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Accumulating evidence implicates the tumor-draining lymph node (TDLN) in tumor-induced immune
escape, as it drains regulatory molecules and leukocytes from the tumor microenvironment. We asked
whether targeted delivery of adjuvant to the TDLN, presumably already bathed in tumor antigens, could
promote anti-tumor immunity and hinder tumor growth. To this end, we used 30 nm polymeric
nanoparticles (NPs) that effectively target dendritic cells (DCs, CD11cþ) within the lymph node (LN) after
intradermal administration. These NPs accumulated within the TDLN when administered in the limb
ipsilateral (i.l.) to the tumor or in the non-TDLN when administered in the contralateral (c.l.) limb.
Incorporating the adjuvants CpG or paclitaxel into the NPs (CpG-NP and PXL-NP) induced DC maturation
in vitro. When administered daily i.l. and thus targeting the TDLN of a B16eF10 melanoma, adjuvanted
NPs induced DC maturation within the TDLN and reshaped the CD4þ T cell distribution within the tumor
towards a Th1 (CXCR3þ) phenotype. Importantly, this also led to an increase in the frequency of antigen-
specific CD8þ T cells within the tumor. This correlated with slowed tumor growth, in contrast to un-
hindered tumor growth after c.l. delivery of adjuvanted NPs (targeting a non-TDLN) or i.l. delivery of free
adjuvant. CpG-NP treatment in the i.l. limb also was associated with an increase in CD8þ/CD4þ T cell
ratios and frequencies of activated (CD25þ) CD8þ T cells within the TDLN whereas PXL-NP treatment
reduced the frequency of regulatory T (FoxP3þ CD4þ) cells in the TDLN. Together, these data implicate the
TDLN as a delivery target for adjuvant therapy of solid tumors.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Cancer immunotherapy aims to activate or enhance the patient’s
adaptive immune system to kill tumor cells with antigen specificity
[1]. A number of strategies have been described, including deliv-
ering vaccines comprised of particular tumor antigens (or tumor
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lysate) together with a strong dendritic cell (DC) adjuvant such as
CpG oligonucleotide or PolyI:C [2,3] or adoptive T cell therapy using
the patient’s own T cells that are transfected to express a chimeric
antigen receptor against a tumor antigen [4]. However, tumors
progress in part by exploiting a variety of immune evasion and
suppression mechanisms, including attracting a highly suppressive
cell and cytokine repertoire in the tumor stroma [5] and inducing
anergy, exhaustion or deletion of tumor antigen-specific T cells [6e
8], even when anti-tumor effector T cells are circulating systemi-
cally. For example, in patients with melanoma, DC maturation and
activation within the sentinel or tumor-draining lymph node
(TDLN) is inhibited [9], leading to less effective presentation of
tumor antigens to prime anti-tumor cytotoxic T and T helper cells
[10], even in the presence of highly immunogenic melanoma an-
tigens [11e14]. Immunotherapies that either boost anti-tumor
immunity or reverse tumor-induced immune suppression could
be useful in managing the disease to compliment surgical debulk-
ing of the primary tumor.
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Treatment with immune cell-activating adjuvant without co-
administered antigen is emerging as an alternative approach to
promote adaptive immune responses against endogenously pro-
duced tumor antigens that might simultaneously boost global im-
mune cell activation status and dampen immune regulation [15,16].
However, such immunotherapy with adjuvants has been largely
explored via systemic administration schemes, or those targeting
non-associated LNs, and has demonstrated some success in
improving tumor outcome [1,15e18]. Efficacy may be limited partly
because of the immune suppressed state of the TDLN, which can
locally dampen anti-tumor effector T cells [16]. Thus, adjuvant
immunotherapy might be most efficacious in alleviating tumor
burden when provided to antigen presenting cells in close prox-
imity to tumor antigen [16,19] or when targeted to tissues of
particular immunological significance in tumor immunity and
progression.

As an alternative to systemic immune activation, secondary
lymphoid tissues such as the lymph nodes (LNs) have been pro-
posed as intriguing sites for targeted immunotherapy [20]. Tar-
geted delivery of antigen and adjuvant to LNs is increasingly being
explored in vaccination [21e25] as well as transplantation-
associated [26] immunotherapy, given the role of the LN in sup-
porting adaptive immune cell priming responses [27]. DCs are
present in high numbers in LNs relative to peripheral tissues such
as the skin, suggesting that delivery of antigen and adjuvant to the
LN might enhance vaccine efficiency. However, in addition to being
a primary site for initiation of effector immune responses, the LN
can be an important site for induction of immune tolerance,
because regulatory T (Treg) cells require the LN for activation [28e
31]. Moreover, lymphatic transport of antigen from the periphery
to the draining LN has been implicated in tolerance induction
against peripherally encountered antigens [7], such as tissue-
specific self-antigens being regionally drained to and through the
TDLNs. As such, the LN is an intriguing therapeutic target for not
only vaccination to induce prophylactic effector immunity as pre-
viously shown [21e24,32], but also for potentially modulating
endogenous immune responses, in attempting to redirect tolero-
genic pro-tumor immune responses.

