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Abstract

Two sets of modes of a massive free scalar field are quantized in a pair of Poincaré patches of 
Lorentzian anti-de Sitter (AdS) space, AdSd+1 (d ≥ 2). It is shown that in Poincaré coordinates (r, t, �x), 
the two boundaries at r = ±∞ are connected. When the scalar mass m satisfies a condition 0 < ν =√

(d2/4) + (m�)2 < 1, there exist two sets of mode solutions to Klein–Gordon equation, with distinct fall-
off behaviors at the boundary. By using the fact that the boundaries at r = ±∞ are connected, a conserved 
Klein–Gordon norm can be defined for these two sets of scalar modes, and these modes are canonically 
quantized. Energy is also conserved. A prescription within the approximation of semi-classical gravity is 
presented for computing two- and three-point functions of the operators in the boundary CFT, which corre-
spond to the two fall-off behaviours of scalar field solutions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Quantization of scalar fields propagating in anti-de Sitter space was attempted in the 
past [1–3]. In [1] the problem of a time-like boundary at space-like infinity, through which data 
can propagate, is studied in a massless case by conformally mapping the spacetime in the global 
coordinates into upper hemisphere of Einstein static universe (ESU). By using the fact that AdS 

* Corresponding author.
E-mail addresses: ifujisawa@particle.sci.hokudai.ac.jp (I. Fujisawa), nakayama@particle.sci.hokudai.ac.jp

(R. Nakayama).
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.022
0550-3213/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

https://core.ac.uk/display/82186425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.022
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/3.0/
mailto:ifujisawa@particle.sci.hokudai.ac.jp
mailto:nakayama@particle.sci.hokudai.ac.jp
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.022
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.06.022&domain=pdf


136 I. Fujisawa, R. Nakayama / Nuclear Physics B 886 (2014) 135–165
space is mapped to a half of ESU, it was shown that there are two sets of mode functions, which 
are characterized by different boundary conditions and are orthonormal and form a complete set 
of basis by themselves, separately. It was concluded that only one of the two sets of mode func-
tions can be quantized. In [2] this procedure is more elaborated and extended to massive scalars. 
In [3] mode functions for scalar fields in AdS space in both Poincaré coordinates and global 
coordinates are obtained. Group-theoretic analysis was performed in [4].

On the other hand, AdS/CFT duality was discovered in [5] and its precise definition has been 
developed [6–9]. To the string compactification on AdSd+1 ×Mn, there corresponds a conformal 
field theory (CFT) living on a space conformal to the d-dimensional boundary of the AdS. To 
each field Φ in the bulk there corresponds a local operator in the CFT. By fixing the boundary 
value of Φ and computing the effective action of the bulk theory, this effective action yields the 
generating functional of the operators in conformal field theory with the boundary value acting as 
the source function. In the semiclassical supergravity limit, one can compute the effective action 
by solving the classical equation of motion and just substituting the solution into the action.

In the case of a free scalar field φ of mass m, it falls off like φ ∼ r−(d−Δ+)φ0 + r−(d−Δ−)φ1
near the spacelike boundary r → ∞. Here Δ± = d

2 ± ν and ν =√(d2/4) + m2. When ν > 1, 
only φ0 acts as a source for an operator O+ with a scaling dimension Δ+ in CFT. When 
0 < ν < 1, it is argued that either of the two operators O+ or O− with scaling dimensions Δ+ and 
Δ− can be considered in CFT. To compute two-point functions of O+ one should take φ0 as a 
source function and functionally differentiate the effective action with respect to φ0 [7]. To com-
pute two-point functions of O−, however, one needs to Legendre transform the effective function 
with respect to φ0 to obtain a generating functional [8]. This restriction of the holographic corre-
spondence is argued to be related to the above peculiarity of the scalar field quantization in AdS 
space.

