View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Linear Algebra and its Applications 431 (2009) 1054-1069

Contents lists available at ScienceDirect

Linear Algebra and its Applications Abpiications

journalhomepage: www.elsevier.com/locate/laa

Group gradings on superinvolution simple superalgebras™

Yu Bahturin*, M. Tvalavadze, T. Tvalavadze

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada A1C557

ARTICLE INFO ABSTRACT

Article history: In this paper we describe all group gradings by an arbitrary finite
Received 11 May 2007 group G on non-simple finite-dimensional superinvolution simple
Accepted 5 April 2009 associative superalgebras over an algebraically closed field F of
Available online 8 May 2009 characteristic 0 or coprime to the order of G.

Submitted by R. Guralnick © 2009 Elsevier Inc. All rights reserved.
AMS classification:

Primary 16 W10, 16W50

Secondary 16W55

Keywords:

Associative superalgebras
Superinvolution
Gradings

0. Introduction

In the paper [1], Bahturin and Giambruno described the group gradings by finite abelian groups
G on the matrix algebra M, (F) over an algebraically closed field F of characteristic different from 2,
which are respected by an involution. Besides, under some restrictions on the base field, they classified
all G-gradings on all finite-dimensional involution simple algebras.

In this paper we deal with finite-dimensional associative superalgebras that are simple with respect
to some superinvolution * over an algebraically closed field of characteristic zero or coprime to the
order of G. First, we give a description of such associative superalgebras. Second, we classify all group
gradings on x-simple associative superalgebras that are not simple associative algebras.

In the same way as the description of involution gradings on involution simple associative algebras is
important for the determination of group gradings on classical simple Jordan and Lie algebras [3,5] the
description of superinvolution gradings on superinvolution simple associative algebras is important for
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the determination of groups gradings on simple Jordan and Lie superalgebras. The case of superalgebras
that are simple algebras is due to the second and the third authors, and is to be submitted for publication
shortly.

1. Definitions and introductory remarks

Let R be an associative superalgebra, or, in other words, an associative algebra with a fixed Z;-
grading R = R @ Ry. Since all algebras and superalgebras considered in this paper are associative we
will normally drop the word associative in what follows. Also, if not stated otherwise, all subalgebras,
ideals and homomorphisms are Z,-graded. We say that R is simple if it has no non-trivial proper (Z;-
graded) ideals. It is well-known [12] that any finite-dimensional simple (associative) superalgebra
over an algebraically closed field of characteristic different from 2 is isomorphic to either My ,(F), the
full matrix algebra M, (F) with a Z,-grading completely determined by two non-negative integers

k1, k 4+ 1 =n, or a subalgebra R = Q(n) of My, (F) consisting of all matrices of the form GS )}2)

0 X Y 0
A=M,(F),t* = 1.Then Ry = Aand Rj = (A.

with R = (X 0) and Ry = (0 Y>. A convenient notation for R = Q(n) is R = A @ tA where

Definition 1. Let R be a superalgebra. A superinvolution on R is a Z,-graded linear map * : R — R
such that (x*)* = x for all x € R and (xy)* = (—1)XVy*x* for all homogeneous x,y € R, of degrees
|x| and |y|, respectively. A more general notion is that of superantiautomorphism, that is, a linear map
¢ : R — Rsuchthat p(xy) = (—1)‘X||y|(p(y)q)(x) for all homogeneous x,y € R, as above.

In this paper we will be interested in superinvolution simple superalgebras.

Definition 2. Let (R, ) be a superalgebra endowed with a superinvolution *. We say that R is super-
involution simple if R? # {0} and R has no non-trivial ideals stable under .

If * is a superinvolution on R, then obviously the restriction of * to R is an ordinary involution.
The same is true for superantiautomorphisms. Thus, there is no confusion to abbreviate the terms
superinvolution and superantiautomorphism to involution and antiautomorphism, respectively. In
particular, superinvolution simple superalgebras will be simply called involution simple.

The following are examples of involution simple superalgebras.

Example 1. The orthosymplectic involution on R = M; »s(F) is given by

GN7=6a ¢ 6o
0 I

where t denotes the usual matrix transpose, Q = <_ L 0
S

>, and I, I are the identity matrices of
orders r,s, respectively.

Example 2. Let us consider R = M, - (F). We will call the following involution defined on M; (F) the
transpose involution:

X v\ _ -y
z 1) —\Z* X')°

Example 3. Let A be a superalgebra. Consider a new superalgebra A*°P which has the same Z,-graded
vector space structure as A but the product of AP is given on homogeneous a, b of degrees |al, |b| by

aob=(—1)Plpg.
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Let S = A @ A*P be the direct sum of two ideals A and A*°P. This is a Z,-graded algebra with
Rz =A; ® AS(-JOP, Ri =A1 @ A%Op. We denote an arbitrary element x from R as a pair of elements from
A,i.e.x = (a,b) where a,b € A. The product in R is given by

(ao + a1, bo + by) - (g + a3, b + by)
= (00616 + a1a/1 + aoa/l + (11616,]96]90 - b/lb1 + b/lbo + b6b1),

where ag, by, ay, by € Ao, a1, by, d}, b € Aj.
A linear mapping defined by (a, b)** = (b, a) is an involution called exchange involution. If A is
simple then (S, ex) is an involution simple superalgebra.

Definition 3. Let R and S be two superalgebras endowed with involutions * and . We say that (R, )
and (S, 1) are isomorphic if there exists an isomorphism of superalgebras ¢ : R — S such that ¢ (x*) =
@(x)" for all x € R.IfR = S then ¢ is an automorphism of R and *, T are called conjugate by ¢. In this

casewe havef = g ox o ™1,

If (R, %) is an involution simple superalgebra then a standard argument shows that either R is a
simple superalgebra or else there is a (Z-graded) ideal A in R such that R = A @ A*. In the latter
case the mapping ¢ : R — S defined by ¢(a 4+ b*) = (a,b) where a,b € A defines an isomorphism
of involution simple superalgebras between (R, *) and a standard superalgebra (S, ex) of Example 3
above, where A is simple.

In [10, Propositions 13 and 14] Racine described all types of involutionsonA = M, ; (F) = Ag + A3.
It appears that if ¢ is an involution on A such that Aj is an involution simple algebra under ¢ restricted
to Ag, then n = m and ¢ is conjugate to the transpose involution. Otherwise, ¢ is conjugate to the
orthosymplectic involution. Also, it was shown in [8, Theorem 3.1], a superalgebra of the type Q (n)
has no involutions. We can summarize all the remarks above as the following.

