ0 and ϕ1 are antiautomorphisms. Hence

ϕ ∗
(
Xḡ 0

0 ξ(g)−1(ξ ∗ Xḡ)

)
=
(
ξ(g)−1(ϕ0ξ) ∗ (Xḡ) 0

0 ϕ1(Xḡ)

)
= λg

(
Xḡ 0

0 ξ(g)−1(ξ ∗ Xḡ)

)
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for some non-zero scalar λg . Therefore, for each ḡ ∈ G, Xḡ = (λgξ(g))
−1)(ϕ0ξ) ∗ (Xḡ)where ϕ0ξ is

also an antiautomorphism. In other words a fine G-grading on J1 is respected by antiautomorphism

ϕ0ξ . Then, by [3, Lemma 2], G/H ∼=N1 × · · · × Nk where Ni
∼= Z2 × Z2.

Case 2. Let ϕ(Ji) = Ji. Then a fine G-grading on each Ji is also compatible with ϕ. Hence, according
to [3, Lemma 2], G/H ∼=N1 × · · · × Nk where Ni

∼= Z2 × Z2.

Therefore, |G| = 2 · 22l = 22l+1, for some natural number l. Moreover, we have that for each g ∈ G,

either g2 = eor g4 = e. On theotherhand, according to Theorem5 [2],G = Zn1 × Zn1 × · · · × Znk ×
Znk , ni ∈ N. Moreover, either ni = 2 or ni = 4. Therefore, |G| = 22r · 42s = 22r+4s, for some natural

numbers r and s, which is contradiction. �
In what follows, let τ denote an antiautomorphism ofMn,m(F) defined by the formula:

Xτ =
(
A −B

C D

)t

,

where X =
(
A B

C D

)
, A and D arematrices of size n × n andm × m, respectively, B and C arematrices

of size n × m and m × n, respectively.

Recall that a grading R = ⊕g∈GRg on the matrix algebra R = Mn(F) is called elementary if there

exists an n-tuple θ = (g1, . . . , gn) ∈ Gn such that thematrix units Eij , 1� i, j � n are homogeneous and

Eij ∈ Rg if and only if g = g
−1
i gj .

Lemma 1. Let R = Mn = ⊕g∈GRg be a matrix algebra with the elementary G-grading. If Re = A1 ⊕ A2 is

the sum of two simple subalgebras, then there exists g ∈ G, g /= e, such that A1RA2 ⊆ Rg .

Lemma 2. If R = R0̄ + R1̄ is a superalgebra with an antiautomorphism ϕ, then for any x, y ∈ R,

ϕ(xRy) ⊆ ϕ(y)Rϕ(x). (2)

Lemma 3. Let R = C ⊗ D = ⊕g∈GRg be a G-graded matrix superalgebra with an elementary grading on

C, and a fine grading on D over an algebraically closed field F of characteristic not 2. Let ϕ : R → R be

an antiautomorphism on R preserving G-grading and σ : R → R be an automorphism of order 2 of R that

defines a superalgebra structure on R. Let also ϕ act as a superinvolution on Re. Then

(1) Ce ⊗ I is ϕ-stable and σ -stable where I is the unit of D and hence σ induces a Z2-grading on Ce and

ϕ induces a superinvolution ∗ on Ce compatible with the Z2-grading.
(2) there are∗-subsuperalgebras B1, . . . , Bk ⊆ Ce such that Ce = B1 ⊕ · · · ⊕ Bk, and B1 ⊗ I, . . . , Bk ⊗

I are ϕ-stable and σ -stable.
(3) ϕ acts on Re = Ce ⊗ I as ϕ ∗ X = S−1Xτ S where S = S1 ⊗ I + · · · + Sk ⊗ I, Si ∈ BiCBi and Si =(

Isi 0

0 Qri

)
if Bi is of type Msi ,2ri(F) with orthosymplectic superinvolution; Si =

(
0 Isi
Isi 0

)
if Bi is

of type Msi ,si(F) with transpose superinvolution; Si =
(

0 Isi+ri
Isi+ri 0

)
if Bi is of type Msi ,ri(F)⊕

M
sop
si ,ri(F) with exchange superinvolution; Si =

(
0 I2si
I2si 0

)
if Bi is of type Q(si)⊕ Q(si)

sop with

exchange superinvolution.
(4) if ei is the identity of Bi, then Di = ei ⊗ D is ϕ-stable and σ -stable.
(5) the centralizer of Re = Ce ⊗ I in R can be decomposed as Z1D1 ⊕ · · · ⊕ ZkDk where Zi = Z′

i ⊗ I, Z′
i

is the center of Bi.

Proof. It follows from [2, Theorem5] that the identity componentRe equals toCe ⊗ I. SinceRe isϕ- and
σ -stable, both ϕ and σ induce a superinvolution ∗ and a superalgebra structure on Ce. Both structures

are compatible with each other.

Since Ce is semisimple, it is the direct sum of simple subalgebras,

Ce = A1 ⊕ · · · ⊕ Al.
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If for some i, 1� i � l, σ(Ai) = Aj where i /= j, then it is easily seen that A′
i = Ai + Aj is σ -stable.

Therefore, Ce can be written as a direct sum of σ -stable superalgebras,

Ce = A′
1 ⊕ · · · ⊕ A′

s.

Next, if for some i, 1� i � s, (A′
i)

∗ = A′
j where i /= j, then Bi = A′

i + A′
j is ∗-stable. Finally, Ce can be

written as a direct sum of ∗-simple superalgebras.