In the context of solid tumors, the TDLN is thought to participate
in disease progression on multiple levels. First, tumor lym-
phangiogenesis is associated with tumor progression [33,34], and
LN metastasis is one of the primary clinical indicators of tumor
progression at the time of tumor resection. Second, we recently
reported that the TDLN and tumor-associated lymphangiogenesis
play critical roles in promoting tumor immune escape [6,7]. Tumor-
derived antigen and cytokine drainage might therefore prime not
only the pre-metastatic niche but also an immune suppressive
environment to promote tumor immune escape.

We hypothesized that given the presumption that the TDLNs are
bathed in tumor-derived antigens, delivery of adjuvant alone may
be adequate to help redirect pro-tumor responses, counting on
tumor drainage to provide the antigen from endogenous sources.
As such, adjuvant therapy to the TDLN could exploit the unique
immunological crosstalk taking place between the TDLN and tu-
mor, potentially reshaping the local suppressive cytokine and
chemokine milieu towards an inflammatory environment while
simultaneously harnessing draining tumor antigen to prime anti-
tumor immunity or blunt pro-tumor immune escape pathways.

To test this hypothesis, we incorporated Toll-like receptor (TLR)
ligands CpG oligonucleotide (a TLR-9 agonist [35]) or paclitaxel
(PXL, a TLR-4 agonist [36]) in Pluronic-stabilized poly(propylene)
sulfide (PPS)-core 30 nm nanoparticles (referred to as NPs, using
this abbreviation to refer specifically to these nanoparticles)
developed by our laboratory, which target immune cells resident
within the draining LNs [21,37,38]. We explore how local adjuvant
therapy can induce inflammation in the TDLN and reshape immune
regulation in the tumor.

2. Materials and methods

2.1. Reagents

All reagents were obtained from SigmaeAldrich (Büchs, Switzerland) unless
stated otherwise. Cell culture grade media, serum, and antibiotics were from Life
Technologies (Basel, Switzerland) unless otherwise noted.

2.2. Animals

C57BL/6 mice were purchased from Harlan. 6e8 wk old mice weighing 20 g
were used for this study. All protocols were approved by the Veterinary Authority of
the Canton Vaud according to Swiss law. Isofluorane was used as anesthesia. Mice
were euthanized by CO2 asphyxiation or cervical dislocation. Mice were injected
intradermally with a bolus of 30e50 mL in the forelimb or intratumorally with 10 mL
rhodamine-dextran. 0.5 � 106 cells were intradermally allografted in the left dorsal
skin of the animal on day 0 and treatments were administered daily from day 4e9.
Naïve or control (PBS) treated mice were used in each set of experiments. Tumor
volume was calculated as the product of the width, length and height. Tumor vol-
umes of naïve or control treated mice were used to normalize tumor volumes from
different experiments. Three or more independent experiments were performed.

2.3. Cell culture

B16eF10 melanoma cells were cultured in Dubelcco’s Modified Eagle Medium
(DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and
penicillin/streptomycin (PS). Bone marrow-derived dendritic cells DCs were har-
vested from C57BL/6 mice as described [32] and used at day 8 after isolation. Briefly,
femurs and tibiae were removed, the surrounding muscle tissue was detached and
the bones were kept in RPMI 1640 media. Marrow was flushed out with RPMI 1640
using a syringe and passed through a 70 mm nylon cell strainer (BD Biosciences) to
remove debris. Cells suspensions were centrifuged and resuspended in complete
RPMI 1640 medium supplemented with penicillin-streptomycin, 50 mM beta-
mercaptoethanol, FBS and sodium pyruvate, which was filtered through a vacuum
driven disposable filtration system (MILLIPORE Stericup Express PLUS 0.22 mm,
Millipore corporations, Massachusetts, USA). Cells were seeded in 100 mm diameter
bacteriological petri dishes (BD Biosciences, San Jose, CA, US) at 5�106 cells per dish
in 10 ml of complete RPMI medium containing 100 ml of recombinant mouse
granulocyte-macrophage colony-stimulating factor (rmGM-CSF). At day 3 after
isolation an additional 10 ml of complete medium containing rmGM-CSF were
added to the plates. At day 6 after isolation, half of the culture supernatant was
collected and centrifuged, and the cell pellet was resuspended in 10 ml of fresh
complete medium containing rmGM-CSF and transferred back to the original plate.
DCs on day 8 after isolation were transferred in 50 ml tubes, centrifuged and
resuspended in fresh complete medium. Cells were plated in 96-well plates (BD
Biosciences) at a density of 0.3e0.4 � 106 cells per well in 100 ml. 80 ml of fresh
complete mediumwere added per well and plates were incubated at 37 �C until the
treatments were prepared. Treatments were added at a volume of 20 ml.