Meanwhile, in the context of AdS/CFT for 3d higher-spin gravity coupled to matter fields, it 
was found [10] that we can compute semi-classically two-point functions of two sets of single-
trace operators in boundary CFT by introducing only one set of matter fields B and C. This 
motivates us to study whether we can quantize a scalar field in AdS space while keeping both 
two sets of scalar modes.

One of the purposes of this paper is to show that these two sets of scalar modes in AdS space 
can be quantized altogether by considering a coordinate system which is obtained by patching 
together a pair of Poincaré coordinates with radial coordinate r > 0 and r < 0, respectively, along 
the horizon (r = 0). The AdS space can be divided into two Poincaré patches. The boundary of 
AdS space is also divided into two. Usually, a scalar field is quantized only in one of the two 
Poincaré patches. In connection with AdS/CFT correspondence, however, conformal symmetry 
of boundary CFT has an origin in the isometry of AdS space. Although the metric in a pair 
of Poincaré coordinates is invariant under special conformal transformations, points in the two 
Poincaré patches are exchanged and a single Poincaré patch is not invariant. Hence it is not 
appropriate to restrict analysis of a field theory in AdS space to just within a single patch.1,2

In this paper, it is shown that the two patches can be joined together by matching the fluxes of a 
scalar field across the horizon and two boundaries, and that the united coordinate system admits 
two sets of scalar mode functions. The fluxes across the horizon vanishes, while those across 

1 In [12] a quotient space AdSd+1/J , where J is an antipodal map Xμ → −Xμ , is considered. This space is invariant 
under the isometry of AdSd+1.

2 EAdS space is one piece of the two disconnected hyperbolic spaces, and this single piece has the full conformal 
symmetry. This is in sharp contrast to the Lorentzian case.
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the boundaries do not. These fluxes across the two boundaries, however, cancel out with each 
other. It is shown that in Poincaré coordinates for AdSd+1 (d ≥ 2), the two boundaries r = ±∞
are connected. Hence the cancellation of the fluxes occurs on the connected boundaries of the 
hyperboloid. As a result, Klein–Gordon norm (3.9) is conserved. It is also shown that energy is 
conserved.

After canonical quantization of the scalar field, Wightman function for a scalar field in AdS 
space is computed by performing explicit integrations.3 An allowed form of boundary conditions 
for a scalar field on the two boundaries is also identified. An interesting issue of AdS/CFT is the 
prescription for semi-classically computing two-point functions of O+ and O− for a scalar field 
theory with a mass in the range −d2/4 < m2 < 1 − d2/4. To present this prescription is the 
second aim of this paper. It turns out that the (renormalized) action integral (in Euclidean AdS 
(EAdS) space) is given by a sum of bulk action and boundary terms:

I =
∞∫

−∞
dr

∫
ddy

√
g

(
1

2
gμν∂μφ∂νφ + 1

2
m2φ2

)
+ lim

r→+∞

∫
r fixed

dd �y√
γ

1

2
Δ−φ2

− lim
r→−∞

∫
r fixed

dd �y√
γ

1

2
Δ−φ2 − lim

r→−∞

∫
r fixed

dd �y√
γφr∂rφ. (1.1)

Here r is the radial coordinate which takes the value in the range −∞ < r < ∞. r = 0 is the 
horizon and r = ±∞ are the two boundaries. Two Poincaré patches are also introduced in the 
EAdS space corresponding to the Lorentzian version. The metric is given by ds2 = dr2/r2 +
r2 d �y2 = gμνdyμdyν and γij is an induced metric on the boundaries and 

√
γ = |r|d . The φ2, 

φ∂rφ terms on the boundaries are counterterms to cancel out the divergences which appear in 
calculation of the two-point functions. Two boundary values φ+, φ− of a scalar field will be used 
as source functions for the two-point functions in boundary CFT. Legendre transformation is not 
required. Calculation of three-point functions with our formalism is also outlined.

