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1. INTRODUCTION 

The phenomenon of interior nonuniformities in solutions of singular 
perturbation problems has been extensively studied within the context of 
second order differential equations whose degenerate form is a first order 
equation (see, for example, O’Malley [5] and Wasow [6] and the many 
references contained therein). In this paper, on the other hand, we shall 
study equations which reduce to the simple form h(x, U) = 0 when the 
perturbation parameter E is zero. The type of nonuniformity we study is that 
of an abrupt transition at some interior point x,, between distinct solutions 
of the reduced equation. In other words, we assume that the reduced equation 
has (at least) two solutions u = g’(x) and u = g”(x). We then look for 
families U(X, c) of solutions of the original problem for which u(x, c) -+ g’(x) 
as E -+ 0 uniformly for x < x0 - 6, and U(X, c) +g2(x) uniformly for 
x > x,, + 6, where 6 is any positive number. For simplicity, our solutions are 
defined for all values of X. They are not conceived as being solutions of any 
particular boundary value problem. Transition layers in the context of 
boundary value problems will be the subject of a later paper. 

It is not unusual for a second order equation to have a solution family with 
a transition layer, but the location x,, of such a layer is subject to restrictive 
conditions. Consider the example 

c”(p(u, a$‘) - h(u, x) = 0, 

where p > 0. Sufficient conditions for a transition layer at x = x,, to exist, 
in the case g2(x0) > gi(x,,), are 

(9 UgW, 4 3 01 > 0, 

(ii> Sk P(V, 4 W, 4 dv 11 i for h fz k’(%>, g”(%>), 
AXJ for K = g2(x,), 
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and 

(iii) [I::’ [A&, x0) h(v, xc,) + p(v, x0) hi&, x0)] dv + 0. 

This example is treated in detail in Section 6. In the general case 

F(Su”, ai, x, e) = 0 

treated in Sections 2-5, conditions analogous to these three are given. The 
analog of (ii) is simply 

(ii)‘: the equation 

F(Y”, Y’, Y, (40) = 0 

has a solution satisfying y( - a~) = gl(x,J, y( co) = g,(x,). 

(1-l) 

In the example mentioned above, this condition is equivalent to (ii). 
The simple case when F does not depend on x or E should be considered 

separately; in fact, our Hypothesis 3 explicitly excludes it. This case is easily 
treated, because (ii)’ alone is seen to be sufficient for a transitional family to 
exist. In fact, necessarily g”(x) are constant, so the family u(x, 6) = y(x/f), 
where y(7) is a solution of F(y”, y’, y) = 0, y(a) = g2, y(-m) = gl, is 
transitional in nature. 

The results in this paper are mainly concerned with existence and 
uniqueness, although methods for constructing asymptotic expansions for 
our solutions are given in Section 7. We first establish, in Section 2, the 
existence of regular families wz’(x, l ) approaching g”(x) uniformly in x, as 
E -+ 0. These families are analogous to those obtained in other papers by the 
usual outer expansion techniques. Inner expansions correspond to the 
construction of our transition function ~(7, C) discussed in Section 4. 

In past approaches to singular perturbation problems, stretched variable 
techniques have been used to obtain boundary layer “corrections,” or 
boundary layer “matched expansions.” In the former approach, the solution 
is obtained as the sum of inner and outer expansions; in the second, it is pieced 
together from expansions of these types. Our approach is different from 
either of these, in that we use the product of an inner expansion and an outer 
expansion. In fact, our family of solutions is of the form 

u = wl + y(w2 - wl), (1.2) 

where the wi are the families mentioned above, and y is a function of a 
stretched variable 7 and E which approaches 0 as 7 + - CO and 1 as 71 +CO. 

The proofs for the existence of appropriate families wi in Section 2, and 
of the family y in Section 4, are both based on the implicit function theorem, 
but they use that theorem in completely different ways. In both cases, 
difficulties force the problem to be reformulated in order for the theorem to 
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apply. In Section 2, the difficulty is that the essential features of the problem 
when E = 0 are radically different from those when E # 0; thus, the problem 
as it stands is out of the scope of the implicit function theorem. This difficulty 
is surmounted by forming an equivalent problem which does not have this 
liability. In Section 4, however, the main difficulty in using the implicit 
function theorem is that the operator involved does not have an invertible 
Frechet derivative at the origin, as is required; in fact the derivative has a 
one-dimensional nullspace. This difficulty is overcome by introducing an 
extra parameter h into the problem, thus recasting the problem as one for 
which not only a solution ~(7, E) of the appropriate differential equation is 
sought, but also a function h(e). This new problem in a space of one higher 
dimension is now amenable to the implicit function theorem. The technique 
for such a recasting is given in general terms in Section 3. The ideas involved 
here are sometimes used in bifurcation problems (see [3], for example). 
As applied in Section 4, the extra parameter h appears in the particular 
form of the stretched variable 7. 

Another difficulty in Section 4 is the fact that the Frechet derivative L 
(in fact, the differential equation itself) is on an infinite interval. Although 
one knows that 0 is an eigenvalue, it is necessary to prove that the continuous 
spectrum of L is bounded away from 0. This is done with a result of Weyl 
dating from 1909. 

As regards uniqueness for the families constructed herein, it turns out that 
the regular families are unique; this is proved in Section 2. When it comes to 
transitional families, we focus attention on families of the form (1.2), where 
y((~/c), c) is such that lim,,, ~(5, 6) = 1; lim,,-, y([, 6) = 0, uniformly in E. 
Under our hypotheses, in general there can be only one transitional family of 
this type, although in exceptional circumstances, there exist two. The proof, 
given in Section 5, surprisingly reduces to the question of uniqueness of the 
initial value problem for a certain non-Lipschitzian differential equation. 
Whether there exist transitional families which are not of the type (1.2) with 
y having the properties indicated, is an open question. 

One notational convention should be made clear at the outset. Partial 
derivatives of functions of several variables will usually be denoted by 
numerical subscripts, the number denoting the argument with respect to 
which the derivative is taken. 

2. EXISTENCE OF REGULAR FAMILIES OF SOLUTIONS 

Consider the differential equation 

F(&“, Ed, 24, x, E) = 0 (2.1) 
for a function u(x), --co < x < co. Our basic assumption follows. 

505115114 
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HYPOTHESIS 1. The degenerate equation F(0, 0, u, x, 0) = 0 has two 
bounded solutions u = g”(x), i = 1, 2. For some K # 0, i = 1, 2, and 
-co<x<co, 

F,(O, 0, g"(x), x, 0) 2 K~, 

F,(O, 0, g”(x), x, 0) < -K2. 

(2.2a) 

(2.2b) 

In addition, it will be assumed throughout the paper, but not stated again, 
that F and gi have a sufficient number of derivatives bounded uniformly in x, 
for the steps indicated in this and the succeeding sections to be meaningful. 

THEOREM 2.1. Under Hypothesis 1, there exist unique families u = wl(x, 6) 
and u = w2(x, E) of solutions of (2.1), defmed for x E (-co, a), and ) E / < E,, 
for some E,, > 0, such that the limit relation 

l$ wyx, c) = g”(x) (2.3) 

holds uniformly in x, and such that wzi and w& are bounded for x and E in the 
above range. 

Proof. Since the argument is the same for w1 and w2, we suppress the 
superscripts on w and g. 

Let Ck denote the space of functions u(x) with k bounded continuous 
derivatives on the real line (-00, co). The associated norm is 

I u Ik = ?iO sup I .(Wl. 

Let F denote the mapping from C2 x R1 to Co defined by 

F(u, E) = F(E~u”, EU’, u, x, 6). (2.4) 

It can be checked that F has continuous Frechet derivatives to any desired 
order, provided that F is uniformly continuously differentiable to a sufficiently 
high order in all its arguments. 