2.4. In vivo fluid clearance and migration assay

10 mL 10,000 or 70,000 Da rhodamine-dextran (SigmaeAldrich) was injected
intratumorally. 30 min later, LNs i.l. and c.l. to the tumor were excised and ho-
mogenized in 500 l T-PER Tissue Protein Extraction Reagent (Pierce, Rockford, IL,
USA) using Lysing Matrix D (MP Biomedicals, Illkirch, France) on a FastPrep-24
Automated Homogenizer (MP Biomedicals). Fluorescence was measured using a
Safire2 TECAN plate reader (Tecan Group Ltd, Männedorf, Switzerland).

2.5. Immunofluorescence

30 min after rhodamine-dextran or AF488-NP injection, frozen LNs were cry-
osectioned (40 mm), counterstainedwith DAPI (Vector Laboratories, Burlingame, CA)
and imaged using a LSM 510 confocal microscope (Carl Zeiss, Feldbach, Switzerland).

2.6. Nanoparticle synthesis and characterization

Pluronic-stabilized poly(propylene sulfide) (PPS) NPs with average diameters of
30 nm were synthesized by inverse emulsion polymerization as described previ-
ously [21,22,32,39,40]. Pluronic F-127 (a block copolymer of polyethylene glycol and
polypropylene glycol terminated by hydroxyl groups) was used alone or in combi-
nation with carboxyl-terminated Pluronic derivatized as previously described
[22,39,40]. Polymerization in the hydrophobic core results in PPS chains with a
terminal thiolate, which can lead to stabilization of the core by intermolecular di-
sulfide crosslinking [39]. However, since crosslinking cannot reach completion,
remaining free sulfide groups on the NP surfacewere irreversibly capped by reaction
with the alkylating reagent iodoacetamide. Alternatively, NP core thiols were
reacted with a Dy488-meleimide 24 h at RT. Free dye was removed by dialysis
against MilliQ water using 100,000 Da MWCO membranes. An absence of free dye
was confirmed by high performance liquid chromatography (Waters, Montreux-



S.N. Thomas et al. / Biomaterials 35 (2014) 814e824816
Chailly, Switzerland) using a Sepharose CL-6B column. NP suspensions were sterile-
filtered and stored at 4C. The size of NPs was characterized by dynamic light scat-
tering (DLS) in a Zetasizer nano-ZSwith amodified zeta potential measurement cells
(Malvern Instruments Ltd, Worcestershire, U.K.).

2.7. Pyridyl disulfide-NPs

Pyridyl disulfide-NPs were synthesized as previously described [23,24,40,41].
Briefly, to a NP suspension formed using 30% carboxylate Pluronic and 70% hy-
droxylate Pluronic, solid 2-(N-morpholino)ethanesulfonic acid was added to obtain
a final concentration of 100mM and the pHwas adjusted to 4.0e4.5. Pyridyl disulfide
cysteamine HCl salt, N-hydroxysulfosuccinimide sodium salt, and N-(3-
dimethylaminopropyl)-N0-ethylcarbodiimide, all at an excess of 20 equivalents
relative to the amount of carboxylate Pluronic, were added. Pyridyl disulfide
cysteamine HCl salt was synthesized as previously described [40]. After reaction for
24 h, the solution was dialyzed against MilliQ water for at least 2 days to remove
unreacted reagents using 100,000 Da MWCO membranes.

2.8. CpG conjugation of NPs

CpG-B 1826 thiophosphate (CpG) was obtained from Microsynth (Balgach,
Switzerland). 20 nmoles CpG-SPO3 was added to 1 ml pyridyl disulfide-NPs and
reacted for 24 h at RT. CpG-conjugated NPs (CpG-NPs) were purified away from free
CpG by gravity filtration on a Sepharose CL-6B column. Fractions containing NPs
were identified using iodine staining and the CpG concentration was determined
using Gel Red (Brunschwig, Basel, Switzerland).

2.9. PXL loading of NPs

PXL (Cat.number P-9600, MW 853.91 LC Laboratories, Woburn, MA USA) was
dissolved at 5 mg/ml in tetrahydrofuran (THF). 20% by volume of this solution
was added to 35 mg/ml NPs (aq) and immediately mixed by inversion for 5 min
and subsequently spun at 16,000 g for 5 min. In order to determine the efficiency
of PXL loading, the supernatant was collected after centrifugation and freeze
dried, and the amount of PXL in the supernatant versus the pellet was measured
by gel permeation chromatography (Waters). For experimentation, PXL-NPs (the
supernatant after centrifugation) were dialyzed against MilliQ water with a
10,000 Da MWCO membrane using a dialysis cassette (Thermo Scientific, Rock-
ford, IL, USA) overnight at RT in order to remove THF. The following day, the
dialyzed PXL-NPs were recovered from dialysis, centrifuged, and supernatants
stored at 4 �C until use.