This paper is organized as follows. In Section 2 a global coordinates and Poincaré coordinates 
of AdS space are reviewed and peculiar properties of Lorentzian AdS space in Poincaré coor-
dinates are discussed. A prescription for patching together two Poincaré charts is explained. In 
Section 3 Klein–Gordon (KG) equation will be solved in each Poincaré patch, and two kinds of 
mode functions in a pair of Poincaré patches are determined in such a way that KG norm is con-
served. It is checked that the fluxes through the horizon vanish, and the fluxes at the boundaries 
cancel out. Conservation of energy is also shown. In Section 4 a scalar field operator is expanded 
into these modes, and canonical commutation relations are applied. In Section 5, Wightman func-
tion of a scalar field is computed explicitly. AdS/CFT correspondence for two-point functions 
will be studied in Section 6. Due to the properties of the mode functions obtained in Section 3, 
the solutions to the equation of motion on the pair of Poincaré patches have a peculiar parity 
property with respect to the radial coordinate r , which is modified by a parameter S. This fact 
allows us to write down a general solution φ in terms of two boundary values φ+, φ− of the 
scalar field. By assuming some form of boundary actions on the two boundaries, substituting the 
solution into the action, and adjusting the coefficients of the boundary terms to eliminate diver-
gences as |r| → ∞, we get a suitable generating functional of two-point functions. A prescription 
which makes both two point functions 〈O+O+〉 and 〈O−O−〉 positive is proposed. In Section 7

3 Wightman function for a scalar field in AdS space was computed previously by solving a differential equation with 
respect to an AdS-invariant distance and matching its singularity with that of flat space [11].
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a prescription for computing three-point functions in a bulk φ3 theory is mentioned. Section 8
is devoted to a summary and discussions. In Appendix A, an explicit calculation of Wightman 
function is presented. In Appendix B a method for calculating integrals of products of the bulk–
boundary propagators KΔ± is outlined.

2. AdS spacetime

2.1. Definition

A (d + 1)-dimensional AdS spacetime AdSd+1 is defined by a constant negative curvature 
hyperboloid

X · X ≡ −X2
0 − X2

d+1 +
d∑

i=1

X2
i = −�2 (2.1)

embedded in pseudo-Minkowski space Ed,2. Here � is an AdS radius. Line element in Ed,2

induces a one on this hyperboloid.

ds2 = −dX2
0 − dX2

d+1 +
d∑

i=1

dX2
i . (2.2)

There are several coordinate systems, and the global coordinates and the Poincaré ones are among 
them.4

Global coordinates are defined by

X0 = � secρ cos τ,

Xi = � tanρΩi (i = 1, . . . , d)

Xd+1 = � secρ sin τ, (2.3)

where radial coordinate ρ and time τ take values in ranges 0 ≤ ρ < π/2 and −π < τ ≤ π , and 
ρ = π/2 is a boundary. Spherical coordinates Ωi satisfy −1 ≤ Ωi ≤ 1 and 

∑
i Ω

2
i = 1. The line 

element is given by

ds2 = �2 sec2 ρ

(
dρ2 − dτ 2 + sin2 ρ

d∑
i=1

dΩ2
i

)
. (2.4)

To avoid time-like closed loops, one unwraps τ to have range −∞ < τ < ∞, and works with a 
universal covering space, CAdSd+1.

Poincaré coordinates are defined by

X0 = 1

2
z

(
1 + 1

z2

(
�2 − t2 + �x2)),

Xd = 1

2
z

(
1 + 1

z2

(−�2 − t2 + �x2)),

Xi = �

z
xi,

Xd+1 = �

z
t. (2.5)

4 For review see, for example, [3,9].
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Fig. 1. The horizon in AdS is obtained by making two diagonal cuts through the cylinder.

Here t and xi range between −∞ and ∞, and radial coordinate z ranges over 0 ≤ z < ∞. The 
line element is now given by

ds2 = �2

z2

(
dz2 − dt2 + d �x2). (2.6)

The boundary is at z = 0. There is also a Killing horizon at z = ∞. The time-like Killing vector 
becomes null at this horizon.