For some m > 0, we construct a function U(x, E) = ~~zo E%,(X) satisfying 

&TV., 4, +,=o = 0, k = O,..., m. (2.5) 

For]k]= 0, (2.5) is F(0, 0, u. , x, 0) = 0, with solution uo(x) = g(x). For 
k > 0, the equation is 

F,(O, 0, g(x), x, %c(x) = h,(x), 

where the function hk(x) is determinable from the previously found functions 
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ui , j < k. Thus, by virtue of (2.2b), all the terms uk , k 3 1, are uniquely 
determined. 

From (2.5) and Taylor’s formula, we have that 

F(U, E) = •~+lq(x, E), (2.6) 

where 4(x, c) = (l/(m + l)!) ay+‘F( U(., &), 8~). The derivative on the right, 
being expressible in terms of the derivatives of F, is bounded uniformly in X, 
for 1~1 < 1: 

Id0 <Kl. (2.7) 

In addition to the usual norm 1 u Ia, we shall use the following family of 
norms on C2 for E # 0: 

124 1; = zsup I U”(X)I + I E I sup / U’(X)I + sup I +)I. 

LEMMA 2.2. For E small enough but nonzero, the derivative F,( U, 6) is a 
homeomorphism between C2 and Co. Furthermore there exists a K, independent 
of E such that 

K,-’ I v I; G IF,(u> E; v)lo < Kz I v IX. (2.8) 

Proof. We denote by Lc the above indicated derivative: 

L% E F,( U, E; v) = Ga(x, E)V” + <b(x, E)V’ + c(x, E)V, 

where a(x, l ) = FI(e2UzO(x, E), rU,(x, E), U(x, E), X, l ), b = F,(**-), and 
c = F3(-..). Clearly Lc is bounded. We consider its invertibility. 

By virtue of (2.2), and the fact that U(x, 0) = g(x), we have, for some 
constant or > 0, 

a > $K” , C < -$K” for / E I < c1 . (2.9) 

Let f E Co and consider the equation 

Lb = f. (2.10) 

From (2.9) and the maximum principle, we have that any bounded solution v 
must satisfy 

1 V lo < 2df 10. 

In particular, f = 0 implies v = 0, so L’ is one-to-one. 
For the existence of a solution v E c2 for arbitrary f E Co, we use a com- 

parison argument with the constant function ar E 2Kp21 f lo . Let v, be the 
solution of the boundary value problem Lea, = f in (-n, n), v,(-n) = 
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z~,(n)=O.Since,for~~~<~r,L~-f=col--f,<OandL~(--or)--f= 
-COI -f 3 0, the maximum principle insures that any solution of Lb - f = 0 
in any interval (x0 , xi) lies between --(Y and M in that interval, if it does so at 
the endpoints. In particular, 1 a, I0 < 01 for all n. The equation LEv, = f, 
together with (2.9) imply that 

where C is independent of E. This, together with the interpolation inequality 
(see [4, p. 1141) 

I -2 I I ZJ,‘ lo < h2 I vi lo + 2 I vn 1,/s (6 > 0, arbitrary) 

yields the result that I v, 1: is bounded uniformly in n 

l%I;:~~3lfl,. (2.11) 

The differential equation itself again provides the equicontinuity of the 
sequence {vi), so a subsequence of {w,} converges to a solution v(x) of Lb = f 
for all X. Since (2.11) continues to hold in the limit, we have the invertibility 
of L’ with the left side of (2.8) holding. But the right side is immediate; the 
lemma is proved. 

Continuing with the proof of Theorem 2.1, we set m = 5, and let I be an 
open interval on the real axis containing 0, such that the conclusion of 
Lemma 2.2 holds for E E I\(O). We then define the operator H: C2 x I -+ C2 
by 

(2.12) 

Clearly H is continuous differentiable for E # 0. We shall show that it is 
also for E = 0. Using a Taylor series expansion with remainder of order 2, we 
have 

F( U + c3s, c) = F( U, 6) + c3F,( U, E; S) + &‘(s, <) 

= &j + GLfs + E?qS, B), 

where / Y(s, <)I,, < K4 for I s I2 < 1 and I E 1 < 1. Thus, H(s, E) - s = 
2(L”)-lq + 2(LyP, and from (2.7) and (2.8) 

I H(s, c) - s I2 < E--~ [ H(s, c) - s 1; 

G Krdl Q lo + I ‘y lo) < K+ 

for / s I2 < 1 and 1 E 1 < 1. Thus H is continuous at E = 0. 

(2.13) 
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For E # 0 we have 
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H&, c) = (L’)-lF,( U + A, s) 

= I + (L’)-l(F,( U + A, E) - F,( U, c)) = I + T(s, c). 

But F,(u, E) is a linear second order differential operator with E multiplying 
derivatives as in L’, and coefficients depending differentiably on u, EU’, and 
&J’. Thus, by the mean value theorem, G(s, E) = F,( U + ENS, E) - Fl( U, s) 
is also such an operator, with coefficients bounded in CO by K,zs/ s 1: for 
e3j s 1’2 < 1. Thus, [ G(s, E; w)lo < Q31 s 1; / z, 1; < Kse31 s I2 1 w /e, so by 
(2.8), I T(s, E; t& < E-~/ T(s, c, $12 = c-~I(P)-~C; 1; < cc2K,l G j. < 
&E[ s I2 I v 12. Thus, in operator norm, I T(s, •)l~(c~,c~) < &I s 12. This 
implies that H,(s, E) is continuous at E = 0, and, of course, H,(s, 0) = I. 

By the implicit function theorem, there is a function S(C) E C2 defined for 
ICI <cot satisfying 1 SIP < K,,P and H(s(r), c) = 0. From (2.12) we, 
therefore, have F(w(E), 6) = 0, where W(E) = U(c) + ENS. The existence 
of the required families is thereby proved. 

We consider the question of uniqueness. Suppose that $6) E C2 is another 
family approaching g, with I a( bounded for I E I < 1. Then clearly 
1 W(C) - g 1; + 0 as E + 0. Let V(E) = $6) - W(E). Since both w and fl 
satisfy (2.1), we have by the mean value theorem, 

0 = F(w, 6) - F(w, e) = F,(w + @a, E; v) 

for 0 < 0 < 1. The right side can be thought of as a linear differential 
operator in o, with coefficients depending also on ZJ. By (2.2), this operator is 
subject to the maximum principle for small enough E and small enough 
1 ~1 1: . But j v 1; can be guaranteed small by making E small, because by 
construction 1 w - g 1; -j 0, and by assumption 1 ti - g 1; + 0. Thus, for 
small enough E, the maximum principle applies, and we obtain that w = 0, so 
@ = w. This completes the proof. 

3. A LEMMA OF IMPLICIT FUNCTION TYPE 

The proof of existence of a transition layer given in Section 4 will be based 
on a variant of the implicit function theorem. This section is devoted to 
proving the needed variant. 

In the following, X and Y denote Banach spaces, D a neighborhood of the 
origin in X, and I an open interval on the real line containing the origin. Let 
M: D x I x I -+ Y and m: D x I x I -+ R1 be continuous mappings, 
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continuously differentiable in their first two arguments, satisfying the following 
hypotheses (here subscripts denote partial Frechet derivatives): 

(i) M(0, 0,O) = m(0, 0,O) = 0; 

(ii) M,(O, 0,O) is a linear operator with one-dimensional nullspace 
spanned by 4 E X and range characterized by 

B(M~(O, 0,O)) = {v 6 Y: +$*, v) = 0) 

for some C* E Y*; 

(iii) (#*, J&(0, 0,O; 1)) # 0; 

(iv) ml@, 0,O; 4) # 0. 

LEMMA 3.1. Let M and m be as described above. Then there exist unique 
continuous functions U(E), A(C), defined for 1 E 1 < e1 for some Ed > 0, satisfying 

u(0) = 0, h(O) = 0, MM4 W, 4 = 0; (3.1) 

m(u(E), A(C), E) = 0. (3.2) 

Proof. Let Pl denote any projection of X onto the nullspace .N(M,(O, 0,O)) 
and Qi = I, - Pl . Let Qa be any projection of Y onto 22(M,(O, 0, 0)), and 
f’z = I, - Qs , where Ix ,I, are the identity mappings in the respective 
spaces. Let L denote the restriction of Ml(O, 0, 0) to QiX. It is one-to-one 
since Lu = 0 implies u = a$, which implies u = 0. Also it maps onto Q2Y 
by (ii), so by the closed graph theorem, it is a bicontinuous map between QiX 
and Q2Y. 