Proposition 1. Any finite-dimensional involution simple superalgebra over an algebraically closed field of
characteristic different from 2 is isomorphic to one of the following:

(1) R = My m(F) with the orthosymplectic or transpose involution.
(2) R = My (F) @ My, (F)*°P with the ordinary exchange involution.
(3) R = Q(n) & Q(n)*°P with the ordinary exchange involution.

2. Group gradings

One can define gradings of superagebras by the elements of very general sets with operations but
as it turns out if the superalgebra is involution simple we can restrict ourselves to the case of abelian
groups. A phenomenon of this kind was, probably, first mentioned in [9]. In the case of involutions see
[3,1].

Definition 4. Given a semigroup G and a superalgebra R we say that R is graded by G if R = Pyc¢ R
where each Ry is a Z-graded vector subspace and RgRy, C Rgp, for any g, h € G. The subset SuppR =
{g € G| Ry # {0}} is called the support of the grading.

Asemigroup with 1is called cancellative ifeach of xg = xh,gx = hximpliesg = h,foranyx,g,h € G.

Proposition 2. Let R be a G-graded superalgebra, G a cancellative semigroup. Suppose R has an invo-
lution * compatible with this grading, that is, RE = Rg, for any g € G, and also that R is *-simple. Then,
given any g,h € SuppR we have that gh = hg. If, additionally, 1 € SuppR then any g € SuppR is
invertible.
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Proof. Let g,h € Supp R. Suppose Rth #+ 0. We have to show that (Rth)* C Rpg. Since we deal w1th
a superalgebra G-grading, R; = R0 + R1 and R, = R0 + Rh where Rg, R0 are even components, R! ,
Rh are odd component_s. It f(_)llows frc_)m Rg_Rh = (Rg + R;,)(Rg + {2,11) g RgRg —|—_R§Rh +_R§Rh +_R_;R2
that  (RgRn)* S (RD*(RD™ + R (R)™ + (R (RY* + (RN*(Ry)* = RiRg + RiRy + RLRG +
RgR; C Ryg. On the other hand, RgRy C Rgn, (RgRy)* € R;h = Rgp. Hence, Rgn = Ryg, gh = hg.

Now, pickg, h € SuppR,and considerI = Ry + RRy + RgR + RRgR.Itis easily seen that I is a graded
ideal. Next we want to show thatI* = I.Since RR; = Y "|RiRq, (X RgR))* C Z,RORO + R/Ry + R/RY +
RPRy = 3 /(R) + R)(RY + Ry) = Y jRiRg = RRg. In a similar manner we can show that (RRgR)* =
(C1kRIRgR)* = Xk (RiRgRK)™ = Yy |RkRgR;. Therefore, I is agraded *-invariant non-zeroideal, hence,
I = R.In particular, Ry C Rg + RRg + RgR + RRgR. The homogeneous components on the right-hand
side are of one of the forms: g, kg, gl, pgq, for some k, I, p,q € G. So, h is one of these forms. It follows
that one of the spaces Rg (if g = h), or R¢Rg, or RgRy, or RyRg R, is different from zero, with either h = g,
or h = kg,or h = gl, or h = pgq. The case h = g being trivial, if RgRy # 0 with h = kg then kg = gk
by what was proven before and then hg = (kg)g = g(kg) = gh, as needed. Similarly, if R;R; # 0 with
gl # 0. Now if RyRgR; # 0 with h = pgq, then Ry,R; # 0 and RgR; # 0 so that pg = gp and gq = qg.

Again, hg = (pgq)g = (pg)(qg) = gpgq = gh, as required.
The invertibility claim follows in exactly the same way as in [7, Proposition 1]. [

As a result, using Proposition 1, we will assume in what follows, that we deal with abelian group
gradings of finite-dimensional involution simple superalgebras. Actually, we restrict ourselves to the
case where G is finite and R is not simple as a superalgebras (Cases (2) and (3) of Proposition 1). As
mentioned earlier, Case (1) is to be published in a joint paper of the second and the third authors
[11].

Remark 1. If A is a superalgebra graded by an abelian group G then the sanggphomogeneous subspaces

Ag, g € G, define in A*P a G-grading. We will denote these subspaces by Ag " .

The techniques we are going to use impose a further restriction on the ground field F. Namely, we are
going to use the correspondence between the gradings on a (super) algebra R by a finite abelian group
G and the actions on R of the dual group G by automorphisms (see, for example, [2, Section 2]). For this
to work, we need to make sure that if the order of G is d then F contains d different roots of 1 of degree
d. If this condition holds then each grading R = P, Ry defines a homomorphism « : G — AutR
given by a(x)(r) = x (g)r provided thatr € Rg, g € G. Also the grading can be recovered if we have
a homomorphism «, as above.

We start with a general result (the Exchange Theorem below) obtained by the first author. An
important particular case can be found in [6]. Let G be a finite abelian group and V a vector space.
Suppose we have two G-gradings on V:

V= @gecVy, o:G— AutV, (1"
V=@gecVy, B:G— AutV, 2

whereq, 8 : G — AutVare homomorphisms of the dual group G corresponding to the above gradings
in the following way. Given x € G we define a(x) on an element v of Vg, for each g, by a(x)(v) =
x (2)v. Similarly for (2). Suppose A C G is a subgroup such that (1) = B(A), foreach A € A.Letus
denote by H the orthogonal complement A+ = {g € G| A(g) = 1, A € A}. Assume further that the
subgroups a(G) and ,B(G) commute elementwise.

Let us consider a homomorphism y : G — AutV given by Y0 = a1 () B(x). In this case we
can define H-grading of V as follows: V(" = {v| y (x)(v) = x (h)v, x € G}.
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Theorem 1 (Exchange Theorem). The three gradings defined above are connected by the following equa-
tions

_ ~ ~ — -1
Vg = ®hen(Vgn N V™), ¥y = @pen(Vgr N V) 3"

IfVis an algebra and (1') and (2') are algebra gradings, then (3') are relations for the algebra gradings.

Proof. Let us prove the first equality. Since all gradings are compatible, we have Vg = @pep(Vg N
V(h)). Thus it is enough to prove, for any g € G,h € H, that Vgh nv = Vg NV Ifv e Vgh nvh
then B(x)(v) = x(gh)vand y (x)(v) = x (h)v. Hence also y (x) ' (v) = x (h)~'v. Now

a(x)W) = (OB BOGOW =y () BGOW) = x ()~ x(gh)v

proving Vgy N VM c Vy NV,
Ifb € Vg NV then a(x)(b) = x (g)b, ¥ (x)(b) = x (h)b. Therefore

BOO®) = a()a ()™ BGO@ = a(x)y ()@ = x(&)x(a = x(gha.