2.10. Cell treatments

Free CpG, CpG-NPs, Ultra-pure LPS 01:11 B4 (Invivogen), and PXL-NPs were used
to treat cells. Treatments were added at a volume of 20 ml. The CpG- and PXL-NP
treatments were serially diluted with unloaded plain NPs. LPS and/or CpG, as well
as PBS were used as positive and negative controls respectively. Cells were pulsed
with the above mentioned treatments for 24 h.

2.11. Flow cytometry

After 24 h of stimulation, control non-treated and treated DCs were harvested
and pellets were stained in order to analyze their phenotype by flow cytometry.
Alternatively, lymphocytes were harvested from LNs and tumors from control or
treated tumor-bearing mice by digestion with collagenase D (Roche Ltd., Mannhein,
Germany) and tissue homogenization using 70 mm pore size strainers. Cell pellets
were washed in HBSS containing 0.1% BSA (staining buffer) and centrifuged at 300 g
for 1 min. Supernatants were decanted and cells stained with LD violet (Life Tech-
nologies, Carlsbad, CA) diluted in HBSS for 20 min. Cells were washed with staining
buffer and monoclonal antibodies against mouse MHC-II, CD11c, CD86 and CD40,
conjugated with FITC, PECy5, PECy5.5, AF647 or PE and appropriately diluted in
staining buffer were added to cells and incubated for 30 min at 4 �C in the dark.
Alternatively, the following anti-mouse antibodies were used for flow cytometry of
harvested lymphocytes: CD45-APC, CD3e-FITC or CD3e-PerCPCy5.5, CD4-PECy7,
CD8a-APC-Alexa 780, CD25-PE, CXCR3-APC, CD11c-Alexa 647, CD11b-PECy7, CD86-
PE (all from eBioscience, San Diego, CA). Antibodies were prepared in HBSS/0.5% BSA
and added to samples prior to incubation at 4 �C for 30min in the dark. For detection
of the Tyrosinase related protein-2 (Trp2) 180-188 H-2Kb MHCI peptide
SVYDFFVWL, samples were stained with PE-conjugated SIINFEKL tetramer (Proim-
mune, Oxford, UK) diluted 1:10 in HBSS/0.5% BSA for 10 min at RT in the dark. Data
was acquired in a Dako Cyan flow cytometer (Dako, Glostrup, Denmark) with
compensation using either calibration beads (BD Biosciences, San Jose, CA) or single-
stained cells. Data analysis was performed using FlowJo software (version 8.8,
Ashland, OR).

2.12. Cytokine ELISAs

IL-12p40 and CXCL10 ELISAs (eBioscience) were performed on supernatants
from DC stimulations according to the manufacturer’s protocols.
2.13. Statistical analysis

Data are represented as themeanwith the S.E.M. Statistics were calculated using
Prism 5 software. Statistical significance was defined as p < 0.05 following one-way
ANOVA and post-hoc analysis for dextran/NP drainage assays and immunological
readouts or by Two-way ANOVA with matching for tumor growth comparisons.
When normality tests failed, KruskaleWallis tests were performed. In drainage as-
says, *p < 0.05, **p < 0.01 and ***p < 0.001 with respect to contralateral limb or in-
jection site as indicated. For immunological readouts and tumor growth comparisons,
*p < 0.05, **p < 0.01 and ***p < 0.001 with respect to PBS control and yp < 0.05,
yyp < 0.01 and yyyp < 0.001 with respect to the same treatment in the c.l. limb.

3. Results

3.1. Lymphatic drainage from tumor and ipsilateral limb to the
tumor-draining lymph nodes

To evaluate the therapeutic utility of targeting the TDLN to
reshape immune responses against a growing tumor, we used the
B16eF10 model of melanoma, a well-described syngeneic and
orthotopic mouse model that exhibits potent immune suppressive
features [5,42]. We implanted tumors in the left dorsal skin near
the shoulders (Fig. 1A) in order to focus tumor drainage to one side
of the animal, thus creating TDLNs on the i.l. side and non-tumor-
draining LNs (NTDLNs) on the c.l. side. Tumor lymphatic drainage
tracked by intratumoral injection of rhodamine-dextran accumu-
lated exclusively in the axillary and brachial LNs i.l. but not c.l. to
the tumor (subsequently referred to as the TDLN and NTDLN,
respectively) (Fig. 1B).

To target the TDLN without direct intratumoral injection, we
sought to exploit the lymphatic capillary and vessel network that
transports fluids, small molecules and cells away from the fore-
limbs to draining LNs (Fig. 1C). NPs that have been developed and
extensively characterized by our laboratory [6,39,40] are suffi-
ciently small and stealth to be quickly taken up into lymphatic
vessels and transit to the draining lymph node after injection
[21,37,38]. We found that NPs injected intradermally in the i.l., but
not c.l., forelimb accumulated within both the axillary and brachial
TDLNs (Fig. 1D, E). When injected in the c.l. forelimb, NPs accu-
mulated almost exclusively in the NTDLNs (Fig. 1D). Importantly,
therefore, this tumor model allowed us to test the effects of local
TDLN immunomodulation without any direct effects of biomole-
cular delivery to the tumor, injecting into a co-draining region but
not into the tumor itself.