Poincaré coordinates cover only half of AdSd+1, since X0 − Xd = 1/z > 0. The remaining 
half is covered by coordinates (2.5) with −∞ < z ≤ 0. Usually, when AdS spacetime is studied in 
Poincaré patch, only a single patch is considered. However, as is explained below, it is necessary 
to consider a pair of Poincaré patches.

2.2. Two Poincaré patches

AdS space can be illustrated as an interior of a cylinder as in Fig. 1. The boundary of AdS 
is identified with the boundary of the cylinder. The horizons in AdS are obtained by making 
two diagonal cuts through the cylinder. The cuts divide AdS into two regions, each of which 
is covered by each of a pair of Poincaré coordinates. By using a pair of Poincaré coordinates, 
a single cover of AdS space is obtained. A simplified view (with only �x = �0 section) is given in 
Fig. 2. Here a new radial coordinate r = 1

z
is introduced. This ranges over −∞ < r < ∞. The 

line element (2.6) is rewritten as

ds2 = �2 (r−2 dr2 + r2(−dt2 + d �x2))≡ gμν dxμdxν. (2.7)

The boundaries are at r = ±∞ and the horizon is at r = 0. The metric (2.7) degenerates at the 
horizon r = 0, but there is no singularity in the curvature tensor Rμνλρ = �−2(gμλgνρ −gμρgλν). 
The conformal boundary of AdSd+1 is a two-fold cover of conformally compactified Minkowski 
spacetime Ed−1,1: ∂(AdSd+1) = Sd−1 × S1 as in Fig. 1. And that of the universal cover is 
Einstein static universe: ∂(CAdSd+1) = ESUd .

Furthermore, we need to take into account the flows of time t . Let us look at Fig. 3. The left 
Poincaré patch in Fig. 3 is also a single region due to periodicity in τ . The flows of time t are 
displayed. These flows are consistent with (2.5). The flows on the two Poincaré patches near the 
horizon are shifted with respect to each other by infinity, but we glue together the corresponding 
edges of the two Poincaré patches directly along the horizon. The resulting time coordinate is the 
one shown in Fig. 2.
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Fig. 2. AdS space is constructed by gluing two Poincaré patches at the horizon. The time flows on the two Poincaré 
patches near the horizon are shifted with respect to each other. Only the �x = �0 section is displayed.

Fig. 3. Penrose diagram of AdS; The flows of time t are displayed. Points A, . . . ,F correspond to those in Fig. 2.

In general, time variables in two different patches separated by a horizon do not need to 
coincide. In the next section, it will be shown that the fluxes of a scalar field across the horizon 
from each Poincaré patch vanish. Hence even if the time coordinates in the upper and lower 
patches are different, the fluxes are matched on both sides of the horizon.

2.3. Conformal symmetry of Poincaré patch

Importance of introducing a pair of Poincaré patches is understood by the following obser-
vation. A single set of Poincaré coordinates do not preserve the full isometry of AdSd+1 space, 
SO(2, d), but only its subgroup ISO(1, d − 1) × SO(1, 1) (Poincaré and dilatation symmetries). 
However, by introducing two Poincaré charts, a special conformal transformation,
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t → t ′ = t + (x2 + r−2)a0

1 + a2(x2 + r−2) + 2a · x , (2.8)

�x → �x′ = �x + (x2 + r−2)�a
1 + a2(x2 + r−2) + 2a · x , (2.9)

r → r ′ = r
(
1 + 2a · x + a2(x2 + r−2)), (2.10)

also becomes a symmetry transformation of (2.7), and full conformal symmetry is realized. ai =
(a0, �a) is a constant vector. (x2 ≡ −t2 + �x2, a · x ≡ −a0t + �a · �x, etc.) The factor multiplying r
on the right-hand side of (2.10) is not positive definite, and this transformation connects the two 
patches. The situation is completely different for EAdS. In this case a single Poincaré patch has 
a full conformal symmetry.