Ce = B1 ⊕ · · · ⊕ Bk.

Now (1), (2) and (3) follows from the classification of involution simple superalgebras (see Proposition

1).

Nextwefix1� i � k, and considerR′ = (ei ⊗ I)(C ⊗ D)(ei ⊗ I) = eiCei ⊗ Dwhere ei is the identity

of Bi. Since ϕ(ei ⊗ I) = ei ⊗ I and σ(ei ⊗ I) = ei ⊗ I, R′ is ϕ- and σ -stable.
To prove (4), we consider the following three cases.

Case 1. Let Bi be of the type Mr,s(F). Then

eiCei = Bi, (3)

and eiCei ⊗ I = Bi ⊗ I. Hence, eiCei ⊗ I is ϕ- and σ -stable. Since ei ⊗ D is a centralizer of eiCei ⊗ I, it

is also ϕ- and σ -stable.
Case 2. Let Bi = A ⊕ Asop where A = Mr,s(F). Denote the identity of A by εi. Then, ε

∗
i is the identity

of Asop, and ei = εi + ε∗i . Notice that

eiCei ⊗ I = εiCεi ⊗ I + εiCε
∗
i ⊗ I + ε∗i Cεi ⊗ I + ε∗i Cε∗i ⊗ I. (4)

Next we want to prove that both ϕ and σ permute the terms of (4) leaving eiCei ⊗ I invariant. With-

out any loss of generality we consider just one term of the form εiCε
∗
i ⊗ I. Since εiCε

∗
i ⊗ I = (εi ⊗

I)(C ⊗ I)(ε∗ ⊗ I), by (2),ϕ(εiCε
∗
i ⊗ I) ⊆ (εi ⊗ I)(C ⊗ D)(ε∗ ⊗ I) = εiCε

∗
i ⊗ D andσ(εiCε

∗
i ⊗ I) ⊆

(εi ⊗ I)(C ⊗ D)(ε∗ ⊗ I) = εiCε
∗
i ⊗ D.

ByLemma2, thereexists ag ∈ G,g /= e such thatεiCε
∗
i ⊆ Cg .Hence,εiCε

∗
i ⊗ I ⊆ Rg . Consequently,

ϕ(εiCε
∗
i ⊗ I) ⊆ Rg and σ(εiCε

∗
i ⊗ I) ⊆ Rg .Next we take a homogeneous x ∈ εiCε∗i of degree g and a

homogeneous y ∈ D of degree h such that x ⊗ y ∈ Rg . Then deg (x ⊗ y) = gh = g, h = e. This implies

y = λI, λ ∈ F for any x ⊗ y ∈ Rg ∩ εiCε∗i ⊗ D. It follows that Rg ∩ εiCε∗i ⊗ D ⊆ εiCε
∗
i ⊗ I.

As a consequence, ϕ(eiCei ⊗ I) = eiCei ⊗ I and σ(eiCei ⊗ I) = eiCei ⊗ I, that is, eiCei ⊗ I is ϕ- and
σ -stable. From the decomposition R′ = eiCei ⊗ D it follows that ei ⊗ D, the centralizer of eiCei ⊗ I in

R′, is ϕ- and σ -stable.
Case 3. Let Bi = Q(si)⊕ Q(si)

sop. Since Q(si) = I1 ⊕ I2 where I1, I2 are simple ideals isomorphic to

Msi(F), Bi = (I1 ⊕ I2)⊕ (I∗1 ⊕ I∗2 ). Let εi, ε̂i, ε∗i , ε̂∗i be the identities of I1, I2, I
∗
1 , I

∗
2 , respectively. Then

we notice that σ(εi ⊗ I) = ε̂i ⊗ I. We have that

ei = εi + ε∗i + ε̂i + ε̂∗i . (5)

Therefore, eiCei ⊗ I = N1 ⊗ I + N2 ⊗ I + N3 ⊗ I + N4 ⊗ IwhereN1 = εiCεi + ε∗i Cεi + εiCε
∗
i +

ε∗i Cε∗i ,N2=εiCε̂i + ε∗i Cε̂i + εiCε̂
∗
i + ε∗i Cε̂∗i ,N3= ε̂iCεi + ε̂∗i Cεi + ε̂iCε

∗
i + ε̂∗i Cε∗i , andN4= ε̂iCε̂i +

ε̂∗i Cε̂i + ε̂iCε̂
∗
i + ε̂∗i Cε̂∗i .

Arguing in the sameway as in the second case, we can prove that ϕ(N1 ⊗ I) = N1 ⊗ I and ϕ(N4 ⊗
I) = N4 ⊗ I. Now we consider N2 and N3. Suppose that the elementary grading on BiCBi induced

from C is defined by (g1, g2, g3, g4). It is easy to see that deg(εiCε̂i) = g
−1
1 g3, deg(εiCε̂

∗
i ) = g

−1
1 g4,

deg(ε∗i Cε̂i) = g
−1
2 g3, deg(ε

∗
i Cε̂

∗
i ) = g

−1
2 g4, deg(ε̂iCεi) = g

−1
3 g1, deg(ε̂

∗
i Cεi) = g

−1
4 g1, deg(ε̂

∗
i Cε

∗
i ) =

g
−1
4 g2, deg(ε̂iCε

∗
i ) = g

−1
3 g2.