It follows that Vg N VW C Vg, N V™. Finally, Vg N VM = Vg NV forany g € G and thus we have
the first equality in (3). The second is similar. It is easy to check that if V is an algebra and (1") and (2')
are algebra gradings, then (3') provides us with the relations between algebra gradings as well. The
proof is complete. [

One of the important tools in the proof of the main results of our work is a recent result from [5],
as follows.

Theorem 1. Let My (F) = A = Pgec Ag be a G-grading on My (F) over a field F of characteristic not 2,
which contains d different roots of 1, d = |G|. Suppose there is a graded antiautomorphism ¢ whose
restriction to R, is an involution. Then there is a G-graded automorphism yr of R such that o = ¢ and

v =¢

A consequence of this result which interests us is as follows. Let us denote by Aut (A) the group of
automorphisms and antiautomorphisms of A. In the case A = M, (F), [Aut (A) : Aut (A)] = 2.

Theorem 2. Let P be a finite abelian subgroup in Aut (A), A = M,(F) over a field F of characteristic not
2, which contains d different roots of 1,d = |G| Suppose ¢ € P\ Aut (A). Then there exists Y € Aut (A)
commuting with all elements in P and 4% = ¢?.

Proof. Set Q = P N Aut (A). Then Q is a subgroup of index 2 in P. Let G be a finite abelian group whose
dualis Q. That is, the elements of Q can be viewed as multiplicative characters on G. As noted earlier, in
this case Abecomes G-gradedifonesetsA, = {a € A| x(a) = x (g)aforany x € Q}.Since ¢ commutes
with the elements of Q, the antiautomorphism ¢ is a G-graded map. Also, because (p2 € Q, we have
that the restriction of ¢ to R, is an involution. Applying Theorem 1, we find a G-graded automorphism
¥ such that ¥ = ¢ and ¥ = ¢?. Now if x is an arbitrary element of Q and a a homogeneous

element of degree g € G then ¥ (x (a)) = ¥ x(g)a = x(g)¥(a) = x (¥ (a)) because ¥ (a) € Ag. It
follows that ¥ x = x v and ¥ commutes with all elements of P, as required. [l

3. Antiautomorphisms of graded superalgebras
Theorem 1 is no longer true in the case of (super) antiautomorphisms of matrix superalgebras. The

simplest example is the trivial grading and the (super) antiautomorphism defined on My ;, n, m odd,
by



Y. Bahturin et al. / Linear Algebra and its Applications 431 (2009) 1054-1069 1059
A —B\
e0=(2 ).

where X = (’é g>A and D are matrices of size n x nand m x m, respectively, B and C are matrices

of size n x mand m x n, respectively.

Luckily, the argument of [5] can be adapted to the case of superalgebras although we have to deal
with higher powers of the antiautomorphisms in question. We start with a generalization of the results
of [3, Lemma 2] about fine involution gradings. Recall that a grading R = @gecRy is called fine if for
any g € G such that R; # {0}, dim Ry = 1.

Theorem 3. Let R = My (F),n,m > 1, be a non-trivial matrix superalgebra with an antiautomorphism
@ over an algebraically closed field F of characteristic zero or coprime to the order of G, where G is a finite
abelian group. Then R admits no fine G-gradings respected by ¢.

Proof. Assume the contrary, thatis R = @gegRg is a fine G-grading respected by ¢, ¢ (Rg) = Rg. Since
Ris a superalgebra with a fine G-grading, according to [4], dim Rg = dim Ry, thatis, n = m. Let R5 be
denoted by A. Then

A= @gEG Agy

where A; = Ry N Ry. This grading is also fine and compatible with ¢. Note that A = J; @ J,, the sum
of two isomorphic simple ideals.

Next let G be the dual group of G,and « : G — AutAthe homomorphism accompanying our grad-
ing. If for each n € G, a(n)(J;) = J;, then a fine G-grading of A induces G-gradings on both ideals
such that A; = (J1)g @ (J2)g. In particular, Ae = (J1)e @ Uz)e- where (J;). # {0}. This contradicts the
fact that our G-grading is fine. Therefore, there exists & € G such that «(§)(J1) = J». Hence, G=
AU A& where A ={n € G|a(n)(]l) =J;} and €2 € A. Then H = Atisa subgroup of G of order
2 and G/H= A. Let H = {e, h} where h? = e. Next we can _consider the induced G = G/H-grading
of A. Let g = gH for any g € G. Then Az = Ag + Agp. Since G/H*j, = AxJ; = wherei € 1,2,J;jis a
G/H-graded ideal. It follows from Az = (J1)z ® (J2)z, i)z # {0}, and dim Az = 2 that dim (J;)z = 1.
Therefore, both G/H-gradings on J; and J; are fine.

The following two cases may occur.

Case 1. Let ¢(J;) = Jo. Note that A; = (J1)z @ (J2); for each g € G. By Proposition 2 [6], we can
recover our original G-grading. In fact,

Ag = (X +&() " (ExX)| X € Ag}. (1)

For example, let us take X = (? g) ,Xz € (J1)g. Then, by (1),

04X +5@7 €0 = (§ L 1e ux) <A

X_
Since dim Ag = 1,Ag = span {( N 0

_ . Recall that ¢ (A;) = A; where ¢ can be rep-
0 @ 1<s*Xg))} #(Ag) = Ag where ¢ P

resented as follows:

or (o )= (0" o)

where ¢ and ¢ are antiautomorphisms. Hence

Xg 0 (07 (o) r 00 0
"’*(0 Eg) 1(5*xg>) ( ‘ ¢1(Xg)>

= <)§>g é(g)‘l(oé x xy)
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for some non-zero scalar Ag. Therefore, for each g € G, Xz = (Agé(g))_l)(gooé') * (Xg) where @oé is
also an antiautomorphism. In other words a fine G-grading on J; is respected by antiautomorphism
@o&. Then, by [3, Lemma 2], G/H =N; X --- X Ny where N; =7, x Z,.

Case 2. Let ¢ (J;) = J;. Then a fine G-grading on each J; is also compatible with ¢. Hence, according
to[3,Lemma 2], G/H= Ny X - -+ X Ny where N; =75 X Z5.