Let Ii C I be an open interval containing the origin, and D, an open neigh- 
borhood of the origin in QiX, such that D r) (2 + CYC$: z E D, , 01 E II}. Let 
W, = D, x I1 x I1 , W, = QsY x P,Y x RI, and N: W, x I -+ W, be 
the mapping defined by 

N(w, c) = (A(& % A, E>, B(% % A, E), C(% % A, 4, 

where w = (a, 01, X) E W, and the operators on the right are defined by 

A(%, 01,X, 4 = Q,M(z + 4 A, 4, 

B(z, 01, A, c) = P,M(z + ~4, A, 4, 

and 

C(z, a, A, l ) = m(z + 0~4, X, E). 

It suffices to prove that N(w, c) = 0 has a unique continuous solution W(E) 
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with w(0) = 0, since this equation is equivalent to (3.1), (3.2) with u(e) I 
z(e) + a(+$* 

Clearly N(0, 0) = 0. Also N is continuously differentiable in w and 
continuous in E. If the derivative N,(O, 0) is a homeomorphism from W, to 
W, , the implicit function theorem will then yield the desired result. This 
derivative can be expressed as the following Jacobian matrix, where for 
simplicity we use such notation as A,(O) in place of A,(O, 0, 0,O): 

We proceed to evaluate some of the elements: 

40) = Q&dO)lolx = L; 
A,(O): RI--+ QsY is the operator A,(O; LY) = olQ&L&(O; 4) = 0, since $ 

is in the nullspace of M,(O); 

B,(O) = P&f,(O) = 0, by the definition of Pz; 

B,(O): RI--+ P,Y is the operator B,(O; a) = c#sM,(O; 4) = 0; 

l&(O) is given by B,(O; a) = P&&(0; a) = aP&, where # = M,(O; l), 
so that by (iii), P,# # 0; 

C,(O): R1 + R1 is the operation of multiplication by m,(O; $) = p, 
which is different from 0, by (iv). 

Thus, 

where we use the symbols SP2+ and S, to denote the linear operators with 
domain R1 consisting of multiplication by Pg,h and ,B, respectively. It is now 
easily seen that N,(O, 0) h as a bounded inverse, so is a homeomorphism of 

-- WI onto W, . In fact, for any v = (z, y, y) E W, , the equation 

N,(O, 0; w) = v (3.3) 

may be solved for w = (z, or, X) as follows. Since P,X is one-dimensional, it is 
spanned by any nonzero element such as P&; therefore, we may write 
7 = VP& for some v E R1. The second equation in the system (3.3) reads 
hP& = VP&, which has the unique solution X = v. The first equation 
then reads Lx + A,(O; A) = - z, which has a unique solution x depending 
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continuously on Y = h and Z, by virtue of the bounded invertibility of L. 
Finally, the third equation can be solved uniquely for 01 since by (iv), p # 0. 

The implicit function theorem is now applicable, and the lemma is proved. 

4. EXISTENCE OF A TRANSITIONAL FAMILY 

We now seek solutions U(X, C) of (2.1) with the property that for any S > 0, 

+i 24(x, c) = 1 
g’(x) uniformly in (-co, -S), 
g”(x) uniformly in (6, co). (4.1) 

Our goal will be to obtain such a family in the form 

where wi are the regular families constructed in Theorem 2.1. Thus, a 
sharp transition at the origin is brought about by prescribing9 to depend on 
the stretched variable (X/C). However, it proves to be more convenient to use 
a shifted stretched variable 7(x, C) = (LX - h(c)/<), and a transition function 
y(rl, 4 = 9W 4 = r”h + W), 4, w ere h is a regular function of E h 
satisfying h(0) = 0, and adjusted so that ~(0, l ) is independent of E. If 
~((x/E), e) were known, and a number a were given such that &(a, 0) # 0 
(and there must be such a number, since 9 is not constant), then the equation 
&(E), l ) = y(a, 0) could be solved for an appropriate,u(E) satisfyingp(0) = a. 
Setting A(C) = E&E), we would then indeed have that ~(0, E) = Y&(E), 6) is 
independent of E. However, we shall work from the other direction and 
attempt to find a family of solutions of (2.1) of the form 

@, 6) = W1(% l ) + Y(?(% 4, 4(W2(& c> - WV, 4) 
= w1 {-YAW, - (4.2) 

where y satisfies 

lim ~(7, l ) = 0; q---m $2 y(~, l ) = 1, (4.3) 

these convergence processes being uniform in E for E in some open interval 
containing the origin. As mentioned above, at the same time we adjust h(e) 
so that ~(0, C) is independent of E. 

To see that (4.2) will then be a transitional family, we note that 

I 4x, 4 - gY4 < I WV, 4 - g’(4l + I Y(+, 441 I Aw(x, 41. 

By (2.3), the first term on the right converges to 0 as E -+ 0 uniformly in x. 
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By virtue of the uniformity in (4.3), the factor y(7(x, E), e) + 0 as E + 0 
uniformly for x < --6 < 0. Finally, the factor 1 Aw 1 is bounded. Thus, u 
satisfies the first part of (4.1). The second part is established analogously. 
It will be proved in Section 5 that in general there exists only one transitional 
family of the type (4.2). 

Accordingly, we define a differential operator G for a function ~(7, C) by 
substituting (4.2) into the differential operator F and writing the result in 
terms of 7, h, and E (noting that x = ~7 + A): 

G(Y,,, , yn , Y, ~7 + A, 4 = F(Aw(q + A, 4r,,, + ~‘w:&7 + 4 4 + 2cAw,y,, 

+ •~Aw,,y, Awy, + l w,l + &g,...). 

We then seek a solution pair y(7, E), h(e) of G = 0, satisfying (4.3) and 
h(0) = 0. In particular for E = 0, we obtain the following equation for 

YO(7) = Y(7PW 

WY; , Y,,‘, y. 3 0, 0) = F(Ag(O) Y; 3 40) yo’, Ag(O) y. + gYO), 0, 0) = 0. 

(4.4) 
In view of the requirements (4.3), the following assumption is necessary. 

HYPOTHESIS 2. There is a solution y,,(7) of(4.4) satzlfying 

Yo(--co) = 0, Yo’o(W) = 1. (4.5) 

Note that Eq. (4.4) does not explicitly involve 7. Hence, from the solution 
~~(7) we obtain many more solutions yO(7 - C), C an arbitrary constant. 
Therefore, no generality is lost by supposing that y,,‘(O) # 0; if this is not 
true, we replace y,,(7) by y,,(7 - C), C being chosen so that it is true. We, 
therefore, have 

Yaw # 0. (4.6) 

One additional assumption will suffice for the existence of a transitional 
family. 

HYPOTHESIS 3. a(7) > 0,und 

s m +dF,(AdO) y,“(7), 40) x,‘(d~ 4(O) y&d + gW 0, 0) r,‘(7) d7 z 0, 
-co 

where 

r(7) = exp 
I 

n &rl) - a’(ii) (j+ 
0 43 ’ (4.7) 

a(7) = G,(Y,“(~), y,,‘(7), r,,(7), O,O>, (4.8a) 
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and 

b(7) = G,(...). 

For future reference, we also define 

(4.8b) 

~(7) = Gs(...). (4.8~) 

In view of the nonuniqueness of solutions of (4.4), (4.5), it may be wondered 
whether Hypothesis 3 is satisfied for some choices of yO(y), but not others. In 
connection with the uniqueness proof in Section 5, it will be shown that in the 
usual case, this hypothesis is satisfied for all possible choices of y0 if and only 
if it is satisfied for one of them. 