Let us take, for example, the first term εiCε̂i of N2. Then ϕ(εiCε̂i ⊗ I) ⊆ R
g
−1
1 g3

. On the other hand,

by (2), ϕ(εiCε̂i ⊗ I) ⊆ ε̂∗i Cε∗i ⊗ D ⊆ C
g
−1
4 g2

⊗ D. If we take x ∈ C
g
−1
4 g2

and a homogeneous y ∈ D of

degree h such that deg(x ⊗ y) = g
−1
1 g3, then g

−1
1 g3 = g

−1
4 g2h, that is, h = g

−1
1 g4g

−1
2 g3. This implies

that

ϕ(εiCε̂i ⊗ I) ⊆ ε̂∗i Cε∗i ⊗ Dh. (6)
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Similarly, we can show that for each term ofN2 there should beDh on the right-hand side of (6). Hence

ϕ(N2 ⊗ I) = N3 ⊗ Dh.

Next we take the first term ε̂iCεi of N3. Likewise we can show that ϕ(ε̂iCεi ⊗ I) ⊆ ε∗i Cε̂∗i ⊗ Dh−1 .

Hence for each term of N3 we have Dh−1 on the right-hand side, and ϕ(N3 ⊗ I) = N2 ⊗ Dh−1 .

Note that the centralizer of (N2 + N3)⊗ I in R′ is ei ⊗ D. Hence, the centralizer of ϕ((N2 + N3)⊗
I) = N3 ⊗ Dh−1 + N2 ⊗ Dh in R′ is ϕ(ei ⊗ D). Next we take any x ⊗ y in ϕ(ei ⊗ D). Since x ⊗ y lies

in the centralizer of N3 ⊗ Dh−1 + N2 ⊗ Dh, x ⊗ y commutes with each element in N3 ⊗ Dh−1 and

N2 ⊗ Dh. Therefore, x commutes with any matrix in N3 and N2. Direct computations show that x = ei,

andϕ(ei ⊗ D) = ei ⊗ K whereK is a subspace ofD. By dimension arguments,K = D, andϕ(ei ⊗ D) =
ei ⊗ D.

To prove that ei ⊗ D is σ -stable, we represent eiCei ⊗ I as follows: eiCei ⊗ I = N′
1 ⊗ I + N′

2 ⊗ I +
N′
3 ⊗ I + N′

4 ⊗ I where N′
1 = εiCεi + ε̂iCεi + εiCε̂i + ε̂iCε̂i, N

′
2 = εiCε

∗
i + ε̂iCε

∗
i + εiCε̂

∗
i + ε̂iCε̂

∗
i ,

N′
3 = ε∗i Cεi + ε̂∗i Cεi + ε∗i Cε̂i + ε̂∗i Cε̂i, andN′

4 = ε∗i Cε∗i + ε̂∗i Cε∗i + ε∗i Cε̂∗i + ε̂∗i Cε̂∗i . In the sameway

as above, we can show that ei ⊗ I is σ -stable.
Hence (4) is proved.

To prove (5) we note that the centralizer Z of Ce in C is equal to Z′
1 ⊕ · · · ⊕ Z′

k where Z′
i is the center

of Bi and the centralizer of Re in R coincides with Z ⊗ D = Z1D1 ⊕ · · · ⊕ ZkDk where Zi = Z′
i ⊗ I and

Di = ei ⊗ D.

Our proof is complete. �

Proposition 3. Let G be a finite abelian group, and R a superalgebra of type Mn,m(F) over an algebraically

closed field F of characteristic not 2. Suppose thatϕ is an antiautomorphism of R that preserves a G-grading

of R. Then there exists an automorphismψ of R preserving the G-grading of R such thatψ commutes with

ϕ andψ4 = ϕ4.

Proof. It is easy to check that the ϕ-action on R is defined by

ϕ ∗ X = Φ−1XτΦ

for some matrix Φ , and Xτ =
(
A −B

C D

)t

. First let X ∈ Re. Consider the decomposition Ce = B1 ⊕
· · · ⊕ Bk found in the previous lemma. Then X = X1 ⊗ I + · · · + Xk ⊗ I with Xi ∈ Bi, 1� i � k. Then

ϕ acts on X as

ϕ ∗ X = S−1Xτ S,

where S as in (3) of Lemma 4. Hence the matrixΦS−1 commutes with Xτ for any X ∈ Re, that isΦS−1

is an element of the centralizer of Re in R. Hence, we obtain

Φ = S1Y1 ⊗ Q1 + · · · + SkYk ⊗ Qk (7)

where Qi ∈ D, Yi ∈ Z′
i , 1� i � k. Compute now the action of ϕ4 on an arbitrary X ∈ R:

ϕ4 ∗ X = ((Φ−1)tΦ)−1)2X((Φ−1)tΦ)2

Set P = ((Φ−1)tΦ)2. We need to show that there exists an inner automorphism ψ such that

ψ4 ∗ X = P−1XP for allX ∈ R. Note that for any Ti, T
′
i ∈ BiCBi andQi,Q

′
i ∈ D, i = 1, . . . , k, the relation⎛⎝∑

i

Ti ⊗ Qi

⎞⎠⎛⎝∑
i

T ′
i ⊗ Q ′

i

⎞⎠ = ∑
i

TiT
′
i ⊗ QiQ

′
i

holds.

We compute the value of P:

P = ((Φ−1)tΦ)2 =
k∑

i=1

((Yt
i S

t
i )

−1
SiYi)

2 ⊗ ((Qt
i )

−1
Qi)

2

= ∑
i

((Sti )
−1
(Yt

i )
−1

SiYi)
2 ⊗ ((Qt

i )
−1

Qi)
2. (8)
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Lemma 4. All Qi satisfy (Q
t
i )

−1
Qi = ±I.