Therefore, |G| = 2 - 2% = 221 for some natural number I. Moreover, we have that foreachg € G,
eitherg? = eorg® = e.On the other hand, according to Theorem 5 [2],G = Iny X Ly X -+ X Ly, X
Zy,, n; € N. Moreover, either n; = 2 or n; = 4. Therefore, |G| = 2% . 425 — 2245 for some natural
numbers r and s, which is contradiction. [J

In what follows, let T denote an antiautomorphism of My, , (F) defined by the formula:
. (A —B\
=(c v)

A B
whereX:(C D

of sizen X mand m X n, respectively.
Recall that a grading R = @gecR, on the matrix algebra R = My (F) is called elementary if there
existsann-tuple® = (g, ...,gy) € G" suchthat the matrix units Ej;, 1 <i,j < nare homogeneous and

Ej € Rgifand only if g = g,-_lgj.

),A and D are matrices of size n x nand m x m, respectively, B and C are matrices

Lemma 1. Let R = My, = ©gccRg be a matrix algebra with the elementary G-grading. IfRe = A1 © Ay is
the sum of two simple subalgebras, then there exists g € G,g # e, such that AjRA; C Rg.

Lemma 2. IfR = R + Ry is a superalgebra with an antiautomorphism @, then for any x,y € R,
@(xRy) S ¢(¥)Rp(x). (2)

Lemma 3. Let R = C @ D = @®gecRq be a G-graded matrix superalgebra with an elementary grading on
C, and a fine grading on D over an algebraically closed field F of characteristic not 2. Let ¢ : R — R be
an antiautomorphism on R preserving G-grading and o : R — R be an automorphism of order 2 of R that
defines a superalgebra structure on R. Let also ¢ act as a superinvolution on R,. Then

(1) Ce ® Iis @-stable and o -stable where I is the unit of D and hence o induces a Z,-grading on C, and
@ induces a superinvolution * on C, compatible with the Z,-grading.

(2) there are x-subsuperalgebras By, . . .,Bx C CesuchthatCe =B1 @ -+ @ By, andB; ®I,...,By ®
I are p-stable and o -stable.

B)pactsonR, =Ce@IaspxX = STIXTSwhereS =S, @1+ ---+ S, ®1,S; € BiCBj and S; =

(18' Qor) if B; is of type Ms, 2r, (F) with orthosymplectic superinvolution; S; = (IO IS’) if Bj is
i Si

of type Mg, s, (F) with transpose superinvolution; S; = <I 3 15"6”’) if B; is of type My, ,(F) @
SiTTi
M;o‘r’, (F) with exchange superinvolution; S; = (IS IZS") if B; is of type Q(s;) ® Q(s;)*°P with
i

exchange superinvolution.

(4) ife; is the identity of B, then D; = e; ® D is ¢-stable and o -stable.

(5) the centralizer of R, = C, ® Iin R can be decomposed as Z1D1 & - - - ® Z,Dy where Z; = Z{ ® I, Zi’
is the center of B;.

Proof. It follows from [2, Theorem 5] that the identity component R, equals to C, ® I.Since R, is ¢- and
o-stable, both ¢ and o induce a superinvolution * and a superalgebra structure on C,. Both structures
are compatible with each other.

Since C, is semisimple, it is the direct sum of simple subalgebras,

C=A& - DA
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If for some i, 1<i<I, 0(A;) = Aj where i # j, then it is easily seen that A; = A; + A; is o-stable.
Therefore, C, can be written as a direct sum of o -stable superalgebras,

C=A® - DA,

Next, if for some i, 1 <i<s, (A)* = Ajf where i # j, then B; = A} + A; is *-stable. Finally, C, can be
written as a direct sum of x-simple superalgebras.

C=B1® B

Now (1), (2) and (3) follows from the classification of involution simple superalgebras (see Proposition
1).

Nextwe fix 1 < i< k,and considerR’ = (e; ® I)(C ® D)(e; ® I) = e;Ce; ® Dwhere e; is the identity
of B;. Since ¢ (e; ® I) = e; ® Iand o (e; ® I) = e; ® I, R is - and o -stable.

To prove (4), we consider the following three cases.

Case 1. Let B; be of the type M, s(F). Then

eiCei = B,‘, (3)

and e;Ce; ® I = B; ® I. Hence, e;Ce; ® I is ¢- and o -stable. Since e; ® D is a centralizer of e;Ce; ® I, it
is also ¢- and o -stable.

Case 2. Let B; = A @ A*°P where A = M, ;(F). Denote the identity of A by &;. Then, & is the identity
of AP, and e; = &; + €. Notice that

eiCe; ® I = £iCe; ® 1+ 6iCef @I+ 6 Ce; @I+ £Cef ® 1. (4)

Next we want to prove that both ¢ and o permute the terms of (4) leaving e;Ce; ® I invariant. With-
out any loss of generality we consider just one term of the form &;Ce;" ® I. Since ¢;Ce] @ I = (§; ®
D(C® ) (e* ®1),by(2),¢(eiCef ® 1) C (6 @ N(C ®D)(e* ® 1) = £iCe} ® Dand o (5iCe} ® 1) C
(e ®N(CR®D)(e*®I) =¢iCef ®D.

ByLemma2, thereexistsag € G,g # esuchthate;Ce] C Cy.Hence,&;Cef ® I C Ry.Consequently,
@(eiCef ®I) C Rgand o (giCef ® I) C R,. Next we take a homogeneous x € ¢;Ce;* of degree g and a
homogeneousy € D of degree hsuch thatx ® y € R;. Thendeg (x ® y) = gh = g, h = e. This implies
y=A, A eFforanyx ® y € Ry N ¢;Ce]* ® D. It follows that R, N &;Ce{ ® D C &;Cef @ I.

As a consequence, ¢(eiCe; ® I) = e;Ce; ® Iand o (e;Ce; ® I) = e;Ce; ® I, that s, e;Ce; ® I is ¢-and
o -stable. From the decomposition R’ = e;Ce; ® D it follows that e; ® D, the centralizer of e;Ce; ® I in
R, is ¢- and o-stable.

Case 3. Let B = Q(s;) @ Q(s;)*°P.Since Q(s;) = I; @ I, where Iy, I, are simple ideals isomorphic to
M, (F),Bi= (I ® L) ® (IF ® I3). Let &, &, &, & be the identities of Iy, I, I, I3, respectively. Then
we notice that o (¢; ® I) = & ® I. We have that

ei=¢i+e& +&+E. (5)

Therefore, e;Ce; ® I = Ny ® I + No ® [ + N3 @ I + N4 ® I where Ny = ¢;Ce; + &/ Ce; + &iCeff +
el Cef,Ny =6iC&;i + &°C&; + &iCE + & CEf, N3 =8;Ce; + £ Ce; + &iCe] + £ Ce},and Ny = &;C; +
£/ Ce + &iCef +&fcef.