3.2. Dendritic cell stimulatory activity of CpG conjugated NPs

An adjuvant of clinical interest is CpG oligodeoxynucleotide
(CpG), a TLR9 agonist that demonstrates strong Th1 potentiating
activity [35]. We have recently demonstrated that CpG delivery in
conjunction with antigen-bearing NPs can dramatically enhance
the frequency of antigen-specific CD8þ T cells after intrapulmonary
and intradermal administration [23,24]. Here, to chemically con-
jugate CpG to the NP surface, we utilized pyridyl disulfide-
functionalized NPs, the synthesis [40] and use of which in conju-
gating thiol-containing protein antigens [23,24,41] have been pre-
viously reported. To conjugate CpG to the NPs, we reacted pydridyl
disulfide-functionalized NPs synthesized with pydridyl disulfide-
reactive 50 thiophosphate-terminated CpG. This reaction yields
CpG-conjugated NPs (CpG-NPs) with a reduction-sensitive covalent
bond attaching the CpG to the Pluronic corona of the NPs (Fig. 2A).
Size exclusion chromatography confirmed that CpG is bound to the
NPs (Fig. 2B) and the CpG-NPs arew30 nm in diameter by dynamic
light scattering (Fig. 2C).

To confirm that CpG when conjugated to the NPs retains its
immune stimulatory activity, we exposed them to murine bone
marrow-derived immature DCs and measured their response. We



Fig. 1. Lymphatic-draining Pluronic-PPS NPs target the tumor-draining lymph node (TDLN) when injected in limb ipsilateral (i.l.) to tumor. (A) Location of tumor implantation
relative to NP injection. (BeC) The i.l., but not contralateral (c.l.), axillary and brachial LNs drain fluorescent dextran injected into the tumor. Bar, 500 mm. (DeE) Lymphatic-draining
NPs accumulate in the TDLN after injection i.l. but not c.l. to the tumor as measured by a (D) fluorescence plate reader or (E) fluorescence microscopy. Dextran, red. AF488-NPs,
green. *p < 0.05, ***p < 0.001 by ANOVA and posthoc Tukey’s tests. Bar, 500 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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found that the maturation markers CD40, CD86 and MHCII
increased in a dose-dependent fashion in response to CpG-NPs
(Fig. 2DeE), as well as production of the inflammatory cytokines
IL-12p40 and CXCL-10 (Fig. 2F). These data indicate that NP
conjugation of CpG does not impair its immune stimulatory
activity.
3.3. Tumor growth and infiltrating immune cell profile of LN and
tumor in response to CpG-NP treatment of the TDLN

We next evaluated the efficacy of targeted CpG-NP delivery to
the TDLN in influencing tumor immunity and growth. To this end,
we implanted B16eF10 melanoma cells in the left shoulder dorsal



Fig. 2. CpG conjugated NP (CpG-NP) induce BMDC activation in vitro. (A) Schematic and (B) size exclusion chromatography demonstrating CpG conjugation to PDS NP usin pyridyl disulfide conjugation chemistry. (C) Dynamic light
scattering demonstrates homogeneous size distribution of w 30 nm of control (PDS)-NP and CpG-NP. (D) Representative flow cytometry histograms and (E) dose depende cy of 24 h CpG-NP treatment on BMDC maturation. (F) IL-
12p40 and CXCL-10 production with 24 h treatment of BMDCs with CpG-NP as measured by ELISA.
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skin of C57BL/6 mice; after tumor establishment, we intradermally
injected daily either CpG-NPs, free CpG mixed with the NPs, free
CpG, or PBS in the limb i.l. or c.l. to the tumor (Fig. 3A). CpG-NP
treatment of the i.l. limb was capable of slowing tumor growth
relative to control treated mice (Fig. 3B), yet when CpG-NP was
injected into the c.l. limb, no slowing of tumor growth was
observed (Fig. 3B). Notably, treatment with free CpG mixed with
NPs, free CpG or unmodified NPs had no effect on tumor growth
(Fig. 3C), suggesting that CpG delivery to cells in the LN was more
effective when the CpG was NP-conjugated.