THEOREM 4.1. Under Hypotheses 1-3, there exists a family of solutions 

Yh 4, 44 of 

G(Y,,,Y,,Y,-I+&~) =O (4.9) 

defined in some interval 1 E j < cl , - c0 < 7 < Co, continuous in E unijormly 
in 7, satisfying X(0) = 0 and (4.3), these latter limits being approached una~ormly 
in E. Hence, there exists a transitional family of solutions (4.2) of (2.1) satisfying 
(4.1). 

It will be convenient to work with the function v = y - y,, rather than y. 
We thus seek solutions ~(7, E), h(e) of 

G(Y,” + vnu,, 3 Y; +vn’Yo+v,~+b) =o 

satisfying 

/pm 4% c) = 0, 

the approach being uniform in E. We also impose the condition 

(4.10) 

(4.11a) 

v(0, c) = 0, (4.1 lb) 

so that ~(0, 6) = const. This has the effect of characterizing A(E) as that 
number such that u(h, 6) = Bwl(h, E) + (1 - 8) w2(X, E), where 0 = y,,(O). 

The theorem will be proved with the aid of a series of lemmas developed 
below, which essentially demonstrate the applicability of Lemma 3.1 to the 
present problem. The first step is to interpret the left side of (4.10) as an 
operator from a suitable Banach space X into another space Y. For our 
purposes it is appropriate to use the following spaces, where Y is the positive 
function defined by (4.7). 

X z Ht’ n C2 = the space of functions v(7) 
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with bounded continuous derivatives up to order two, for which the norm 

is finite; Y E Hr) n CO s the space of bounded continuous functions with 
finite norm 

LEMMA 4.2. Under Hypotheses l-3, the diSferentia1 operator on the left 
of (4.10) deJnes an operator G(v, A, c) from X x R1 x R1 into Y. 

Proof. If v E X, quite clearly the function on the left of (4.10) (call it 
f (7, A, c)) will be in CO for each A, E. The lemma will be proved if we can show 
that fl rf 2 dq < 00 for each h and E. Since (2.1) is satisfied by both 
u = wr(x, 6) and u = w2(x E), we know that 

G(O,0,1,~q+h,~)-G(O,O,O,E~+A,E)=O. 

Thus, by the mean value theorem we have 

(4.12) 

fh A 4 = G(~Y,, 9 OY, , ey, l rl + 4 4~” + G,(-.)Y + G(--) y, 

where 0 < O(T) < 1. Since F and G have derivatives bounded uniformly 
in x = ET + A, each of these three coefficients Gi is bounded in terms of the 
magnitude of their first three arguments, uniformly in 7. Therefore, we have 
a function K,(M,) such that the following estimates hold for all ( y \a < MO 
and ICI < 1: 

If h A 4 G wKJ(I Y”h>l + I Y’WI + I YhN. (4.13a) 

Using the left equation in (4.12) similarly, we obtain 

If hk 41 G &(~,)(I y”h)I + I r’(dl + 1~61) - 1 I). (4.13b) 

Settingy = y. + v, we have on the one hand, from (4.13a), that 

s 

0 
rh)(f h X9 4)” 4 

--m 

< K,(M,) lc r(rl)[(yi)2 + (~~‘0’)” + (~~1~14 + II v II:/; 
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and on the other hand, from (4.13b), that 

s m +dfh h 4” 4 
’ G WY,> lj-: YMY;Y + (yc,‘12 + (y. - 1)‘) d7 + II w ll$ 

If the integrals on the right of these two inequalities are finite, we conclude 
that sym rf 2 dv < 00, hence f E Y. This finiteness will be established by 
analyzing the asymptotic behavior of Y and y. . 

Referring to (4.8) and (4.5), we define the constants u+ = a(co) = 
G,(O, 0, 1, 0, 0); a- = a(-co) = G,(O, 0, 0, 0,O); with analogous definitions 
for b* and c*. From (2.2) we obtain 

a* > 0; c* < 0. (4.14) 

From (4.14) and Hypothesis 3 we see that a(~) is positive and bounded 
away from zero. From this, (4.7), and the fact that a’(~) -+ 0, we obtain that 
for any 6 > 0 there exists a constant C, with 

y(7)) G G expP+la+) + 47 for 7 3 0, (4.15a) 

y(v) < C8 expW-la-1 - SIT for 7 < 0. (4.15b) 

Now consider the Eq. (4.4), satisfied byy = ~~(7). Since G(0, 0, 1, 0,O) = 0, 
one may use the mean value theorem to write it as 

G,(ey”,, ey;, 1 + e(r, - l), O,O,r,” + G,Wy,’ + G,(-NY, - 1) = 0, 

(4.16) 

where 0 < O(v) < 1. Write this as L*(y, - 1) = 0, where L* is the linear 
operator on the left. 

Let v > 0 be a constant such that cf < c+ + Y < 0 and let 

p = (b+ + ((bf)” - 4a+(c+ + v))ly2a+) > 0, 

so that a+$ - b+p + c+ = --Y < 0. Now notice that (4.5) implies that the 
coefficients of (4.16) approach a+, b+, c+ respectively as 77 --+ CO. Therefore, 
for some large enough v. , 

qe~; , er,‘, 1 + e(Yo - 00, 0) p2 - G,(+ + G,(-.) < 0, 

G3 < 0, and Gi > 0, for 7 > q. . 
Setting V(q) = e-r(n-%), we thus find that L*V < 0 for T > rlo . If k > 0 

is such that 1 yo(rlo) - 1 1 < k, we have from this and (4.16) that 
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w = KV(q) & (y,,(7) - 1) satisfies L*w < 0, ~(7~) 3 0, w(w) = 0. The 
maximum principle now tells us that w > 0, which means 1 y0 - 1 1 < 
he-“(~-no), fo r 7 > 7. . Equation (4.16) says 1 yl 1 < C(i y,, - 1 1 + [ y,,’ I) for 
some C. A standard interpolation inequality (see, e.g., [4, p. 114]), yields for 
each rll , the following, where the suprema are taken over the interval 
(71 , 7l + l), and w > 0 is arbitrary: 

sup I Y,‘(7)l G ctJ SUP I Y37)l + UPW) SUP I Y&7) - 1 I. 

Choosing w small enough and combining this with the above inequality, we 
obtain for 7I 3 7. , 

supIy:I <Csupjy,-I 1 <Ce-““I, 

with a similar exponential estimate for y,,‘. Thus for some C, 

I y. - 1 I2 + I yo’ I2 + I r,” I2 G Cexp(---2~7) (4.17) 

for 7 2 7. . 
In (4.15) we now choose 6 > 0 so small that 4(~+)~ a2 < (b+)2 - 4a+(c+ + v). 

This inequality implies that (b+/a+ + 8) - 2~ < -S < 0, which, from 
(4.15a) and (4.17), in turn implies that ~(7)[(y;1)~ + (Y~‘)~ + (y. - 1)2] 
decays exponentially as 7 + CO. Thus, J’r rf 2 d7 < CO. A similar argument 
shows that stoo rf 2 d7 < w. Thus f E Y, and the lemma is proved. 

LEMMA 4.3. The operator G defined in Lemma 4.2 is continuously disferen- 
tiable. 

Proof. The symbol C will always denote a constant independent of c. Let v 
and z E X, and I/ x IIx < 1. Expanding G in a Taylor series in its first three 
arguments with remainder r of order 2, we obtain 

G(v + z, A, 4 = G(Y,” + (v + .4”, Y”’ + (v + 4’, y. + (v + 4, ~7 + A, 4 

= G(v, 4 4 + [G,(Y,” + v”, yo’ + v’, y. + v, ~7 + A, 4 z” 

+ G2(.-) .z’ + Gd-..)zl + r@“, z’, .T 7, A 4, 

where for some C depending on v and its derivatives, 

I rl < C(l 2 I + I z’ I + I z I)” < Cl z lz(l Z” 

so that 

I + I z’ I + I z I>> 

(j--t y(7) r2 df2 < C I .z I2 (j-= ~[(z”>~ + (~‘1~ -I -co 
- z”] d7 1 112 

G c II z 11; * 
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Hence, 

Therefore, G is differentiable with respect to its first variable, and the 
derivative is given by Gr(v, A, E; .a) = G1z” + Gsz + Gsz. To show that 
Gr depends continuously on v, A, and E, we note that 

II G,(v, 4 E; 41~ 

< C(l G,(Y,” + v”, JJ’ + v’, y. + 21, l i + A, 4, + I G lo + I G I,) II x llx > 

so that the operator norm of G, is estimated in terms of the suprema of the 
three coefficients. These in turn depend continuously on their five arguments, 
uniformly in 7. It follows fairly easily that the mapping (v, A, 6) + G,(v, A, 6) 
is continuous with respect to the C2 norm of v, hence, certainly with respect 
to the norm [/ v /IX . We omit the proof of continuous differentiability of G with 
respect to h and E, which follows a similar vein. This establishes the lemma. 