Obviously it is sufficient to prove the relation

ei ⊗ (Qt
i )

−1Qi = ±ei ⊗ I

inDi = ei ⊗ D. Recall thatDi isϕ- andσ -stable.Moreover,Di isG-graded algebrawith a fineG-grading

compatible with ϕ and σ . Therefore, this is G-graded superalgebra with a fine G-grading respected

by ϕ. According to Theorem 3, Di cannot be non-trivial. Therefore, Di is a trivial superalgebra, that is,

Di ⊆ R0̄, and τ acts on Di as a usual transpose. For any X ∈ D we have

ϕ ∗ (ei ⊗ X) = Φ−1(ei ⊗ X)τΦ = (SiYi)
−1(ei)(SiYi)⊗ (Q−1

i XtQi) = ei ⊗ Q
−1
i XtQi

i.e. action by ϕ induces an antiautomorphism ei ⊗ X → ei ⊗ Q
−1
i XtQi onDi. Arguing in the sameway

as in Lemma 6.5 (see [6]) we can conclude that ei ⊗ (Qt
i )

−1Qi = ±ei ⊗ I. �

Now we compute ((Yt
i S

t
i )

−1
SiYi)

2. If Bi is simple then Yi is a scalar matrix and ((Sti )
−1Si)

2 = I by

Lemma 4. If Bi is of type Msi ,ri(F)⊕ M
sop
si ,ri(F), then

Yi =
(
λI 0

0 μI

)
, Si =

(
0 I

I 0

)

and ((Yt
i S

t
i )

−1
SiYi)

2 =
⎛⎜⎝
(
λ
μ

)2
I 0

0
(
μ
λ

)2
I

⎞⎟⎠ =
(
(γ )2I 0

0 (γ−1)2I

)
whereγ = λ

μ
. IfBi if of typeQ(si)⊕

Q(si)
sop, then

Yi =
⎛⎜⎜⎝
αI 0 0 0

0 α1I 0 0

0 0 βI 0

0 0 0 β1I

⎞⎟⎟⎠ , Si =
⎛⎜⎜⎝
0 0 I 0

0 0 0 I

I 0 0 0

0 I 0 0

⎞⎟⎟⎠ ,

and

((Yt
i S

t
i )

−1
SiYi)

2 =

⎛⎜⎜⎜⎝
(β−1α)2I 0 0 0

0 (α1β
−1
1 )2I 0 0

0 0 (α−1β)2I 0

0 0 0 (α−1
1 β1)

2I

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
γ 2I 0 0 0

0 μ2I 0 0

0 0 (γ−1)2I 0

0 0 0 (μ−1)2I

⎞⎟⎟⎟⎠
where γ = β−1α, and μ = α1β

−1
1 .

We have proved that P = (P1 + · · · + Pk)⊗ I where P1 ∈ B1, . . . , Pk ∈ Bk and Pi has one of the

forms:Pi = I,Pi =
(
(γ )2I 0

0 (γ−1)2I

)
, andPi =

⎛⎜⎜⎜⎝
γ 2I 0 0 0

0 μ2I 0 0

0 0 (γ−1)2I 0

0 0 0 (μ−1)2I

⎞⎟⎟⎟⎠ .Nowwepres-

entamatrixT = (T1 + · · · + Tk)⊗ I,T1 ∈ B1, . . . , Tk ∈ Bk such thatT
4
i = Pi forall iandhenceT

4 = P.

In case Pi = I we take Ti = I. If Pi =
(
(γ )2I 0

0 (γ−1)2I

)
, then we take Ti =

(
γ1I 0

0 γ−1
1 I

)
where
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γ 2 = γ 4
1 . If Pi =

⎛⎜⎜⎜⎝
γ 2I 0 0 0

0 μ2I 0 0

0 0 (γ−1)2I 0

0 0 0 (μ−1)2I

⎞⎟⎟⎟⎠, we take Ti =

⎛⎜⎜⎜⎝
γ1I 0 0 0

0 μ1I 0 0

0 0 γ−1
1 I 0

0 0 0 μ−1
1 I

⎞⎟⎟⎟⎠
where γ 2 = γ 4

1 , and μ
2 = μ4

1. Note that T ∈ Re, hence the map ψ : X → T−1XT is an inner auto-

morphism preserving G-grading. Moreover, since T4 = P,ψ4 = ϕ4.

Now we need to check that ψ and ϕ commute. Direct computations show that ϕψ = ψϕ if and

only if

TτΦT = λΦ , (Φ−1TτΦ)T = λI, (9)

for some scalar λ. Since T = T1 ⊗ I + · · · + Tk ⊗ I where Ti ∈ Bi, Φ
−1TτΦ = ϕ ∗ T = S−1Tτ S (see

Lemma 4). If Bi is simple, then Ti = I and S
−1
i Tτi Si = Ti = I. If Bi = A ⊕ Asop, then the restriction of ϕ

to Bi acts as the exchange superinvolution, and

S
−1
i Tτi Si =

⎛⎜⎜⎜⎝
γ−1
1 I 0 0 0

0 μ−1
1 I 0 0

0 0 γ1I 0

0 0 0 μ1I

⎞⎟⎟⎟⎠

for Ti =

⎛⎜⎜⎜⎝
γ1I 0 0 0

0 μ1I 0 0

0 0 γ−1
1 I 0

0 0 0 μ−1
1 I

⎞⎟⎟⎟⎠, or

S
−1
i Tτi Si =

(
γ−1
1 I 0

0 γ1I

)

for Ti =
(
γ1I 0

0 γ−1
1 I

)
. In both cases (9) holds with λ = 1 and thus the proof is complete.