Within the TDLN, a change in infiltrating immune cells was
observed. In particular, the frequency of CD11cþ cells was increased
Fig. 3. CpG-NP treatment of B16eF10 melanoma TDLN slows tumor growth and changes in
5 � 105 B16eF10 cells were implanted into each mouse on day zero, and animals were treate
3 mg CpG delivered into the i.l. or c.l. limb draining to the TDLN or NTDLN, respectively. (B) Cp
slows tumor growth. (C) Neither free CpG mixed with NP (NP þ CpG), nor plain NP, nor free C
(DeL) CpG-NP treatment of TDLN reshapes immune milieu within the TDLN (DeK) and tum
relative to saline-treatedmiceormice treatedwithCpG-NP in the c.l.
limb (Fig. 3D). Furthermore, the CD11cþ cells were of amoremature
phenotype as indicated by CD40 expression (Fig. 3E), although no
differences were observed in CD86 expression (Fig. 3E). Small dif-
ferences were observed in DC phenotype when considering CD11b
orCD8aexpression (Fig. 3F). In termsof theTcell compositionwithin
TDLNs targeted with CpG-NPs relative to naïve or PBS-treated con-
trols, the ratioofCD8þ toCD4þTcellswas slightly increased inTDLNs
ofmice treatedwith CpG-NPs in the i.l. limb (Fig. 3G);more CD8aþ T
cells were found to be of an activated (CD25þ) phenotype (Fig. 3H),
and a slightly higher frequency of CXCR3þCD4þ Tcellswas observed
(Fig. 3I). No changes in the frequencies of Treg cells were observed, as
filtrating lymphocyte profile in TDLN and tumor. (A) Experimental treatment protocol.
d daily from day 4e9. Treatment consisted of either saline delivered i.l., or CpG-NP with
G-NP treatment of the LN ipsilateral (i.l.) but not contralateral (c.l.) to a B16eF10 tumor
pG effect B16eF10 melanoma tumor growth when applied to the limb i.l. to the tumor.
or (IeL).
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indicatedbymeasurements of CD25þ FoxP3þCD4þTreg cells (Fig. 3J),
in the TDLN and tumor. However, the frequencies of CXCR3þ CD4þ T
cells in the tumor (Fig. 3I) and the ratio of activated (CD25þ) CD8þ T
cells toTreg cells in the TDLNand tumor (Fig. 3K) increasedwith both
i.l. and c.l. treatment. Notably, the frequencies of tumor-infiltrating,
anti-tumor Trp2-specific CD8aþ T cells (Fig. 3L) increased in mice
treated with CpG-NPs in the limbs i.l. but not c.l. to the tumor.
Together, these data suggest that co-drainage of CpG-NP into the
TDLN, but not the NTDLN, led to immunomodulation that affected
the immune response in the tumor, including the numbers of
antigen-specific cytotoxic T cells infiltrating the tumor.

3.4. Dendritic cell stimulatory activity of PXL loaded NPs

Another adjuvant of interest is PXL, since it is already widely
used in cancer chemotherapy. Here, rather than considering its
Fig. 4. PXL-loaded NP (PXL-NP) induce BMDC activation in vitro. (A) Release of PXL from N
monodisperse and w30 nm in diameter when loaded with PXL dissolved in THF or plain TH
24 h PXL-NP treatment on BMDC maturation. (E) IL-12p40 and CXCL10 production with 24
treatment of BMDCs with PXL-NPs. 0.5 mg/ml LPS used as positive control. 1000, 720, 72 mg
usual role as an inhibitor of microtubule polymerization and thus
proliferation in tumor cells, we rather consider its immune adju-
vant role as an agonist for TLR4 [43] that has been explored to
enhance cancer vaccine efficacy in lower doses [44]. As before,
targeted delivery to the TDLN through co-drainage allowed us to
evaluate immunomodulation in the TDLN independently of direct
chemotherapy in the tumor.

Since PXL is hydrophobic, we incorporated it within the hydro-
phobic core of our NPs. PXL was loaded into the NPs at>95% loading
efficiency, and release in vitroproceeded to 50%over a period of>50 h
(Fig. 4A). Both PXL-loaded and mock THF (which uses the same
solvent-loading process)-loaded NPs maintained a similar diameter
(30nm)relative to theuntreatedNPs (25nm)asmeasuredbydynamic
light scattering (Fig. 4B). Both the PXL-NPs and THF-NPs were stable
for >1 month when stored at 4 �C as determined by dynamic light
scattering and gel permeation chromatography (data not shown).
Ps with dialysis. (B) NP diameter measured by dynamic light scattering shows NPs are
F (no PXL). (C) Representative flow cytometry histograms and (D) dose dependency of
h treatment of BMDCs with PXL-NPs as measured by ELISA. (F) Cell viability after 24 h
/ml PXL used in (A), (B) and (C), respectively.
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We next determined whether PXL encapsulated into our NPs
would retain its immune stimulatory activity and induce DC
maturation and cytokine production in vitro, as has been previously
reported for the free drug [45]. When murine bone marrow-
derived DCs were treated with PXL-NPs, we observed a dose-
dependent increase in maturation above negative control (PBS)
treatment in a manner analogous to positive control (LPS) treat-
ment, as measured by CD40, CD86 and MHCII expression (Fig. 4Ce
D). Furthermore, we measured a PXL dose-dependent increase in
inflammatory cytokine IL-12p40 and chemokine CXCL10 expres-
sion, above that induced by (negative control) PBS treatment and in
a manner similar to that induced by (positive control) LPS treat-
ment, with PXL-NP treatment (Fig. 4E). Moreover, PXL-NP
Fig. 5. PXL-NP treatment of B16eF10 melanoma TDLN slows tumor growth and changes in
5 � 105 B16eF10 cells were implanted into each mouse on day zero, and animals were treate
35 mg PXL delivered into the i.l. or c.l. limb draining to the TDLN or NTDLN, respectively. (B) P
slows tumor growth. (C) Neither treatment with free PXL (in DMSO, PXL/DMSO) nor NPs with
of TDLN reshapes immune milieu within the TDLN (DeK) and tumor (IeL).
treatment induced no cytotoxicity (Fig. 4F). These data indicate
that PXL retains it immune stimulatory activity when encapsulated
within NPs.