LEMMA 4.4. Let v(7) be continuous in [0, co), and satisfy 

Lv ES a*(q) 7Y + b*(q)v’ + c*(q)” = y(v), 

where the coejicients and y are bounded. Assume that for some q,, > 0, a* > 0 
andc* < -o < Ofor > T,,. 

(a) If v is bounded andy = 0, then there exist positive constants Cl and LY, 
depending only on Q, , 0, and upper bounds for a* and 1 b* I, such that 

I 4dl < C,l v he-an. 

(b) Ifa*-+a+>O,b*+b+,c*-+c+<Oas~-+cqand 

s 0m [exp(b+/a+ - 8)~] v2(q) dq < co (4.18) 

for some suficiently small 6, then v is bounded. 

Proof. First, consider case (b). Let 

p = (-b+ + ((b+)” - 4a+(c+/2))‘12/2a+) > 0, 

so a+p2 + b+p + c+ = c+/2 < 0. Then L(eun) = (a*p2 + b*p + c*)e”n < 

;;:’ + b3 + c+ + ~(4) euq, where y is a positive function such that 
,,+m ~(7) = 0. Let qr be large enough so that r], > Q, , and for r) > Q , we 

have c+/2 + y(q) < 0 and 

c*(T) < c+/2. (4.19) 
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Then 

Furthermore, 

L(een) < 0, 7 > 71. (4.20) 

s 
om [exp(b+/a+ - S)7J e2UV d7 

= 
s m exp(--6 + ((b+)2 - %z+c+)~/~/~u+}~ d7 = CO, 

0 

provided 0 < 6 < (-c+/2a+)li2. Therefore, for this choice of 6, the condition 
(4.18) implies the existence of a sequence {7i} with 7i + cc and 

For each i > 1, let 

2447) = pie&’ - 747) + 2 I y lo (--c+)-’ + I 47dl e-ah-d, 

where 01 is a positive number. Then from (4.20) and (4.19), 

LWi < -LV + C+ ( y 10 (-C+)-’ + I V(71)l (U*fX2 - b*Cf + C*) eFmc-“) < 0, 

7 > 719 

provided 01 > 0 is chosen so small that a*~,~ - b*ar + c* < 0, 7 > 7I . 
Also 

471) > 0 
and 

wi(7i) > I 47i)l - v(7i) 3 O* 

By the maximum principle, we conclude that w,(7) 3 0 for 7 E (71 ,7& so 
that 

v(7) < rBieyfl + 2 I y lo (-c+)-’ + I v(7d eee(‘-nJ, 

Letting i --f co, we have 

7 E (71 3 7th 

v(7) < 2 I y lo (-c+)-’ + I v(7d ewacn-‘J, 7 E (71 , 4. (4.21) 

A similar argument shows that (-v), hence 1 v 1, satisfies the same inequality. 
The continuity of v implies its boundedness on the remaining interval 
P, 711. 

Next consider case (a). Here we simply define p as any positive number 
such that (a*~~ + b*p + c*) < 0 for 7 > rlo, so that L(eun) < 0. The 
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numbers ,Ei and functions wi are defined as before, except withy = 0 and Q 
replaced by y0 . The conclusion (4.21) with the first term on the right missing 
holds as before. Clearly (Y depends only on the quantities indicated. This 
completes the proof. 

We shall need some properties of the linear operator P: X + Y given by 

PU = G,(O, 0,O; U) = a(#’ + b(+’ + c(+, (4.22) 

where the functions a, b, and c were defined by (4.8). 

LEMMA 4.5. There exists a function $ E X such that the nullspace J’(P) 
is spanned by 4, and the range 

WY = 1 Y 6 y: j-1 +I) #I) Yb?) 4 = 01. 

Proof. The function Y (4.7) was chosen so that PU = (l/~)[(rau’)’ + YCU], 

which is formally self-adjoint with respect to the scalar product (u, v), = 
jza Y(T) u(v) ~(7) dv. Let P be a self-adjoint extension of P in the space 
-Epzr(- GO, co) endowed with this weighted scalar product. A fundamental 
result by Weyl [7] yields that the spectrum of -P is discrete below the 
constant e, = lim infl, i&-c(T)) = min[l c- /, 1 c+ I] > 0. Therefore [2, 
Theorems X111.7.53-541 for each h* < e,, ,9(--P - A*I) is closed, and h* 
is either a simple eigenvalue or in the resolvent set. In particular, this is true 
for h* = 0. 

We differentiate Eq. (4.4) with respect to 7. It is thereby seen that the 
function 4(q) = ys’(y) satisfies P+ = 0, at least formally. It is in fact true 
strictly that P+ = 0, since 4 is in the domain of P, which is to say (see [3, 
p.2741) that 4, $‘, and I$” E 9a’(- co, co). To see this, we first recall from the 
proof of Lemma 4.2 that $ = y,,’ and $’ = yi behave well enough as 77 + 5 00 
so that they are in that space. Since a$” = 64’ - c+, b and c are bounded and 
a is bounded away from 0, we conclude that 9” E 9ar( - co, co). Thus + is an 
eigenfunction with simple eigenvalue 0. Thus M(P) is spanned by 4. But the 
same is, therefore, true of J(P) since P C ii. This proves the first part of 
the lemma. 

For the second, we first use the fact that for self-adjoint operators such as 
P with closed range W(P) = dV(P)I = {y E LZzr: (y, +)? = O}. Since 
a(P) C a(P), we know that W(P) is contained in the set {y E Y: sr+y d? = O}. 
Conversely, let y be a function in this set. To complete the proof we need 
to show that y E 99(P). Since y is in 9(P), there is a u E 9g) with U” E 9g) 
such that Pu = y. To prove that y E 9(P) it remains only to show that 
u E c2. We know that II and II’ are continuous, simply because u’ is locally 
square integrable. Solving the differential equation Pu = y for u”, we, thus, 
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determine that U” is continuous as well. But we need to show that u, u’, and u” 
are bounded. The fact that u is bounded on [0, co) follows from part (b) of 
Lemma 4.4 with w = u, a*(v) = a(~), etc. In fact, Hypothesis (4.18) with 
arbitrarily small 8 follows from the fact that u E 6pg) and (4.15b). An 
analogous result establishes the boundedness of u on (-co, 01. The differen- 
tial equation Pu = y, together with the interpolation inequality used in 
Lemma 4.2, now yields that u’ and u” are bounded. Thus u E C2, and the 
proof is complete. 

Proof of Theorem 4.1. We apply Lemma 3.1 with M = G , m(v, h, c) z o(O), 
and the spaces X and Y as defined above. Lemmas 4.2 and 4.3 tell us that 
M = G is continuously differentiable in v, X, and E. It is immediate 
that m satisfies these same properties. We need to verify the hypotheses 
of Lemma 3.1. 

(i) It is immediate from (4.4) that G(0, 0,O) = 0. Also clearly 
m(0, 0,O) = 0. 

(ii) This hypothesis is verified by Lemma 4.5. As indicated there, 

d =Y;, and +* is the linear functional given by multiplication by r+ and 
integrating. 