Arguing in the same way as in the second case, we can prove that o(Ny ® I) = Ny ® Iand ¢(N4 ®
I) = Ns ® I. Now we consider N, and N3. Suppose that the elementary grading on B;CB; induced
from C is defined by (g1, g2, 23,24). It is easy to see that deg(s;C&;) = gflgg, deg(&iCe}) = gf1g4,
deg(ef (&) = g; 'g3,deg(e] C&}) = g, 'ga.deg(:Cey) = g5 'g1,deg (8] Cei) = g; 'g1,deg(8] Cef) =
g5 &2, deg(8iCef) = g3 ' 2.

Let us take, for example, the first term &;C&; of No. Then ¢ (£;C&; ® I) C Rg;1g3. On the other hand,
by (2), ¢(&iC&i ® ) C € Cef ® D C Cg;lgz ® D. If we take x € Cg;lgz and a homogeneous y € D of

degree h such thatdeg(x ® y) = gl_lgg, then gl_lg3 = g4_1g2h, thatis, h = gl_lg4g2_1g3. This implies
that

0(EiCE R C §,-*Cs;‘ & Dp. 6)
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Similarly, we can show that for each term of N, there should be Dy, on the right-hand side of (6). Hence
@(N2 ® I) = N3 ® Dp.

Next we take the first term &;Ce; of N3. Likewise we can show that ¢ (§;Ce; @ I) C &°C& @ Dy-1.
Hence for each term of N3 we have D—1 on the right-hand side, and ¢(N3 ® I) = N, ® Dp-1.

Note that the centralizer of (N, + N3) ® I in R’ is e; ® D. Hence, the centralizer of ¢ (N2 + N3) ®
I) = N3 ® Dp—1 + N, @ Dy in R’ is ¢(e; ® D). Next we take any x ® y in ¢(e; ® D). Since x ® y lies
in the centralizer of N3 @ Dy—1 + N2 @ Dp, X @ y commutes with each element in N3 ® Dy—1 and
N, ® Dy. Therefore, x commutes with any matrix in N3 and N,. Direct computations show that x = e;,
and ¢(e; ® D) = e; @ K where K is a subspace of D. By dimension arguments, K = D,and ¢ (e; ® D) =
e; ® D.

To prove that e; ® D is o -stable, we represent e;Ce; ® I as follows: ejCe; @ I = N{ Q@ [ + N, ® I +
N_% R+ Nzll ® I where Né = £iCs; + &iCe; + &;C&; + &;C&;, Né = SiCSEk + g‘iCSEK + Sicg‘;k + g‘icg‘;k,
Nj = &fCei + &/ Cei + fC&; + £FCé;,and N = & Ce} + & Cef + &Ce} + & CE;".In the same way
as above, we can show that e; ® I is o -stable.

Hence (4) is proved.

To prove (5) we note that the centralizer Z of C, in C is equal to Z] & - - - @ Z; where Z] is the center
of B; and the centralizer of R, in R coincides withZ ® D = Z{D1 & - - - & ZxDy, where Z; = Z{ ® I and
D; = e; ® D.

Our proof is complete. []

Proposition 3. Let G be a finite abelian group, and R a superalgebra of type My, i, (F) over an algebraically
closed field F of characteristic not 2. Suppose that ¢ is an antiautomorphism of R that preserves a G-grading
of R. Then there exists an automorphism Y of R preserving the G-grading of R such that yy commutes with

@ and ¥ = 2.
Proof. It is easy to check that the ¢-action on R is defined by
pxX =0 X'

t
for some matrix @, and X* = <2 DB) . First let X € R,. Consider the decomposition C, = B; ®

- - - @ By found in the previous lemma. Then X = X; @ I + - - - 4+ X, ® I with X; € Bj, 1 <i<k. Then
@ actson X as

p*X =ST1X°S,

where S as in (3) of Lemma 4. Hence the matrix @S~ ! commutes with X? forany X € R,, thatis &S~
is an element of the centralizer of R, in R. Hence, we obtain

P =5Y1®Q + -+ SV ®Q (7)
where Q; € D,Y; € Z/,1<i<k. Compute now the action of ¢* on an arbitrary X € R:
X = (@ ') )X (@ H'e)
Set P = ((&~1)!'®)2. We need to show that there exists an inner automorphism v such that
Y% % X = P 'XPforallX € R.Note thatforanyT;, T/ € BiCBjandQ;,Q/ € D,i = 1,...,k, therelation

(Z T; ® Q,-) (Z T ® Q{) =TT ® QQ/

holds.
We compute the value of P:

k
P= (@ Ve =Y ((¥sH'siv? ® (@) Q>
i=1

= 2(sH ) s @ (@) ') (8)
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Lemma 4. All Q; satisfy (Qf) ™' Q; = =I.

Obviously it is sufficient to prove the relation
6 ®@Q)'u =101
inD; = e; ® D.Recall that D; is ¢- and o -stable. Moreover, D; is G-graded algebra with a fine G-grading
compatible with ¢ and o. Therefore, this is G-graded superalgebra with a fine G-grading respected
by ¢. According to Theorem 3, D; cannot be non-trivial. Therefore, D; is a trivial superalgebra, that is,
D; € Rg, and 7 acts on D; as a usual transpose. For any X € D we have
Pr@E@®X) =0 1 @®X) P =S¥ () SiY) ® (@ X' =e®Q X'

i.e. action by ¢ induces an antiautomorphisme; X — ¢; ® Qf]XfQ,- on D;. Arguing in the same way
as in Lemma 6.5 (see [6]) we can conclude that e; ® (Q{)’lQi =4e®I 0O

Now we compute ((YitSf)_]SfY,-)z. If B; is simple then Y; is a scalar matrix and ((S)~'S;)? = I by
Lemma 4. If B; is of type M, r, (F) @® M;Orp, (F), then

M0 0 1
= w) 5= o

1\2

A\ 0 2

and ((Y!SH7's;v)2 = (”) , | = ) _01 ,. | wherey = 2 IfB;ifoftypeQ(s;) ®
i 0 <%) I 0 (y=H°I s