2.4. Boundaries at r = +∞ and r = −∞ are connected

Let us study the location of the conformal boundary in the Poincaré coordinates. By the def-
inition of the hyperboloid (2.1) it is defined by 

∑d
i=1 X2

i → ∞, and given by ρ = π/2 in the 
global coordinates. In the Poincaré coordinates (2.5), it is given by

d∑
i=1

X2
i = 1

4
h2r2 + �2 �x2r2 − 1

2
h + 1

4r2
→ +∞. (2.11)

Here h is a function h(t, �x) ≡ t2 − �x2 + �2. Hence the boundary of the pair of Poincaré patches 
is composed of the following hypersurfaces:

1. r → ±∞
2. r = 0
3. |�x| → ∞ with r �= 0
4. |t | → ∞ with r �= 0

The union of the above corresponds to the boundary of the global patch. Note that the horizon, 
and the spacial and even the temporal infinities are also part of the boundary. This last point is 
puzzling, because the conformal boundary in the global coordinates is time-like. This problem is 
not pursued in this paper. The structure of the boundary is illustrated in Fig. 4. Since all the parts 
of the boundary are connected, especially the boundaries at r = +∞ and r = −∞ at the same 
time t are connected.

In the case of AdS2 space the coordinates �x do not exist. The boundaries r = ±∞ are con-
nected only through the lines t = ±∞. Hence in what follows we will consider AdSd+1 with 
d ≥ 2.

3. Solutions to Klein–Gordon equation in a pair of Poincaré coordinates

In this section we consider a scalar field φ(r, t, �x) of mass m in AdS spacetime in a pair of 
Poincaré coordinates r > 0 and r < 0. Action integral is defined by

SAdS =
∞∫

dr

∫
dt dd−1 �x√−g

(
−1

2
gμν∂μφ∂νφ − 1

2
m2φ2

)
. (3.1)
−∞
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Fig. 4. Boundaries of a pair of Poincaré patches except for those at t = ±∞: two boundaries at r = ±∞ are connected. 
Thick lines are boundaries at t = t0.

Solution will be constructed in such a way that the fluxes across the horizon vanish and those 
across the boundaries at r = ±∞ cancel out. The resulting solution will be shown to have the 
following structure in a pair of Poincaré patches. See (3.27)–(3.28).

φ(r, t, �x) =
{

ϕ+(r, t, �x) + ϕ−(r, t, �x) (r > 0),

Sϕ+(−r, t, �x) − 1
S
ϕ−(−r, t, �x) (r < 0).

(3.2)

Here S is a real constant, and ϕ±(r, t, �x) are functions defined for r > 0. As |r| → ∞, ϕ± behaves 
as |r|−Δ∓φ±(t, �x) (Δ± > 0). Although ϕ± generally oscillate rapidly near the horizon r = 0, 
if boundary values φ± have compact supports, we have ϕ± ∼ |r|Δ± as r → ±0. (Subsection 6.2.) 
Hence, φ vanishes at r = ±0 and r = ±∞, and in a coordinate ρ̃ (r = ±eρ̃ ) in stead of r the 
solution is smooth on the entire hyperboloid.

In order to solve the equation of motion which is derived from the above action, we separate 
variables as

φ(r, t, �x) = e−iωt+i�k·�xχ(r). (3.3)

Then χ(r) satisfies the equation

r2∂2
r χ + (d + 1)r∂rχ − m2�2χ + (ω2 − �k2)r−2χ = 0. (3.4)

Two linearly independent solutions for non-integral ν is given by

χ±(r) = r− d
2 J±ν

(√
ω2 − �k2

r

)
, (3.5)

where Jν(z) is a Bessel function and
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ν =
√

d2

4
+ m2�2. (3.6)

We will restrict our attention to the case where ν is real and in the range 0 < ν < 1, because then 
mode functions with two different falloff behaviour can be obtained. For simplicity, we will set 
� = 1 in what follows.