4. Main results

In this section we describe group gradings compatible with superinvolution of involution simple

superalgebras which are not simple as superalgebras. Notice that these results depend on the clas-

sification of gradings by a finite abelian group on matrix algebras [2], involution gradings on matrix

algebras [3], [5], involution gradings on involution simple algebras [1], and group gradings on simple

superalgebras [4]. Finally, the superinvolution gradings on Mn,m(F) have been described in [11].

We start the following general result.

Lemma 5. Let R be a simple superalgebra as in Example 3, that is, R = A ⊕ Asop where A is a simple

superalgebra, and ∗ denote the ordinary exchange involution. If ϕ is an automorphism of R that commutes

with ∗, then there exists a linear mapping ϕ0 : A → A such that one of the following cases holds:
Type 1: ϕ((x, y)) = (ϕ0(x),ϕ0(y)), and ϕ0 is an automorphism of A.
Type 2: ϕ((x, y)) = (ϕ0(y),ϕ0(x)), and ϕ0 is an antiautomorphism of A.

Proof. Since R = A ⊕ Asop, we will represent an arbitrary element of a superalgebra R as a pair of

elements from A, i.e. (x, y) where x, y ∈ A. We also recall that A = A0̄ + A1̄. If ϕ is an automorphism

of R that commutes with ∗, then the following two cases may occur:

1. ϕ(A) = A, ϕ(Asop) = Asop. Then, there exist two linear mappings ϕ0,ϕ1 : A → A such that

ϕ((x, y)) = (ϕ0(x),ϕ1(y)). Now ϕ commutes with the involution ∗. Hence
(ϕ1(y),ϕ0(x)) = (ϕ0(x),ϕ1(y))

∗ = (ϕ((x, y))∗

= ϕ((x, y))∗ = ϕ((y, x)) = (ϕ0(y),ϕ1(x)).
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Hence,ϕ0 = ϕ1. Thusϕ is completely defined byϕ0 : A → A,ϕ((x, y)) = (ϕ0(x),ϕ0(y)). Next, for any
homogeneous x, y ∈ A,

ϕ((xy, 0)) = (ϕ((0, xy)))∗ = ((−1)|x||y|ϕ((0, y))ϕ((0, x)))∗

= (−1)|x||y|((0,ϕ0(y)) · (0,ϕ0(x)))∗
= (−1)|x||y|(−1)|ϕ0(x)||ϕ0(y)|(0,ϕ0(x)ϕ0(y))∗

=(ϕ0(x)ϕ0(y), 0).
Hence ϕ0 is indeed an automorphism of A, and we have a Type 1 automorphism.

2. ϕ(A) = Asop, ϕ(Asop) = A. Again there exist two linear mappings ϕ0,ϕ1 : A → A such that

ϕ((x, y)) = (ϕ0(y),ϕ1(x)). Since ϕ commutes with the involution, we must have

(ϕ1(x),ϕ0(y)) = ϕ((x, y))∗ = ϕ((y, x)) = (ϕ0(x),ϕ1(y)).

Again, as before ϕ0 = ϕ1. Now let x, y be homogeneous elements from A. Therefore, (ϕ0(xy), 0) =
ϕ((0, xy)) = ϕ(((−1)|x||y|(0, y) · (0, x))) = (−1)|x||y|ϕ((0, y)) · ϕ((0, x)) = (−1)|x||y|(ϕ0(y), 0) ·
(ϕ0(x), 0). It follows that

ϕ0(xy) = (−1)|x||y|ϕ0(y)ϕ0(x),
and we have a Type 2 automorphism. �

By a Type I involution grading of a superalgebra Rg = A ⊕ Asop, as above, we understand a grading

in which A is a graded subspace, that is, A = ⊕
g∈G(Rg ∩ A). In this case also

Asop = A∗ = ⊕
g∈G

(R∗
g ∩ A∗) = ⊕

g∈G

(Rg ∩ Asop),

so that Asop is also graded. Then there is a G-grading on A, hence on Asop, as in Remark 1, such that

Rg = Ag ⊕ A
sop
g .

Theorem 4. Let G be a finite abelian group and F an algebraically closed field of characteristic 0 or coprime

to the order of G. Then any G-grading of R = A ⊕ Asop where A = Mn,m(F), with the ordinary exchange

superinvolution ∗ compatible with G-grading has one of the following types:
Type I: Rg = Ag ⊕ A

sop
g , for a G-grading of A = ⊕g∈GAg ,

Type II: Rg = {(x, x†)| x ∈ Ag} ⊕ {(x,−x†)| x ∈ Agh}, for a †-involution grading A = ⊕g∈GAg where †

is a graded superinvolution on A, h ∈ G, o(h) = 2.
Type III: Rg = {(x, x†) | x ∈ Ag ∩ A+} ⊕ {(x,−ix†) | x ∈ Agh ∩ A−} ⊕ {(x,−x†) | x ∈ Agh2 ∩ A+} ⊕

{(x, ix†) | x ∈ Agh3 ∩ A−} where h is an element of order 4 in G, † is an antiautomorphism of order 4 on

A, A = ⊕
g∈G Ag is a †-grading on A, A+, A− are symmetric and skew-symmetric elements of Awith respect

to †2.