Q(s;)*P, then

ol 0 0 0 0 0 I O
v 0 ol 0 O c_|0 0 01
i=lo o 1 o T|1 0o o of
0 0 0 pil 0 I 0 O
and
B ')l 0 0 0
tety—Te v _ 0 (1B D21 0 0
((Yl 51) lel) - 0 O (afl‘g)zl O
0 0 0 (o' B
vi 0 0 0
o p 0 0
“lo 0 (y H 0
0 0 0 (n~H2I

wherey = 7', and . = oz1/3f].
We have proved that P = (P; + - - - 4+ Px) ® I where P € By, ...,P; € By and P; has one of the

yi 0 0 0

oo [OH 0 o wi 0 0
forms:P; = I,P; = ( 0 (y =12 ,andP; = 0 0 (y—1)2 0 .Now we pres

0 0 0 (™ H2I
entamatrixT = (T; + -+ Tx) ® I,T; € By,..., T € B suchthatTi4 = p;foralliand hence T* = P.
()21 0 il 0
Incase P, =1wetake T; = L. If P; = _ , then we take T; = _ where
i i i ( 0 ()/ 1)21 i 0 Vi 11



1064 Y. Bahturin et al. / Linear Algebra and its Applications 431 (2009) 1054-1069

Y0 0 0 nl 0 0 0
0 ui 0 0 0 ml 0O 0
2_ 4 1£p — _
y =y fP= 0 0 ()2 0 , we take T; = 0 0 7/17]1 0
0 o0 0 (w=H2 0 o0 0 uill

where y? = )/14, and pu? = u‘ll. Note that T € R,, hence the map ¥ : X — T~'XT is an inner auto-
morphism preserving G-grading. Moreover, since T* = P, w4 = g04.

Now we need to check that ¥ and ¢ commute. Direct computations show that ¢y = ¥ ¢ if and
only if

TTOT = AP, (@ 'T°®)T = Al, (9)

for some scalar A. Since T=T; @ [+ --- + Ty @ | where T; € B;, ® !T"® = ¢ % T = S!T7S (see
Lemma 4). If B; is simple, then T; = I and Si_leSi =T; = LIf B; = A ® AP, then the restriction of ¢
to B; acts as the exchange superinvolution, and

yi'looo 0 0

-1
st =| 0 om0 0
0 0 wl 0
0 0 0 il
nl 0 0 0

0 wi O 0
0 0 y'I o0
0 o0 0wl

-1
-1 I 0
STITS = <V10 » 1)

I 0
forT; = n —1, ). In both cases (9) holds with A = 1 and thus the proof is complete.
0 y 1

forT; = ,or

4. Main results

In this section we describe group gradings compatible with superinvolution of involution simple
superalgebras which are not simple as superalgebras. Notice that these results depend on the clas-
sification of gradings by a finite abelian group on matrix algebras [2], involution gradings on matrix
algebras [3], [5], involution gradings on involution simple algebras [1], and group gradings on simple
superalgebras [4]. Finally, the superinvolution gradings on My, ,; (F) have been described in [11].

We start the following general result.

Lemma 5. Let R be a simple superalgebra as in Example 3, that is,R = A @ AP where A is a simple
superalgebra, and * denote the ordinary exchange involution. If ¢ is an automorphism of R that commutes
with x, then there exists a linear mapping ¢q : A — A such that one of the following cases holds:

Type 1: ¢((x,y)) = (@o(X), 9o (¥)), and ¢q is an automorphism of A.
Type 2: ¢((x,¥)) = (9o (¥), po(x)), and ¢q is an antiautomorphism of A.

Proof. Since R = A @ AP, we will represent an arbitrary element of a superalgebra R as a pair of
elements from 4, i.e. (x,y) where x,y € A. We also recall that A = Aj + Aj. If ¢ is an automorphism
of R that commutes with =, then the following two cases may occur:

1. (A) = A, p(A*P) = AP, Then, there exist two linear mappings ¢g, ¢1 : A — A such that
o ((x,¥)) = (po(x), ¢1(¥)). Now ¢ commutes with the involution *. Hence

(1), 9o(x)) = (o (x), 1(¥)* = (@((x,y)*
= (% Y)* = ¢((1.%) = (Po¥), ¥1(x)).
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Hence, ¢y = @1.Thus ¢ is completely defined by ¢g : A — A, @((x,¥)) = (¢o(x), ¢o(y)). Next, for any
homogeneous x,y € A,

o((x1,0)) = (9((0,x))* = (=)W ((0,y)p((0,)))*
= (=DMY((0, 0o (y)) - (0,00(x)))*
— (_1)|xHy| (_1)\¢0(X)||<ﬂ00’)| (0, 9o (x) o (¥))*
=(po(®)@o(¥), 0).

Hence ¢ is indeed an automorphism of A, and we have a Type 1 automorphism.
2. p(A) = A*P, p(A*P) = A. Again there exist two linear mappings ¢g, @1 : A — A such that
©((x,5)) = (po(¥), ¢1(x)). Since ¢ commutes with the involution, we must have

(@10, 9o) = e((x.1))* = (1. %) = (Po(x), P1()).
Again, as before ¢y = 1. Now let x,y be homogeneous elements from A. Therefore, (¢q(xy),0) =

0((0,29)) = (=DM (0,3) - (0,%))) = (=) p((0,)) - @((0,%) = (=) (gy(y),0) -
(¢o(x), 0). It follows that

po(xy) = (=)Mo (y)go (%),

and we have a Type 2 automorphism. []

By a Type I involution grading of a superalgebra Ry = A @ A**?, as above, we understand a grading
in which A is a graded subspace, that is, A = g (Rg N A). In this case also

ASOP — A* — @(R; mA*) — @(Rg OASOP),
geG geG

so that A’ is also graded. Then there is a G-grading on A, hence on A%, as in Remark 1, such that
Ry = Ay @ A7”.

Theorem 4. Let G be a finite abelian group and F an algebraically closed field of characteristic O or coprime
to the order of G. Then any G-grading of R = A & A*°P where A = M, (F), with the ordinary exchange
superinvolution x compatible with G-grading has one of the following types:

Typel: R = Ag @ A;Op,for a G-grading of A = @gecAg,

Typell: Rg = {(x, xNx e Ag} @ {(x, —xN|x e Agr}, for a f-involution grading A = @gccAg Where |
is a graded superinvolution on A,h € G,o(h) = 2.

Type IlI: Rg = {(x.x") |x € A, N AL} @ {(x, —ixT) | x € Agy NA_} @ {(x, —x) |x € Agz N AL} @
{(x,ix") |x € Agpz N A_} where h is an element of order 4 in G, T is an antiautomorphism of order 4 on
AA = @qyec Agisat-gradingon A, Ay, A_ are symmetric and skew-symmetric elements of A with respect

to 2.