For ω2 − �k2 < 0, solutions (3.5) blow up exponentially at either side of the horizon r = 0
and are non-normalizable. Thus from now on we will require ω2 − �k2 ≥ 0. In this case solutions 
oscillate near the horizon. The general solution to the Klein–Gordon equation can be written for 
r > 0 and r < 0 as

φ
ω,�k(r, t, �x) =

{
e−iωt+i�k·�x(C+(ω, �k)ψ+(r,ω, �k) + C−(ω, �k)ψ−(r,ω, �k)) (r > 0),

e−iωt+i�k·�x(C̃+(ω, �k)ψ+(r,ω, �k) + C̃−(ω, �k)ψ−(r,ω, �k)) (r < 0).

(3.7)

Here the mode functions are defined by

ψ±(r,ω, �k) =
⎧⎨
⎩ 2±ν�(1 ± ν)e

i
2 π( d

2 ±ν)r− d
2 J±ν

(√
ω2−�k2

r

)
(r > 0),

2±ν�(1 ± ν)e− i
2 π( d

2 ±ν)(−r)− d
2 J±ν

(√
ω2−�k2

−r

)
(r < 0).

(3.8)

Because the metric (2.7) is degenerate at the horizon (r = 0), the equation for φ is singular. So, 
the coefficients C̃± will be connected to C± in such a way that the fluxes are matched at the 
horizon and cancel out between the boundaries.

3.1. Klein–Gordon norm

The Klein–Gordon (KG) norm (φ1, φ2) for two modes φ1,2 is given by5

(φ1, φ2) =
∞∫

−∞
dr

∫
dd−1 �x√−g

−i

2
gtt
(
φ∗

1∂tφ2 − φ2∂tφ
∗
1

)∣∣
t=t0 fixed

=
∞∫

−∞
dr

∫
dd−1 �x i

2
|r|d−3(φ∗

1∂tφ2 − φ2∂tφ
∗
1

)∣∣
t=t0 fixed. (3.9)

Although the KG current is divergenceless, for conservation of the norm (3.9), we need to impose 
some conditions on the solutions. We will show that this norm is conserved (i.e., independent 
of t0), if the coefficients satisfy the relations

C̃+(ω, �k) = eiπνC+(ω, �k)Sei(α+ π
2 d), (3.10)

C̃−(ω, �k) = −e−iπνC−(ω, �k)
1

S
ei(α+ π

2 d). (3.11)

Here α and S are real parameters.
When solution (3.7) is substituted into the norm (3.9) and �x integral is performed, the norm is 

given by

5 Here time t = t0 is fixed. For the coordinate system in Fig. 2, constant-t hypersurfaces for r > 0 and r < 0 patches 
are not adjacent to each other at the horizon.
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(φ1, φ2) = ω1 + ω2

2
(2π)d−1δ(d−1)(�k1 − �k2)e

i(ω1−ω2)t

·
( ∞∫

0

dr rd−3ψ∗
1 (r,ω1, �k1)ψ2(r,ω2, �k2)

+
0∫

−∞
dr (−r)d−3ψ∗

1 (r,ω1, �k1)ψ2(r,ω2, �k2)

)
. (3.12)

Now because ψ in (3.8) solves (3.4), ψ1 and ψ2 satisfy

r3−d∂r

(
rd+1(ψ∗

1 ∂rψ2 − ψ2∂rψ
∗
1

))= (ω2
1 − ω2

2 − �k2
1 + �k2

2

)
ψ∗

1 ψ2, (3.13)

and for ω2
1 − ω2

2 �= 0, the norm (3.12) is expressed in terms of boundary values.6

(φ1, φ2) = (2π)d−1δ(d−1)(�k1 − �k2)e
i(ω1−ω2)t

1

2(ω1 − ω2)

· ([rd+1(ψ∗
1 ∂rψ2 − ψ2∂rψ

∗
1

)]∞
0 + [(−r)d+1(ψ∗

1 ∂rψ2 − ψ2∂rψ
∗
1

)]0
−∞
)
.

