The Authors would like to draw your attention to the fact that some of the data that should have appeared in Table 2 on pages 197—198 was missing. The Publisher apologises for this error and reproduces the table in full here.

Erratum to "Abstracts from the 2005 Meeting of the British Trauma Society, held jointly with the Hellenic Association of Orthopaedic Surgery and Traumatology".

Please note that upon publication of the abstracts from the 2005 meeting of the British Trauma Society, held jointly with the Hellenic Association of Orthopaedic Surgery and Traumatology, the following abstracts were omitted in error.

C. Queitsch, A.P. Schulz, C. Jürgens. Improving therapy of calcaneal fractures by the use of 3D-fluoroscopy and locked implants.

A.P. Schulz, C. Queitsch, B. Kienast, C. Jürgens. Use of locked implants for bicondylar tibial head fracture—An advantage?

The Publisher apologises for this and provides the missing abstracts here.

Improving therapy of calcaneal fractures by the use of 3D-fluoroscopy and locked implants
Arndt P. Schulz*, Christian Queitsch, Christian Jürgens
BG-Trauma Hospital Hamburg, Department of Orthopaedic and Trauma Surgery, Germany

* E-mail address: aps77@web.de (A.P. Schulz).

The operative therapy of intraarticular fractures of the calcaneus is nowadays established surgical standard. Aim is an accurate reduction with reconstruction of the Bohler’s angle, the length and the subtalar joint. 3D-fluoroscopy with the Siremobil Iso-C 3D mobile C-arm radiography system is a valuable assistance for the accurate reconstruction of the anatomical structures. Remaining incongruities can be recognized and corrected intraoperatively. The achieved reduction can be safely fixed by the advantages of a locked implant.

In the period of October 2002 until October 2004 we operated 59 patients with intraarticular fractures of the calcaneus by means of anatomical reduction and locked plate under control of 3D-fluoroscopy.

After routine CT diagnostics, fractures were classified according to Sanders: 18 fractures were type II, 33 fractures were type III and 9 were classified type IV.

Surgical treatment of the fractures took place according on average after an interval of 8.5 days (7—11). A 3D-fluoroscopy was performed after reduction and temporary fixation of the fracture.

Median theatre time was 72 min (53—112 min) including 3D-fluoroscopy. In 22 cases a remaining incongruity of >1 mm could be seen on intraoperative 3D-fluoroscopy. In these cases a reduction was performed again.

The Bohler’s angle could be raised on average by 18° (11—22°), shortening of the hindfoot could be improved on average by 13 picture millimetres (9—17 mm). Bone graft was not required.

At 6 months follow-up, all patients had returned to work, or if unemployed, where judged fit to work.
by their GP. Three patients changed their position. Twenty-five patients were completely pain free at follow-up. In all cases the achieved reduction could be fixed by the implant until full weight bearing was reached.

Conclusion: The use of 3D-fluoroscopy had a real impact in the treatment of calcaneal fractures. If this short term advantage influences the long term result has to be shown in further follow-up.

Use of locked implants for bicondylar tibial head fracture—An advantage?
Arndt P. Schulz*, Christian Queitsch, Benjamin Kienast, Christian Juergens
BG-Trauma Hospital Hamburg, Department of Orthopaedic and Trauma Surgery, Germany

*E-mail address: aps77@web.de (A.P. Schulz).

High energy fractures of the tibial head still have a markedly worse outcome than other fracture types in this area. There are often neurovascular co-injuries, there is a high infection rate and a certain loss of reduction with normal implants. With a less invasive two-incision-technique the local complications have been shown to be less. We combined a less invasive technique with a locked implant with the idea to further decrease local complications and maintain fracture reduction for a better outcome.

Between June 2002 and June 2004 we treated 24 patients with a Schatzker type 5 or 6 fracture. Seventeen patients were male, nine fractures were open, and there was a vascular injury in two cases. The two-incision technique has been described elsewhere, the implant used was a locked titanium plate that is fashioned for the tibial-condyle and available in different length (Tibiakopf-TiFix®, Litos, Hamburg, Germany).

In 8 cases a long implant had to be used on one side for Schatzker type 6 fractures, in 13 cases cancellous bone grafting was performed. Fasciotomy for compartment syndrome was needed in five patients.

We saw two superficial and one deep wound infection. The deep wound infection settled after local revision, early removal of implants was not required. Three patients developed a DVT.

Clinical follow-up took place at between 6 and 11 months (av. 8.3 months). Details of the results of the Rasmussen Score are given in Table 1.

We conclude that with locked implant osteosynthesis applied with a soft tissue respecting access satisfying results can be achieved for the treatment of high energy tibial head fractures. The complication rate of this strategy is relatively low compared to established methods.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Rasmussen-score (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>Clinical score</td>
<td>7</td>
</tr>
<tr>
<td>Radiological score</td>
<td>5</td>
</tr>
</tbody>
</table>