3.5. Tumor growth and infiltrating immune cell profile of LN and
tumor in response to PXL-NP treatment of the TDLN

We evaluated whether targeting PXL-NP to the TDLN would
influence the immune profile in the TDLN and tumor, and whether
it would modulate tumor growth. We utilized the same B16eF10
model as described above, injecting mice in the i.l. or c.l. limb with
PXL-NP or controls of unencapsulated PXL or unloaded NPs
(Fig. 5A). We found that i.l. PXL-NP treatment was capable of
filtrating lymphocyte profile in TDLN and tumor. (A) Experimental treatment protocol.
d daily from day 4e9. Treatment consisted of either saline delivered i.l., or PXL-NP with
XL-NP treatment of the LN ipsilateral (i.l.) but not contralateral (c.l.) to a B16eF10 tumor
out drug (THF-NPs) effect B16eF10 melanoma tumor growth. (DeL) PXL-NP treatment
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slowing tumor growth relative to the control of PBS injection,
however when PXL-NPs were injected in the c.l. limb, no diminu-
tion of tumor growth was observed (Fig. 5A). Moreover, free PXL
(PXL/DMSO) and unloaded NPs (containing no drug, THF-NPs) had
no effect on tumor growth (Fig. 5BeC). These data show that tar-
geted, NP-mediated delivery of PXL to the TDLN alters tumor
growth independently of direct action within the tumor.

As observed in experiments using CpG-NPs, changes in the
immune cell profile within the TDLN and infiltration within the
tumor were observed with PXL-NP treatment in the limb i.l. to the
tumor. In particular, the frequency of CD11cþ cells was increased in
i.l. treated mice relative to c.l. treated mice (Fig. 5D), and activation
of CD11cþ cells was increased after both i.l. and c.l. treatment, with
no differences in CD40maturation levels between these two groups
(Fig. 5E). Although there were elevations in CD11bþ CD8a� CD11cþ

cell frequencies in the TDLN after i.l. but not c.l. treatment with PXL-
NPs, differences between i.l. and c.l. treatment were not observed
for CD11b�CD8aþ or CD11bþ CD8aþ CD11cþ cells (Fig. 5F). However,
unlike CpG-NP treated mice, the ratio of CD8þ to CD4þ T cells in the
TDLN was unchanged, as were the frequencies of activated (CD25þ)
CD8þ T cells and CXCR3þ CD4þ T cells (Fig. 5GeI). The frequency of
CXCR3þ CD4þ T cells infiltrating the tumor increased with both i.l.
and c.l. PXL-NP treatment (Fig. 5H). Fewer Treg cells (CD25þ FoxP3þ

CD4þ) were observed in the TDLN after i.l. treatment (Fig. 5J),
resulting in an increase in the CD25þ CD8þ to Treg cell ratio in the
TDLN (Fig. 5K). Most notably, in the tumor, i.l. but not c.l. PXL-NP
treatment increased the frequency of anti-tumor Trp2-specific
CD8aþ T cells (Fig. 5L), correlating with the reduction in tumor
growth for this group.

4. Discussion

The TDLN plays a specialized role in malignant disease pro-
gression, distinct from that of non-tumor associated LNs during
normal immune surveillance. For example, while intranodal tumor
challenge leads to tumor regression, primary extralymphatic tu-
mors can rapidly anergize T cells in TDLNs [46]. However, immu-
nopotentiation of the TDLN, via inhibition of TGF-b-mediated
immunosuppression as one example, can augment anti-tumor
immunity [47], implicating TDLN-targeted immunotherapy as a
potential means by which to redirect tumor-associated immune
suppression.