(3.14)

The contributions from the boundaries r = ±∞ are computed by using Jν(z) ∼ (�(ν +
1))−1(z/2)ν for z ∼ 0. The result is

(φ1, φ2)||r|=∞ = 1

2(ω1 − ω2)
(2π)d−1δ(d−1)(�k1 − �k2)e

i(ω1−ω2)t

·
[

2νC∗+(ω1, �k1)C−(ω2, �k2)e
−πiν

(
ω2

1 − �k2
1

ω2
2 − �k2

2

) ν
2

− 2νC∗−(ω1, �k1)C+(ω2, �k2)e
πiν

(
ω2

2 − �k2
2

ω2
1 − �k2

1

) ν
2

+ 2νC̃∗+(ω1, �k1)C̃−(ω2, �k2)e
πiν

(
ω2

1 − �k2
1

ω2
2 − �k2

2

) ν
2

− 2νC̃∗−(ω1, �k1)C̃+(ω2, �k2)e
−πiν

(
ω2

2 − �k2
2

ω2
1 − �k2

1

) ν
2
]
. (3.15)

This vanishes if C+ = C̃+ = 0 or C− = C̃− = 0, i.e., if Dirichlet or Neumann boundary condi-
tion is imposed. There is, however, another solution. This norm also vanishes, if the following 
condition is satisfied.

C∗+(ω1, �k1)C−(ω2, �k2) = −e2πiνC̃∗+(ω1, �k1)C̃−(ω2, �k2). (3.16)

This new solution is possible, because a pair of Poincaré patches is introduced. As will be shown 
in the next subsection, a flux across one boundary matches that from another.

We now turn to the contributions to the norm from the horizon. These are obtained by using 
the asymptotic form Jν(z) ∼ √

2/πz cos(z − (2ν + 1)π/4) for z → ∞. The contribution from 
the upper side of the horizon is given by

6 We follow the techniques used in [13].
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(φ1, φ2)|r=+0

= 1

2(ω1 − ω2)
ei(ω1−ω2)t (2π)d−1δ(d−1)(�k1 − �k2) · lim

r→0

[
− 2

π

(
4ν�(1 + ν)2N+

+ 4−ν�(1 − ν)2N−
)

sin

√
ω2

2 − �k2
2 −
√

ω2
1 − �k2

1

r

− 2

π

(
ω2

2 − �k2
2

ω2
1 − �k2

1

) 1
4

M1(ω1, �k1;ω2, �k2) + 2

π

(
ω2

1 − �k2
1

ω2
2 − �k2

2

) 1
4

M2(ω1, �k1;ω2, �k2)

+ 2

π

(
ω2

1 − �k2
1

ω2
2 − �k2

2

) 1
4

M∗
1 (ω2, �k2;ω1, �k1) − 2

π

(
ω2

2 − �k2
2

ω2
1 − �k2

1

) 1
4

M∗
2 (ω2, �k2;ω1, �k1)

]
, (3.17)

where

N± = C∗±(ω1, �k1)C±(ω2, �k2), (3.18)

M1(ω1, �k1;ω2, �k2) = �(1 + ν)�(1 − ν)C∗+(ω1, �k1)C−(ω2, �k2)e
−iπν

· cos

(√ω2
1 − �k2

1

r
− 2ν + 1

4
π

)
sin

(√ω2
2 − �k2

2

r
− −2ν + 1

4
π

)
,

(3.19)

M2(ω1, �k1;ω2, �k2) = �(1 + ν)�(1 − ν)C∗+(ω1, �k1)C−(ω2, �k2)e
−iπν

· cos

(√ω2
2 − �k2

2

r
− −2ν + 1

4
π

)
sin

(√ω2
1 − �k2

1

r
− 2ν + 1

4
π

)
.