(iii) The derivative G,(o, /\, E; 1) is, by the definition of G and G, 
simply the ordinary derivative of 

Wwh + A, d(Yr, + v”> + E2WlZZ( - -) + 2EdW*( y,’ + v’) 

+ ~2A%,(Yo + +.> 

with respect to h. Taking this derivative and setting V, h, and E equal to 0, we 
obtain the following, after noting that (2.2b) implies Ag(O) # 0: 

G2(0, 0, 0; 1) 

= ~lb%(O) Y;h>Y 40) Y,‘(7), 4(O) Yo(7) + g’(O), 09 0) Y;“(7) 4’(O) 

+ F2(...) Yaw 43) + &(...)(Yo(?) 4m + g”‘(O)) + F4(...) 

= $$g Ml> Y,” + w Yo’ + 47) Ye1 

+ gl’(0) - G&Y; , Y;, y. 3 0, 0) + F,(-..) 
4m 

_ 4’(O) py, ; gY0) 
40) 

Ag(0) ‘(7) + Fd**‘)* 
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Condition (iii) of Lemma 3.1 can, therefore, be written 

But (Pro , Y% = (yo, P4Jr = 0, and 

= - s -1 (YUY;) 4 = --t+t +I) 4~) Y;“(T) 

+ &pm +I) 44 Y;(7), 

if these limits exist. But estimates (4.15a) with small enough 6 and (4.17) 
show the first limit is zero, and analogous estimates show the second is also 
zero. Thus, condition (iii) is simply (4, F4(..*)),. # 0, which is guaranteed by 
Hypothesis 3. 

(iv) In our setting, this condition is simply that C(O) # 0, which is 
guaranteed by (4.6). 

The conclusion is that there exist solutions $2, E), X(E) of (4.10), (4.1 lb), 
defined and continuous with respect to E in the norm of X for E in some 
neighborhood of the origin, satisfying V(X, 0) = h(0) = 0. Only the uniform 
limit relation (4.1 la) remains to be verified. 

Because of (4.12), we may use the mean value theorem to write (4.9) as 

G(~Y,, , OY,, 1 + e(y - 11, l I + A 4r,, + G(-.)Y, + G(...)(Y - 1) = 0, 

(4.23) 

where 0 < e(q, e) < 1. From the definition of G and Hypothesis 1, we know 
that 

G(O, 0, 1,q + A c> 
= flw(q + A, +qZ2W;&j + A, E), EW,2(***), w2, ET + A, c) > 0 

and G&O, 0, 1, q + h, c) < 0 for E sufficiently small. Moreover, the functions 
6(y - 1) = B(y, - 1 + D), Sy, , and @y,, can be made as small as 
desired by taking 7 large enough and l small enough, because y,, + 1 and v is 
uniformly small for E small. Hence, there is a (T > 0, an Q, > 0, and an 
l a > 0 such that the coefficients of (4.23) (call them a*, b*, c*) satisfy the 
hypotheses of Lemma 4.4 for 1 E / < l a . Also, a*, b*, and ) y - 1 j0 will be 
bounded for E in that interval. Conclusion (a) of that lemma thus yields that 
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y(r), c) - 1 + 0 as 7 + co, uniformly for j E / < l a . A similar argument 
yields ~(7, 6) + 0 as 7 -+ --CO. Since y = y,, + ~1, this establishes (4.11a), 
and the theorem is proved. 

5. THE QUESTION OF UNIQUENESS 

For purposes of this section, we make one further assumption. 

HYPOTHESIS 4. Equation (4.4) may be solved for yi , yielding 

r; = H(Y,‘,Y,), (5.1) 

where H has any required number of continuous derivatives. 

Inequality (2.2b) now yields 

f&(0, 1) > 0, H,(O, 0) > 0. (5.2) 

Having proved the existence of a transitional family of solutions in 
Section 4, we now inquire as to whether there is more than one. This is an 
important question, in view of the apparent arbitrariness in the construction 
of the family u(x, c) in (4.2). Recall that the function y,,(q) = ~(7, 0) was 
merely required to satisfy (4.4)-(4.6). A s noted, there are many functions 
which do so, since every function yO(o(l - C), for a constant C, satisfies (4.4) 
and (4.5). However, this arbitrariness in choice of y0 does not in general lead 
to a multiplicity of families u(x, l ). The fact is that the function h(c) depends 
on the choice of y0 , and the final effect of this dependence is to cancel the 
freedom which was first apparent. One should properly consider two choices 
of solutions y,, of (4.4) and (4.5) as equivalent if they differ by a shift in the 
independent variable. It turns out that each such equivalence class determines 
one and only one family u(x, c) of type (4.2). The question remains as to how 
many equivalence classes exist. We shall show that under Hypotheses 1, 2, 
and 4, there is usually only one, although there may be two in exceptional 
cases. There is never more than two. 

THEOREM 5.1. Under Hypotheses 1-4, there exist either one OY two families 
of solutions u(x, l ) of the form (4.2) and (4.3). In the latter case, there is exactly 
one with the property that ~(7, 0) t 1 as 7 + 03 and ~(7, 0) J 0 as 7 + -CO. 

The proof relies upon the following lemmas. 
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LEMMA 5.2. Let f (t, z) be twice continuously d#erentiable, and satisfy 
f (0, 0) = 0, fl(O, 0) > 0. Then the problem 

Y’ = f (t, Y19 (5.3a) 

y(O) = 0, (5.3b) 

has at most one nonnegative solution in the interval 0 < t < t, , for small 
enough t, . 

Proof. We consider three cases separately: 

(1) f,(O, 0) > 0. Then Theorem 2 of [l] applies. For that purpose we 
set p(t, x) 3 f(t, / x 11/2) and g(t, x) = 1. The positivity of the two partial 
derivatives off in a neighborhood of the origin, together with mean value 
theorem, insure that for some positive CC, p(t, x) > a(t + / x 11p2) in that 
neighborhood when t > 0. Thus hypothesis (i) of the indicated theorem 
holds for t > 0. Also 0 d I J-i (dC/p(t, 5))l < I $ (&MI 5 l)l/“) = (%)I C V2, 
so (ii) is also satisfied. Since p,(O, 0) > 0, we know that p,(t, x) > 0 in a 
neighborhood of the origin. Hence (iii) follows. Finally, (iv) is true with 
L = 0. The conclusion of the theorem yields uniqueness for solutions of 
y’ = f (t, 1 y l1i2), y(0) = 0. Hence, uniqueness for nonnegative solutions 
of our problem follows. 

(2) f,(O, 0) < 0. Th en f or small t and y > 0, f is nonincreasing in y. 
It is well known that uniqueness holds when this is the case. 

(3) f,(O, 0) = 0. In this case we may write 

f (t, ~l’~) = ta(t, Y”~) + yb(t, Y~/~), (5.4) 

where a and b are differentiable functions with a(0, 0) > 0. Thus, for some 
positive constants “I , v2 , we have f (t, y112) > vlt - v2y, and any solution 
y(t) is bounded below by the solution x(t) of Z’ = vlt - v2z, z(O) = 0, i.e., 
z(t) = (vl/v22)(e-Qt - 1 + v2t) > (vl/4)t2 for small t. Thus, any solution of 
(5.3) mUSt Satisfy y(t) > Kt2 in 0 < t < 6, for some positive constants K 

and 8. We shall prove uniqueness by showing that f (t, y1/2) satisfies a Lipschitz 
condition in the region t > 0, y 2 tct 2. From (5.4), we have, for 7 > t > Kt2 
and some 7 1 , 72 with f1i2 < 7i < r11i2, by the mean value theorem, 

f (t, ~l’~) - f (t, E”“) = ta,(t, ~A(T~‘~ - W2) + (rl - 6) b(t, ~~1~) 

+ &,(t, 5-2W2 - W2) 

= b2(t, ~l)(W/2 + T’/“>> 

+ b(t, ~l’~) + W, ~&NY” + $‘“))l(v - 0. 

The boundedness of a2 , b, and b, , together with the lower bounds for 5 and 7, 
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imply that the quantity in brackets is bounded in absolute value, for 5 and 7 
bounded. This establishes uniqueness in the third and final case. 