Herein, we explore the use of nanotechnology for tumor
immunotherapy, but rather than using an immunization scheme,
we implement NP-mediated delivery of TLR agonist adjuvants to
the TDLN as a means to boost immune activation against tumor
antigen in situ. Our hypothesis was that TDLN-targeted adjuvant
therapy might effectively reshape the TDLN immune microenvi-
ronment and bias T cell priming against endogenously produced
co-draining tumor antigen towards an effector type. Using two
chemically and biologically distinct TLR agonists, we demonstrate
that targeted delivery of adjuvant to the TDLN slows tumor growth
(Figs. 3 and 5). In line with clinical observations of sentinel LN DC
maturation status and composition correlating with sentinel LN
metastasis [48], decreased tumor growth achieved by adjuvant-NP
treatment of the i.l. forelimb was associated with recruitment,
maturation and subtype redistribution of DCs within the TDLN
(Fig. 3DeF, Fig. 5DeF) resulting in increased frequencies of CXCR3þ

CD4þ T cells within the tumor (Figs. 3I and 5I). Moreover, tumor
antigen (Trp2þ)-reactive CD8þ CD3eþ (Fig. 3L, Fig. 5L) T cell fre-
quencies in the tumor were enhanced only with TDLN but not
NTDLN adjuvant-NP treatment. Our data suggest that promoting
CD11cþ cell maturation by TLR activation within LNs bathed in
draining tumor antigen can promote Th1-biased immunity that can
exert effector function against the tumor.
Although NP-mediated delivery of both CpG and PXL TLR ligand
adjuvants to TDLNs slowed tumor growth, the relative contribution
of enhanced immune activation versus disfavored immune toler-
ance diverged. With CpG-NP but not PXL-NP treatment of the i.l.
forelimb, Th1-biasing (CXCR3þ) CD4þ and activated (CD25þ) CD8aþ

T cell frequencies increased within the TDLN (Fig. 3GeI), as did
CD8þ:CD4þ T cell ratio, which has been shown to correlate with
decreased lymph node metastasis in human papillomavirus-
induced cervical cancer [49] and survival in metastatic melanoma
patients receiving chemotherapy [50]. Conversely, PXL-NP treat-
ment, but not CpG-NP, treatment in the i.l. forelimb instead induced
changes in the Treg compartment in the TDLN (Fig. 5J). The cumu-
lative affect resulted in both adjuvant-NP treatments inducing
higher ratios of CD25þ CD8þ cells to Treg cells within the TDLN
(Figs. 3K and 5K). Indeed, Treg cell frequencies and Treg/Th17 ratios
within TDLNs correlate with colorectal cancer diagnosis [51] as well
as gastric cancer stage [52]. Hence, TDLN-targeted treatment with
adjuvant might be capable of modulating both the generation of
effector responses and blunting tumor-induced regulatory
responses.

CpG is an adjuvant of significant clinical interest but has
demonstrated limited clinical efficacy as a monotherapy [53]. Our
results, which demonstrate that targeted NP-mediated CpG de-
livery to tissues co-draining tumor antigen, as opposed to a non-
targeted approach, slows disease progression (Fig. 3BeC), sug-
gests that conventional systemic administration schemes may limit
CpG’s potential efficacy, but that alternative administration ap-
proaches, in particular those that target it at bioactive doses to
tissues co-draining tumor antigen, might remedy this. Indeed,
recent clinical observations of increased DC activation [54] and
melanoma tumor antigen-specific CD8þ T cells [55] in sentinel LNs
with preoperative perilesional dermal administration of B-class
CpG in melanoma patients are consistent with this concept as well
as the reported the efficacy of C-class, although not B-class, CpG
administration in TDLN, but not via intravenous or intraperitoneal
treatment, in reducing breast cancer tumor growth [56].

Most TLR ligands, including those recently approved for clinical
use in vaccine applications, including lipid A analogs and squalene
[57], are hydrophobic [58] and thus challenging to formulate for
administration. As a model for demonstrating the utility of
biomaterials-based formulations to deliver hydrophobic drugs to
the TDLN for immunotherapy applications, we used PXL, a drug
better known for its chemotherapeutic activity than its TLR4
agonist activity [43]. TDLN-targeted PXL chemotherapy is of inter-
est as a means to manage recurrent disease within the sentinel LNs
[59]. Moreover, taxane chemotherapy enhances cancer vaccine ef-
ficacy [44], suggesting PXL’s immune modulatory activity might be
harnessed for TDLN-targeted immunotherapy applications. Here, at
sub-chemotherapeutic doses, we demonstrate strong immune
activation within the TDLN by PXL-NP treatment in the i.l. limb.
These results underscore the utility of biomaterials engineering
strategies in tumor immunotherapy, localizing doses to specific
lymphoid tissue targets.

5. Conclusions

We have demonstrated the utility of a nanobiotechnology-based
approach to deliver immunomodulatory adjuvants to the TDLN to
exploit the unique immunological crosstalk taking place between
the tumor and the TDLN, which is bathed in both tumor antigens
and suppressive tumor-derived cytokines. With TDLN-targed
adjuvant therapy, we could reshape the local immune microenvi-
ronment to promote tumor antigen-specific effector immune re-
sponses. Reduced tumor growth required adjuvant delivery to the
TDLN, since treatment of NTDLNs had no effect on tumor growth or
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anti-tumor immune responses. Together, these data implicate the
TDLN as a promising target lymphoid tissue for adjuvant therapy of
solid tumors and suggest that lymphatic-targeting nanoparticle
technology can be used to reformulate TLR agonists for use in
adjuvant therapy applications.
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