Proof. If Ĝ acts on R by automorphisms of Type 1 only, we arrive at Type I gradings described just

before the statement of this theorem. Now let Ĝ act on R by automorphisms of both Type 1 and Type

2, and α : Ĝ → Aut R the homomorphism accompanying our grading. Let Λ stand for the set of all

χ ∈ Ĝ that act on R by automorphisms of Type 1. As earlier, Λ is a subgroup of index 2 in Ĝ. Choose

ξ ∈ Ĝ, such that α(ξ) = ϕ is an automorphism of Type 2, Ĝ = Λ ∪Λξ .
Next we assume that there exists an automorphism ψ of Type 1 such that ψ2 = ϕ2, and ψ com-

mutes with α(Ĝ). Then we can apply the Exchange Theorem. For this, we consider two gradings of

R. The first is our original one defined by α. The second one is defined by a new homomorphism β
such that β|Λ = α|Λ, β(ξ) = ψ . It is easily seen that β is indeed a homomorphism. Now by the

Exchange Theorem there exists a grading by a subgroupH = Λ⊥ = {e, h}, corresponding to the action

of γ = αβ−1. Moreover, γ (Ĝ) = {id,ϕψ−1}. Denote ω = ϕψ−1. Then, ω((x, y)) = (ω0(y),ω0(x)),

ω2
0 = id and ω0(xy) = (−1)|x||y|ω0(y)ω0(x). Therefore, ω0 is an involution on Mn,m(F) which we
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denote by ω0(x) = x†. Since the grading defined by β is a grading of the Type I, it follows from the

first part of the proof of this theorem that Rg = Ag ⊕ A
sop
g where A = ⊕g∈GAg is a †-grading of R. By

the Exchange Theorem there exists an element h of G of order 2 such that Rg = Rg ∩ R(e) + Rgh ∩ R(h).

Here,

R(e) = {(x, y)|ω((x, y)) = (x, y)}
= {(x, y)|(ω0(y),ω0(x)) = (x, y)} = {(x, x†)| x ∈ A}.

Also

R(h) = {(x, y)|ω((x, y)) = −(x, y)} = {(x,−x†)|x ∈ A}.
This allows us to write Rg = {(x, x†)| x ∈ Ag} ∪ {(x,−x†)| x ∈ Agh}.

Now we consider the remaining case when there is no automorphism ψ of R of Type 1 such that

ψ2 = ϕ2 and ψ commutes with α(Ĝ). Let Λ1 denote the set of all η ∈ Ĝ for which there exists

an automorphism τ of Type 1 such that α(η) = τ 2 and τ commutes with α(Ĝ). Clearly, Λ1 is a

subgroup ofΛ. Moreover, since η2 ∈ Λ1 for each η ∈ Λ, this subgroup has index 2 inΛ, and therefore,

has index 4 in Ĝ. By our assumption ξ2 /∈ Λ1. Hence Ĝ = Λ1 ∪Λ1ξ ∪Λ1ξ
2 ∪Λ1ξ

3. Next we can

write ϕ((x, y)) = (ϕ0(y),ϕ0(x)) where ϕ0 is an antiautomorphism of A that commutes with α(Λ1).
By Proposition 3, there exists an automorphism ψ0 of A such that ψ4

0 = ϕ4
0 , ψ0ϕ0 = ϕ0ψ0, and ψ0

commutes with α(Λ1). Set ψ((x, y)) = (ψ0(x),ψ0(y)). Obviously, ψ
4((x, y)) = (ψ4

0 (x),ψ
4
0 (y)) =

(ϕ4
0(x),ϕ

4
0(y)) = ϕ4((x, y)). Besides,

ψϕ((x, y)) = ψ((ϕ0(y),ϕ0(x))) = (ψ0ϕ0(y),ψ0ϕ0(x))

= (ϕ0ψ0(y),ϕ0ψ0(x)) = ϕ((ψ0(x),ψ0(y))) = ϕψ((x, y)).

This implies thatψϕ = ϕψ . Moreover,ψ commutes with α(Λ1). Next we consider a new homomor-

phism β : Ĝ → Aut R defined as follows: β(ξ kη) = ψkα(η) for k = 0, 1, 2, 3. Let also R = ⊕
g∈G Rg

be the G-grading defined by β . Since this is a Type I grading, Rg = Ag ⊕ A
sop
g for some G-grading of

A = ⊕g Ag .

This allows us to apply the Exchange Theorem, in which Λ⊥ = H = {e, h, h2, h3}. The homomor-

phismγ : Ĝ → Aut (R)definedbyγ (χ) = α−1(χ)β(χ)defines a gradingR = R(e) ⊕ R(h) ⊕ R(h
2) ⊕

R(h
3) and

Rg = Rg ∩ R(e) ⊕ Rgh ∩ R(h) ⊕ Rgh2 ∩ R(h
2) ⊕ Rgh3 ∩ R(h

3).