LEMMA 5.3. Under Hypotheses 1, 2, and 4, the problems (4.4) and (4.5) 
has either (i) a one parameter family of solutions of the form yO(o(ll - C) (C an 
arbitrary constant) and no others, OY (ii) two one-parameter families of solutions 
of this type, and no others. In the latter case, one of the families approaches the 
limit at - co from below and that at + co from above, and the other family has 
the opposite behavior. 

Remark. Hypothesis 3 is stated in terms of the function y,, , so its fulfill- 
ment conceivably could depend on the choice of y,, . However, if y,, and yO* 
are two “equivalent” choices; i.e., y,,*(v) = ya(~ - C), then Hypothesis 3 
is satisfied with respect to y,, if and only if it is satisfied with respect to y,,*. 
To see this, we denote by a*, b*, Y*, and F4* the functions entering into the 
hypothesis, computed with reference to y,,*. Then a*(v) = a(7 - C), 
F,*(T) = F,(v - C), and Y*(T) = KY(~ - C), where 

K = exp /:c ((b - a’)/a) d7. 

The assertion follows by shifting the variable of integration. Thus, in case (i) 
of the above lemma, Hypothesis 3 is either fulfilled for all choices of y0 , or 
for none. 

Proof. Let Y(q) be any solution of (4.4) and (4.5). It must be monotone 
for large enough v. In fact, (4.16) holds with y,, replaced by Y. Of course, in 
view of (5.1) we have Gr = 1, G, = -HI, and Gs = -Hz. From (5.2) 
we have H,(BY’, 1 + e(Y - 1)) > 0 for large enough 7, so in this range the 
maximum principle applies. It tells us that there can be no local maximum 
greater than 1, or local minimum less than 1. Likewise there can be no inflec- 
tion point at which Y’ = 0. Thus Y’ # 0 for r] > r10 , for some large enough 
77s . Thus for 77 > v,, , the quantity W = +(Y’)z is a well defined nonnegative 
function of Y, which vanishes only at Y = 1. 

If the approach to the limit at co is from below, we have 0 < Y’ = (2 W)ljz. 
Since (dW/dY) = (Y’Y”/Y’) = Y”, W satisfies the equation 

$; = H((2W)li2, Y), Y< 1. (5.5) 

Let t = 1 - Y, and f (t, W/2) E -H((2W)1/2, 1 - t). Then as a function 
oft, W satisfies dW/dt = f (t, w112) in an interval 0 < t < 6, with W(0) = 0. 
From (5.2), we have fi(O, 0) > 0, and from (4.12), f (0,O) = 0. The hypoth- 
eses of Lemma 5.2 are, therefore, satisfied, and we conclude that these 
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conditions determine W(t) uniquely. If F(q) is another solution of (4.4) and 
(4.5), approaching the limit at cc from below, we, therefore, conclude that 
&(Y’)2 is the same function of Y as &(Y’)” is of Y. In other words, Y’ = Y’ 
whenever Y = Y, 7 > T,, . Let y < 1 be sufficiently close to 1, and let 
Q , +ji be such that Y(yr) = y, Y(7jr) = y. Then the function Y(v + (+ji - Q)) 
is a solution of (4.4) and (4.5) coinciding with F at q1 , and whose derivative 
coincides with Y’ at qi . By uniqueness of solutions of the initial value problem 
for (5.1), we have Y(y) = Y(q + (7ji - Q)) for all q. This shows that there 
can be no more than one family of solutions of the form indicated in the 
lemma, approaching the limit at cc from below. 

On the other hand, suppose Y approaches its limit at cc from above. Then 
Y’ = -(2W)1/2, and W satisfies 

(dW/dY) = H(-(2W)i/2, Y), Y> I. 

An argument similar to the above shows that any other solution approaching 
from above must be of the form Y(T - C). 

In view of the above, we conclude that if all solutions of (4.4) and (4.5) 
approach the limit at cc from one side, we have case (i) in the lemma. But if 
(in rare cases) there exist solutions approaching from either side, then case (ii) 
holds. This exhausts all possibilities. 

Now consider case (ii) in more detail. A similar argument applied to the 
limit at -cc implies that there are solutions approaching it from both sides; 
otherwise there could only be one family. Suppose there were two solutions 
Y,(T) and Y,(T) such that Yi J 1, Ya t 1 as 7 -+ cc, and Yi 4 0, Y2 T 0 as 
7 + -cc. Then it is easy to see that for some k and some Q , Y,(Q - k) = 
Y,(Q) and Y,‘(,, - k) = Y,‘(Q). Again by uniqueness of the initial value 
problem for (5. I), we have Y,(y) = Y,(T - k), which contradicts the assumed 
limiting behavior of Yi . Thus, the two families must have the limiting 
behavior described in the lemma. This completes the proof. 

Proof of Theorem 5.1. If case (i) in Lemma 5.3 holds, let y,,(1) be any 
particular solution of (4.4)-(4.6), and let u,,(x, l ) be the family of solutions (4.2) 
constructed in Theorem 4.1, with y(7,O) = ya(o(rl). If case (ii) holds, let 
y&r]) and ~~(7) be solutions of (4.4)-(4.6) representing the two different 
families indicated in Lemma 5.2. Then let u”(x, c) and 2c1(x, c) be the families 
of solutions (4.2) with y(r], 0) = ~~(7) and yr(~), respectively. 

Let u*(x, c) be any family of solutions of (2.1) of the form 

24*(x, l ) E wyx, c) + y”(X/E, E)(W2(X, c) - zuyx, E)), (5.6) 

where g(co, 6) = 1, J( - co, l ) = 0. Clearly those of the form (4.2) and (4.3) 
are of this type; one need only setJ([, E) = y(c - P(E), E), where P(E) = X(E)/E; 
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TV is bounded, since h(0) = 0. Conversely, (5.6) is of the form (4.2) with 7 
replaced by 5 = X/E, so G( ycr , yc ,$, ~5, l ) = 0. Setting E = 0, we have that 
jj([, 0) satisfies (4.4) and (4.5). Thus, from Lemma 5.3, either y([, 0) = 
y,,(< - k) for some k, or else y(<, 0) = yr(y - K), the latter only being 
possible in the (exceptional) case (ii). Assuming that the former equation 
holds, we shall show that u*(x, c) = u”(x, c). On the other hand, by a similar 
argument, the other equation will imply that u*(x, l ) = &(x, l ). This will 
prove the first assertion in the theorem. The second then follows easily from 
the contrasting behavior of ~~(7) and ~~(7) given in case (ii) of Lemma 5.2. 

So assume that y(l, 0) = yo(c - k). Define p*(c) as the function of E 
which satisfies ~(P*(E), 0) = ye(O), p*(O) = k. Such a unique function is 
guaranteed to exist for sufficiently small / E 1 by the implicit function theorem, 
since y((k, 0) = ~~‘(0) # 0, by (4.6). Next define 

so that 

Y*h 4 = 9h + P*(4 4, 

Setting 7 = (x - X*(E))/E, where h* = EP*, we have 

G(y,*, , yn*, y", q + A*, d = O- (5.7) 

Finally setting o*(v, l ) = y*(q, 6) - y*(~, 0) = y*(~, E) - yo(~), we have 
that (4.10) and (4.11) are satisfied with v replaced by v* and h by h*. 

The argument used in the proof of Lemma 4.2 to establish that 

s 
m 

+l)[(Y,“)2 + (YO’Y + (Y. - 117 4 < 00 
0 

can also be used to prove, on the basis of (5.7) and G(0, 0, 1, ET + X*, c) = 0, 
that J-r r(~)[(yz)~ + (y,,*)” + (y* - 1)2] dv < 03. Since v* = y* - Yo P 
we, thus, have sr Y(~)[(T&)~ + (v,*)~ + (v*)“] do < co. This, with the 
analogous bound for the integral over (- co, 0), implies that v* E X for each C. 
We, therefore, have 

G(v*, A*, c) = 0, (5.8) 

v*(o, c) = 0. (5.9) 

We have shown in Section 4 that the operators M(v, X, l ) = G(v, h, c) and 
m(v, A, c) = v(0) satisfy the hypotheses of Lemma 3.1. The uniqueness 
statement of that lemma implies that there is only one solution (v*, h*) of 
(5.8) and (5.9). Therefore our functions v *, h* are precisely the functions 
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v and X constructed in Theorem 4.1. According to the definitions of v* and h*, 
this implies that u*(x, C) = uO(X, l ). This completes the proof. 