Proof. If G acts on R by automorphisms of Type 1 only, we arrive at Type I gradings described just
before the statement of this theorem. Now let G act on R by automorphisms of both Type 1 and Type
2,and « : G — AutR the homomorphism accompanying our grading. Let A stand for the set of all
X e§ that act on R by automorphisms of Type 1. As earlier, A is a subgroup of index 2 in G. Choose
& € G, such that ¢ (§) = ¢ is an automorphism of Type 2, G = A U A&.

Next we assume that there exists an automorphism ¥ of Type 1 such that Y2 = (pz, and v com-
mutes with «(G). Then we can apply the Exchange Theorem. For this, we consider two gradings of
R. The first is our original one defined by «. The second one is defined by a new homomorphism
such that 8|4 = a|4, B(§) = . It is easily seen that 8 is indeed a homomorphism. Now by the
Exchange Theorem there exists a grading by a subgroup H = At = {e, h}, corresponding to the action
of y = af~!. Moreover, y(@) = {id, 3y ~1}. Denote w = ¥~ 1. Then, w((x,y)) = (wo (), wo (X)),
a)g =id and wo(xy) = (—l)""'y'wo(y)a)o(x). Therefore, wy is an involution on M, (F) which we
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denote by wo(x) = x'. Since the grading defined by g is a grading of the Type I, it follows from the
first part of the proof of this theorem that Ry = Az & ASOP where A = @gecAy is a T-grading of R. By

the Exchange Theorem there exists an element h of G of order 2 such that Ry = R; N R® + Rgy N RM.
Here,

RO = {(x,y)|o((xy) = x,¥)}
= {x Y@ ), wo(®) = (x.y)} = {(x.x")|x € A}.
Also
R® = (xy)o(x.y) = =)} = {(x —xHx € A}.

This allows us to write R; = {(x, xN|x e Ag} U {(x, —xN|x e Agh}.

Now we consider the remaining case when there is no automorphism ¥ of R of Type 1 such that
Y% = ¢? and ¥ commutes with (G). Let A; denote the set of all n € G for _which there exists
an automorphism 7 of Type 1 such that «(n) = t? and T commutes with a(G). Clearly, Aq is a
subgroup of A. Moreover, since r;z € Aqforeachn € A, this subgroup has index 2 in A, and therefore,
has index 4 in G. By our assumption £2 ¢ A;. Hence G = Ay U A1 U 462U A1§3 Next we can
write ¢ ((x,¥)) = (po(¥), 9o(x)) where ¢y is an antiautomorphism of A that commutes with o (A1).
By Proposition 3, there exists an automorphism /g of A such that w(‘} = <p3, Yopo = @oo, and Y

commutes with a(A1). Set ¥ ((x,y)) = (Yo(x), Yo(y)). Obviously, ¥*((x,y)) = (g (x), Y5 (¥)) =
(95 (%), 95(1) = @*((x,y)). Besides,

Vo((xy) = ¥ (@), po(x))) = (Yoo (), Yogo(x))
= (o0 (), oo(x) = @((Yo(x), Vo)) = @Y ((x.y)).

This implies that ¢ = ¢. Moreover, ¥ commutes with o(A1). Next we consider a new homomor-
phism 8 : G — AutR defined as follows: ,B(ékn) = W‘a(n) fork =0,1,2,3. Let also R = Py Rg
be the G-grading defined by 8. Since this is a Type I grading, Eg =A; @ A;Op for some G-grading of
A= DA

This allows us to apply the Exchange Theorem, in which At =H= {e, h, h?, h3}. The homomor-
phismy : G — Aut (R)definedby y (x) = &~ 1(x)B(x) definesagradingR = R© & R® @ R"™) @
R" and

Rg = Ry NR® @ Ry NR® @ Ry NR™) @ Ryys N R,

Let us consider 6 = y (£). Then the respective 6y is an antiautomorphism of A of order 4 which
we denote by . Notice that 62 is an automorphism of order 2. Let AL = {x € A Hg(x) = x} and

= {x € A| 63(x) = —x}.Direct computatic;ns show thatR; NR® = {(x,x") |x € A; N A+},R§h N
RM = {(x,—ix") |x € Ay NA_}, Rge NRM) = {(x, —x") | x € Age NA4} and Rys NRM) =
{(x,ix") |x € Agzs NA_}.

The proof is now complete. []

Example. Let us consider the 74 = {£1, i}-grading of R =A @ A*’, A= M, n(F) induced by
@ *(X,Y) = (Y?,X"). Clearly, ¢ is of order 4. Direct computations show that

O ({1 )| R (I )
w=f(e S Lo o Db S [ SDE

where A, B, C, D are any matrices of appropriate orders. This is in fact a grading of Type Ill for A = A,
(a trivial grading) and h = —i.

o
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Lemma 6. Let A = B + tB where B= M, (F) be an associative superalgebra of type Q (n), and v an auto-
morphism of A. Then there exists an automorphism Vg of B such that for any X + tY € R, either ¥ (X +

tY) = Yo (X) + tho(Y) or Y (X + 1Y) = Yo(X) — tfo(Y).

Proof. Let us consider A = B + tB with a Z>-grading Aj = B and A; = tB. Then both B and B are
invariant subspaces under the action of yr. Namely, there exists two linear mappings o, /1 : B— B
such that for any X + tY € R, ¥ (X + tY) = ¥o(X) + tyr1(Y). If we use that i is an automorphism,
we can easily derive the following relations:

Yo(X1X2) = Yo (X1) Yo (X2), (10)
Y1(XY) = YoX) 1 (Y), (11)
Y1(YX) = Y1 (V)P (X), (12)
Yo(Y1Y2) = Y1 (YD) Y1 (Y2), (13)

where all X1,X3,X,Yq,Y2,Y € B. It follows from (10) that 1/ is an automorphism of B. Now in (11)
and (12) we set Y = I, the identity matrix, then we obtain ¥ro(X) vy (I) = Y1 () Yo (X) forall X € B.1t
follows then that 1/ (I) is a scalar matrix, ¥; (I) = Al, and ¥r; = Ao. Now if we apply (13) we will
obtain I = oI - I) = Y1 ()1 (I) = A2l In this case A = 1. This argument allows us to conclude
that for each automorphism v there is an automorphism vy of B such that either ¥ (X 4 tY) =
Yo(X) + to(Y) or (X 4 tY) = Yo(X) — tyo(Y). The proof is complete. []

Lemma 7. Let A = B + tB where B= M, (F) be an associative superalgebra of type Q (n), and ¥ be an
antiautomorphism of A. Then there exists an antiautomorphism vy of B such that for any X + tY € A,
either (X + tY) = Yo(X) + ityro(Y) or ¥ (X + tY) = Yo(X) — ityro(Y) where i = —1.