Let us consider θ = γ (ξ). Then the respective θ0 is an antiautomorphism of A of order 4 which

we denote by †. Notice that θ2 is an automorphism of order 2. Let A+ = {x ∈ A| θ20 (x) = x} and

A− = {x ∈ A| θ20 (x) = −x}. Direct computations show that Rg ∩ R(e) = {(x, x†) | x ∈ Ag ∩ A+}, Rgh ∩
R(h) = {(x,−ix†) | x ∈ Agh ∩ A−}, Rgh2 ∩ R(h

2) = {(x,−x†) | x ∈ Agh2 ∩ A+} and Rgh3 ∩ R(h
3) =

{(x, ix†) | x ∈ Agh3 ∩ A−}.
The proof is now complete. �

Example. Let us consider the Z4 = {±1,±i}-grading of R = A ⊕ Asop, A∼=Mn,m(F) induced by

ϕ ∗ (X , Y) = (Yτ , Xτ ). Clearly, ϕ is of order 4. Direct computations show that

R1 =
{([

A 0

0 D

]
,

[
At 0

0 Dt

])}
, R−1 =

{([
A 0

0 D

]
,

[−At 0

0 −Dt

])}
,

Ri =
{([

0 B

C 0

]
,

[
0 −iCt

iBt 0

])}
, R−i =

{([
0 B

C 0

]
,

[
0 iCt

−iBt 0

])}
,

where A, B, C, D are any matrices of appropriate orders. This is in fact a grading of Type III for A = Ae

(a trivial grading) and h = −i.
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Lemma 6. Let A = B + tB where B∼=Mn(F) be an associative superalgebra of type Q(n), andψ an auto-

morphism of A. Then there exists an automorphism ψ0 of B such that for any X + tY ∈ R, either ψ(X +
tY) = ψ0(X)+ tψ0(Y) orψ(X + tY) = ψ0(X)− tψ0(Y).

Proof. Let us consider A = B + tB with a Z2-grading A0̄ = B and A1̄ = tB. Then both B and tB are

invariant subspaces under the action ofψ . Namely, there exists two linear mappingsψ0,ψ1 : B → B

such that for any X + tY ∈ R, ψ(X + tY) = ψ0(X)+ tψ1(Y). If we use that ψ is an automorphism,

we can easily derive the following relations:

ψ0(X1X2) = ψ0(X1)ψ0(X2), (10)

ψ1(XY) = ψ0(X)ψ1(Y), (11)

ψ1(YX) = ψ1(Y)ψ0(X), (12)

ψ0(Y1Y2) = ψ1(Y1)ψ1(Y2), (13)

where all X1, X2, X , Y1, Y2, Y ∈ B. It follows from (10) that ψ0 is an automorphism of B. Now in (11)

and (12) we set Y = I, the identity matrix, then we obtainψ0(X)ψ1(I) = ψ1(I)ψ0(X) for all X ∈ B. It

follows then that ψ1(I) is a scalar matrix, ψ1(I) = λI, and ψ1 = λψ0. Now if we apply (13) we will

obtain I = ψ0(I · I) = ψ1(I)ψ1(I) = λ2I. In this case λ = ±1. This argument allows us to conclude

that for each automorphism ψ there is an automorphism ψ0 of B such that either ψ(X + tY) =
ψ0(X)+ tψ0(Y) orψ(X + tY) = ψ0(X)− tψ0(Y). The proof is complete. �

Lemma 7. Let A = B + tB where B∼=Mn(F) be an associative superalgebra of type Q(n), and ψ be an

antiautomorphism of A. Then there exists an antiautomorphism ψ0 of B such that for any X + tY ∈ A,

eitherψ(X + tY) = ψ0(X)+ itψ0(Y) orψ(X + tY) = ψ0(X)− itψ0(Y) where i2 = −1.

Proof. The proof of this lemma is similar to the previous one except that in the case where ψ is a

(super!)antiautomorphism the Eqs. (10)–(13) are replaced by

ψ0(X1X2) = ψ0(X2)ψ0(X1), (14)

ψ1(XY) = ψ1(Y)ψ0(X), (15)

ψ1(YX) = ψ0(X)ψ1(Y), (16)

ψ0(Y1Y2) = −ψ1(Y2)ψ1(Y1), (17)

where all X1, X2, X , Y1, Y2, Y ∈ B. Now (14) implies ψ0 being an antiautomorphism. Also (15) and (16)

implyψ1(I) = λI andψ1 = λψ0. Using (17), we now derive that λ = ±i. �

Now we are ready to prove the second main result of this paper.

Theorem 5. Let G be a finite abelian group and R = A ⊕ Asop an involution simple superalgebra with A of

type Q(n), as in item(3) of Proposition 1. Suppose the base field F is algebraically closed of characteristic

0 or coprime to the order of G. Then any G-grading of A = B + tB∼=Q(n) with the ordinary exchange

involution ∗ compatible with G-grading has one of the following forms:
Type I: Rg = Ag ⊕ A

sop
g , for a grading of A = ⊕g∈GAg ,

Type II:Rg = {(x, x†)| x ∈ Bg} ⊕ {(tx,−tx†)| x ∈ Bgh} ⊕ {(x,−x†)| x ∈ Bgh2} ⊕ {(tx, tx†)| x ∈ Bgh3},
where h is an element of order4 in G, † is an involution onB∼=Mn(F), B = ⊕

g∈G Bg is an involution grading

on B with respect to involution †.