6. AN EXAMPLE 

As an example, we consider the quasilinear equation 

c”(p(z4, x)u’)’ - h(u, x) = 0, (6-l) 

where 

2% 4 > 0. (6.2) 

Hypothesis 1, in Section 2, is that the degenerate equation n(u, X) = 0 has 
two solutions u = g”(x), for which 

h,(g”(x), x) 3 K2 > 0. (6.3) 

We suppose for simplicity that gl(O) = 0 and g2(0) > 0. 
If we set u = dg(0) > 0, Hypothesis 2 takes the form of requiring that 

4P(Vo 2 0) YO’Y - 4vo 9 0) = 0 

have a solution satisfying 

(6.4a) 

YoC--co) = 0, Yo(W> = 1. (6.4b) 

For any number Q , the function ~~(7) = ~~(27, - 7) also satisfies (6.4a), 
and coincides withy0 at 17 = vi . If ya’(yl) = 0, then yi’(w) is also zero, and by 
uniqueness of the initial value problem for (6.4a), y. = yi , which would 
contradict (6.4b). Therefore we may safely assume that yo’ # 0, and 
so y. is monotone. (In particular, condition (4.6) is superfluous.) Setting 
up(uy, , 0) y,’ E 2 and oyo = V, we know that 2 must therefore be a well 
defined function of V, for 0 < V < u. In fact, (6.4) can be written in the 
form 

~4Z2)l~V = P(K 0) h( K O), O<V<u, (6.5a) 

Z(0) = Z(u) = 0. (6.5b) 

Integrating, we find that this problem has a real solution if and only if 

(6.6) 

This easily verified condition thus replaces Hypothesis 2. 
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For Hypothesis 3, we calculate 

417) = 2hYd Pl(UYO(d, 0) = 24rl)* 

Thus, ~(7) = exp j’z (a’/~) d+j = Cu(r,) = Cup(V, 0) > 0, (C > 0). 
SinceF(a, 8, u, x, E) = ap(u, x) + Pp&, x) + •P~(u, x)P - h(u, 4 and 

ZZ&p = (p(uyo , 0) yi)’ = py;l + $J.,(Y,‘>~ = py,” + plZ21~p2, we have 

qoy,” , ay, 9 UYO > (40) = ayonP2(VP 0) + P,,W wYJ2 - UK 0) 

= P2/P2(ZZY - fPl/P) Z2) + P,2(z/P)2 - h2W 0) 

= (UP)((P2/P)z~Y+ ((PP,2-PlP2)lP2)~21-h2(V~ 0) 

= (l/P)kz(l/‘) WV) + WV WV)) - h2(K 0) 

= (UP)MqW)’ - 4W’l - A2 9 

where q(V) = p2( V, O)/p( I’, 0), and W(V) = $zZ( V). 
Using ey,,’ dv = dV and I = Cup, we see that Hypothesis 3 now assumes 

the form 

I D [2(qW)’ - qW’ - ph,] dV # 0. 
0 

The integral of the first term vanishes, since W(0) = W(u) = 0. Also, from 
(6.5a), we have qW’(V) = qp(V, 0) h(V, 0) = p,(V, 0) h( V, 0). Hence, 
Hypothesis 3 reduces to 

I o" (~2( K 0) h( V, 0) + P( V, 0) A,( V, 0)) dV f 0, (6.7) 

a condition which is again easily verified, since it does not require knowledge 

OfYo . 
Hypothesis 4, of course, follows from (6.2). 
Note that case (ii) in Lemma 5.3 is impossible, since yo(o(rl) must be monotone. 

Therefore, Theorem 5.1 yields a single family of solutions. In all, we have 
the following theorem. 

THEOREM 6.1. Let h(u, x) be such that h(u, x) = 0 has two distinct bounded 
solutions u = g”(x). Let p(u, x), h(u, x), g”(x) satisfy gl(0) = 0, (6.2), (6.3), 
and (6.6) (where u = g2(0) > 0), and (6.7). Then there exist unique regular 
fulllilies of solutions wi(x, E) of (6.1) satisfying (2.1), and there exists a unique 
transitional famiZy of solutions of (6.1) of the form (4.2) and (4.3). 
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7. ASYMPTOTIC APPROXIMATIONS 

We consider the question of constructing asymptotic expansions in powers 
of E to approximate the solutions whose existence has been proved. 

The proper procedure for such a construction in the case of the families 
w((x, 6) in Section 2 was in fact mentioned there. It takes the form 
U = C E%,(X) where the terms u, are determined by (2.5), with U,,(X) = g(x). 

Once the expansion for wi has been achieved, we may proceed to construct 
an expansion for the transitional family u(x, 6) as follows. First, a function 
yO(o(rl) is determined as a solution of (4.4)-(4.6). An example of how this might 
be done was given in Section 6. Next, the equations (4.10) and (4.11) are 
considered for unknown functions ~(7, 6) and h(e). We assume asymptotic 
expansions of the form 

ZJ = 1 En%(rl); h = 1 E”hn 
VZ=l n=l 

and attempt to determine the various terms by the conditions 

a:G(~d(d + lj,,,h 4,~,,‘(d + QI, c),r,(d + +I, 4 -I + W, 4 Lo = 0, 

7J,( f CQ) = v,(O) = 0. 
K = l,...; 

Note that the exact form of G is not known, since the functions wi are not 
known exactly. However, enough is known to determine these derivatives at 
E = 0. Fork = 1,weobtain 

Gl(y; , y,,‘, Y,, , (40) ~1” + G,(.-) ~1’ + G,(.-) ~1 

+ (9 + Al) G,(...> + G,(...) = 0. 

In view of (4.8) and (4.22), this can be written as 

Pv, + X,G,(...) + rlG,(...) + G5(...) = 0. (7.1) 

We recall that P has a simple eigenvalue 0, with eigenfunction 4 = yO’, 
and is self-adjoint with respect to a scalar product with weight function r (4.7). 
Thus, Eq. (7.1) can be solved for oi if and only if 

or Xl Jza +I) G(...)Y~‘(~ 4 = a k nown function. Hypothesis 3 says that 
the coefficient of /\i is different from zero, so X, is determined uniquely. 
However, vi is not determined uniquely; rather, it is indeterminate to the 
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extent of an arbitrary additive multiple of y,,‘. Thus, if vl,, is any particular 
solution, we must select the proper solution ~1~ from the collection 
~~~(7) + oly,,‘(q). But sincey,‘(O) # 0, there is a unique way to select 01 so that 
q(0) = 0. 

In this way, all the terms h, and ZI, can be determined in succession. This 
yields an asymptotic expansion for a(~, 6). Setting ~(7, l ) = ~~(7) + ~(7, 6) 
into (4.2) and using the previously obtained expansions for w1 and w2, we 
obtain the desired expansion for u(x, l ). The expansions for wi are analogous 
to “outer” expansions of other singular perturbation problems, whereas 
that for y could be classed as an “inner” expansion. The expression for u 
contains both. 

We shall dispense with the proof of validity of the above expansions. Such 
a proof could probably be devised using the following approach. Assuming 
(as we always have) enough regularity of F, it follows that G is also highly 
regular. Therefore, the solutions V(C), h(e) of G(v, h, 6) = 0 have a number 
of uniquely determinable derivatives at E = 0. These derivatives must 
correspond to the terms v, and h, constructed above. Expanding V(C) and 
A(E) in Taylor series in E, we obtain the asymptotic expansions already obtained 
above, plus a remainder term which can be estimated. Estimating this term 
constitutes proof of the asymptotic nature of our series. 
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