Proof. The proof of this lemma is similar to the previous one except that in the case where ¥ is a
(super!)antiautomorphism the Eqgs. (10)-(13) are replaced by

Yo(X1X2) = Yo(X2) Yo (X1), (14)
Y1 (XY) = Y1 (V) Yo (X), (15
(
(

—

V1 (YX) = YoX) ¥ (Y), 16)
Yo(Y1Y2) = —¢r1 (Y2)¥1 (Y1), 17)

where all X1, X3, X, Y1, Y2, Y € B. Now (14) implies ¥y being an antiautomorphism. Also (15) and (16)
imply ¥r1 (I) = Al and ¥; = Ag. Using (17), we now derive that A = +i. [

Now we are ready to prove the second main result of this paper.

Theorem 5. Let G be a finite abelian group and R = A @ A*°P an involution simple superalgebra with A of
type Q(n), as in item(3) of Proposition 1. Suppose the base field F is algebraically closed of characteristic
0 or coprime to the order of G. Then any G-grading of A = B + tB= Q(n) with the ordinary exchange
involution * compatible with G-grading has one of the following forms:

Typel.R; = A; ® A;Op,for a grading of A = @gecAg,

Typell: Ry = {(x,x")| x € By} @ {(tx, —tx")| x € Bgn} @ {(x, —x")| x € B2} @ {(tx, tx")| x € B3},
where his an element of order 4in G, { is an involution on B= My (F), B = @, B is aninvolution grading
on B with respect to involution 7.

Proof. If G acts on R by automorphisms of Type 1 only, we arrive at Type I gradings described just
before the statement of Theorem 4. Otherwise, let &(G) contain all possible automorphisms, where,
as before, @ : G — Aut (R) is the homomorphism corresponding to our grading. Let ¢ € «(G) be such
that o ((x,¥)) = (po(¥), vo(x)) where ¢ is an antiautomorphism of A, x,y € A. Then, according to
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Lemma 7, ¢g has one of two forms g (u + tv) = ¢1(u) % ite,(v), where ¢, is an antiautomorphism
of B = My (F),andx = u + tvwithu,v € B.If we compute the powersof ¢ on (x,y) = (u + tv,p + tq)
where also p, g € B then we obtain the following:

O*((u+ tv,p+t9) = (¢} W) — tgi (), P} () — to} (@), (18)
QU+ tv,p+t9) = (3 () F te3 (@), 93 (W) F te; (v)), (19)
@* (U + tv,p +tq)) = (W) + toi(v), gi(p) + te(Q)). (20)

Clearly, if we replace ¢ by ¢> we may assume from the very beginning that o (u + tv) = ¢1(u) +
itg1(v), for an antiautomorphism ¢ of B. Let ¢ € G be such that ®(¢) = ¢ and let

A= {x €Gla()(+tv,p+1tq) = (m1 (W) + tr (v), 71 (p) + t711(q))}

for any u,v,p,q € B, 11 € Aut (B). Then G = A U AZ U A% U AZ>. Indeed, choose any x € G and
consider m = a(x).Thenw ((x,y)) is described by Lemmas 5 and then 6 or 7. Direct calculations using
Eqs. (18)-(20) show that if 77 is one of the cases of Lemma 6 then either x € A or ¢?x € A. If 7 is
one of the cases of Lemma 7 then either g x € A or ©>x € A R

Let us define amapping &y : G — Aut (B) by associating with each y € G the mapping 771 as in the
previous paragraph. Obviously, this is a homomorphism of groups and the image ¢, of £ is an antiauto-
morphism. In this case Theorem 2 applies and there exists an automorphism vr; of Bsuch that wlz = <p]2
and yr; commutes with every mq € o (6). Let use our previous notation to define an automorphism

¥ of R by setting ¥ ((x,y)) = (Yo(x), Yo(y)) where Yo(u + tv) = ¥ (w) + t1(v). Immediate cal-
culations using different cases of Lemmas 6 or 7 show that 1 commutes with any element of «(G). For

example, if 7 € «(G) has the form 7 ((u + tv,p + tq)) = (7r1(p) — itm1(q), 1 (u) — itmr1(v)) then
using that {71 = w1y, we easily find both ¥z and 7 acting on (u + tv, p + tq) produce the

same (Y1771 (p) — ityr17r1(q), Yra7m1 (1) — ity w1 (V). _
In order to apply Exchange Theorem, we define another mapping 8 : G — Aut (R) by setting

B(c*r) = yka(d) for k = 0,1,2,3. By Eq. (19), ¢* = y* and so this mapping is well defined and
is a homomorphism of groups coinciding with o on A. Let also R = Pgec Ry be a G-grading defined
by B. This allows to apply Exchange Theorem, in which At =H= {e, h, h%, h3}. The homomorphism
y G — Aut (R) defined by vy (x) = a1 (})B(x) defines a grading R = R® @ RM @ R ) R
and

R, = R, NR® @ Rey NR® @R, NR™ @R, N R, 1)
g g rd gh gh

Let us consider @ = y(¢). Then the respective #; € Aut (B) is an involution, which we denote by T.
The grading of R defined by 8 induces a grading B = g¢( By on B, which permutes with 1, hence is an
involution grading on the matrix algebra B = M;(F). We have Ry = {(u + tv,p + tq) | u,v,p,q € Bg}.
To finally compute the homogeneous components of our original grading by Eq. (21), we need to
compute the components of the H-grading R, t € H. We have (x,y) € R© if6((x,y)) = (x,y). Using
the same notation for x,y € A, as before, we get

O((u+tv,p +tq)) = (61(p) — itb: (q), 61 (u) — ity (v)) = (p' — itq", u" — itv').

If (x,y) € R© we must have p' — itq" = u + tv,u’ —itvl = p+tqandsop' = u, —igt = v,u’ = p,
and —iv' = g.Itfollowsthatp = u',v = g = 0.Finally,R® = {(u,u") |u € B}.Now sinceRg = {(u +
tv,p + tq) | u,v,p,q € Bg}, we finally obtain Ry N R® = {(u,u’) |u € B}.
Asimilar computation gives us also Rgy N R® = {(tv,—tv) |v € B}, Rgy2 N R = {(u,—u") |u e
R " — i
B}, and Rgys N R = {(tv,tv") | v € B}.
Now the proof of our theorem is complete. []
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