Proof. If Ĝ acts on R by automorphisms of Type 1 only, we arrive at Type I gradings described just

before the statement of Theorem 4. Otherwise, let α(Ĝ) contain all possible automorphisms, where,

as before,α : Ĝ → Aut (R) is the homomorphism corresponding to our grading. Let ϕ ∈ α(Ĝ) be such
that ϕ((x, y)) = (ϕ0(y),ϕ0(x)) where ϕ0 is an antiautomorphism of A, x, y ∈ A. Then, according to
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Lemma 7, ϕ0 has one of two forms ϕ0(u + tv) = ϕ1(u)± itϕ1(v), where ϕ1 is an antiautomorphism

ofB = Mn(F), and x = u + tvwithu, v ∈ B. Ifwe compute the powers ofϕ on (x, y) = (u + tv, p + tq)
where also p, q ∈ B then we obtain the following:

ϕ2((u + tv, p + tq)) = (ϕ2
1(u)− tϕ2

1(v),ϕ
2
1(p)− tϕ2

1(q)), (18)

ϕ3((u + tv, p + tq)) = (ϕ3
1(p)∓ tϕ3

1(q),ϕ
3
1(u)∓ tϕ3

1(v)), (19)

ϕ4((u + tv, p + tq)) = (ϕ4
1(u)+ tϕ4

1(v),ϕ
4
1(p)+ tϕ4

1(q)). (20)

Clearly, if we replace ϕ by ϕ3 we may assume from the very beginning that ϕ0(u + tv) = ϕ1(u)+
itϕ1(v), for an antiautomorphism ϕ1 of B. Let ζ ∈ Ĝ be such that α(ζ ) = ϕ and let

Λ = {
χ ∈ Ĝ |α(χ)((u + tv, p + tq)) = (π1(u)+ tπ1(v),π1(p)+ tπ1(q))

}
for any u, v, p, q ∈ B, π1 ∈ Aut (B). Then Ĝ = Λ ∪Λζ ∪Λζ 2 ∪Λζ 3. Indeed, choose any χ ∈ Ĝ and

considerπ = α(χ). Thenπ((x, y)) is described by Lemmas 5 and then 6 or 7. Direct calculations using

Eqs. (18)–(20) show that if π is one of the cases of Lemma 6 then either χ ∈ Λ or ϕ2χ ∈ Λ. If π is

one of the cases of Lemma 7 then either ϕχ ∈ Λ or ϕ3χ ∈ Λ.

Let us define amappingα1 : Ĝ → Aut (B) by associatingwith eachχ ∈ Ĝ themappingπ1 as in the

previous paragraph. Obviously, this is a homomorphismof groups and the imageϕ1 of ζ is an antiauto-

morphism. In this case Theorem2applies and there exists an automorphismψ1 ofB such thatψ2
1 = ϕ2

1

and ψ1 commutes with every π1 ∈ α1(Ĝ). Let use our previous notation to define an automorphism

ψ of R by setting ψ((x, y)) = (ψ0(x),ψ0(y)) where ψ0(u + tv) = ψ1(u)+ tψ1(v). Immediate cal-

culations using different cases of Lemmas 6 or 7 show thatψ commuteswith any element ofα(Ĝ). For
example, if π ∈ α(Ĝ) has the form π((u + tv, p + tq)) = (π1(p)− itπ1(q),π1(u)− itπ1(v)) then
using that ψ1π1 = π1ψ1, we easily find both ψπ and πψ acting on (u + tv, p + tq) produce the

same (ψ1π1(p)− itψ1π1(q),ψ1π1(u)− itψ1π1(v)).
In order to apply Exchange Theorem, we define another mapping β : Ĝ → Aut (R) by setting

β(ζ kλ) = ψkα(λ) for k = 0, 1, 2, 3. By Eq. (19), ϕ4 = ψ4 and so this mapping is well defined and

is a homomorphism of groups coinciding with α on Λ. Let also R = ⊕
g∈G Rg be a G-grading defined

by β . This allows to apply Exchange Theorem, in whichΛ⊥ = H = {e, h, h2, h3}. The homomorphism

γ : Ĝ → Aut (R) defined by γ (χ) = α−1(χ)β(χ) defines a grading R = R(e) ⊕ R(h) ⊕ R(h
2) ⊕ R(h

3)

and

Rg = Rg ∩ R(e) ⊕ Rgh ∩ R(h) ⊕ Rgh2 ∩ R(h
2) ⊕ Rgh3 ∩ R(h

3). (21)

Let us consider θ = γ (ζ ). Then the respective θ1 ∈ Aut (B) is an involution, which we denote by †.

The grading of R defined byβ induces a grading B = ⊕
g∈G Bg on B, which permuteswith †, hence is an

involution grading on the matrix algebra B = Mn(F). We have Rg = {(u + tv, p + tq) | u, v, p, q ∈ Bg}.
To finally compute the homogeneous components of our original grading by Eq. (21), we need to

compute the components of theH-grading R(t), t ∈ H. We have (x, y) ∈ R(e) if θ((x, y)) = (x, y). Using
the same notation for x, y ∈ A, as before, we get

θ((u + tv, p + tq)) = (θ1(p)− itθ1(q), θ1(u)− itθ1(v)) = (p† − itq†, u† − itv†).

If (x, y) ∈ R(e) we must have p† − itq† = u + tv, u† − itv† = p + tq and so p† = u, −iq† = v, u† = p,

and−iv† = q. It follows thatp = u†, v = q = 0. Finally,R(e) = {(u, u†) | u ∈ B}. NowsinceRg = {(u +
tv, p + tq) | u, v, p, q ∈ Bg}, we finally obtain Rg ∩ R(e) = {(u, u†) | u ∈ B}.

A similar computationgivesusalsoRgh ∩ R(h) = {(tv,−tv†) | v ∈ B},Rgh2 ∩ R(h
2) = {(u,−u†) | u ∈

B}, and Rgh3 ∩ R(h
3) = {(tv, tv†) | v ∈ B}.

Now the proof of our theorem is complete. �
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