(3.20)

To simplify M1 and M2, we need to use some formulae for distributions: sin(Λx)/(πx) → δ(x), 
cos(Λx)/(πx) → 0 for Λ → +∞ [13]. In the limit r → +0, functions M1,2 can be simplified 
by using these formulae as

M1(ω1, �k1;ω2, �k2) = M2(ω1, �k1;ω2, �k2)

= 1

2
�(1 + ν)�(1 − ν)C∗+(ω1, �k1)C−(ω2, �k2)e

−iπν

× sin

√
ω2

1 − �k2
1 −
√

ω2
2 − �k2

2

r
sin

2ν + 1

2
π. (3.21)

Since (ω1 −ω2)
−1 sin

√
ω2

1−�k2
1−
√

ω2
2−�k2

2
r

→ π sign(ω1)δ(ω1 −ω2), those terms which contain M1,2

all vanish, and we get

(φ1, φ2)|r=+0 = sign(ω1)δ(ω1 − ω2)(2π)d−1δ(d−1)(�k1 − �k2)

· [4ν�(1 + ν)2
∣∣C+(ω1, �k1)

∣∣2 + 4−ν�(1 − ν)2
∣∣C−(ω1, �k1)

∣∣2]. (3.22)
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Contribution to the norm at the other side of the horizon, (φ1, φ2)|r=−0, can be similarly com-
puted. Finally, KG norm is independent of t and given by

(φ1, φ2) = sign(ω1)δ(ω1 − ω2)(2π)d−1δ(d−1)(�k1 − �k2)

· [4ν�(1 + ν)2(1 + S2)∣∣C+(ω1, �k1)
∣∣2

+ 4−ν�(1 − ν)2(1 + S−2)∣∣C−(ω1, �k1)
∣∣2]. (3.23)

3.2. Flux

Since the KG norm is conserved, the fluxes must cancel or vanish at the boundaries and the 
horizon. Let us check this. One can compute the flux across the horizon from the r > 0 patch.

J(+0) =
∫

r=r0→+0, t=t0

dd−1 �x√−ggrr −i

2

(
φ∗

1∂rφ2 − φ2∂rφ
∗
1

)
. (3.24)

One can show that this vanishes by using 
√−ggrr = rd+1 and φ ∼ r−(d+1)/2 cos(· · ·). A cal-

culation similar to that used in deriving (3.23) must be done. Similarly, the flux at r = −0 also 
vanishes. The fluxes at r = +∞, however, does not vanish. It is given by

J(+∞) = −iν(2π)d−1δ(d−1)(�k1 − �k2)e
i(ω1−ω2)t

·
((

ω2
1 − �k2

1

ω2
2 − �k2

2

) ν
2

e−iπνC∗+(ω1, �k1)C−(ω2, �k2)

−
(

ω2
2 − �k2

2

ω2
1 − �k2

1

) ν
2

eiπνC∗−(ω1, �k1)C+(ω2, �k2)

)
. (3.25)

This takes forms of interference terms between the two kinds of modes. By using (3.16) one can 
show that this is canceled by the out-going flux at r = −∞.

J(−∞) = +iν(2π)d−1δ(d−1)(�k1 − �k2)e
i(ω1−ω2)t

·
(

−
(

ω2
1 − �k2

1

ω2
2 − �k2

2

) ν
2

eiπνC̃∗+(ω1, �k1)C̃−(ω2, �k2)

+
(

ω2
2 − �k2

2

ω2
1 − �k2

1

) ν
2

e−iπνC̃∗−(ω1, �k1)C̃+(ω2, �k2)

)
. (3.26)

The above results might seem useless, because the two boundaries in Fig. 2 appear to be 
infinitely separated. As mentioned in Subsection 2.4, however, in AdSd+1 space with d ≥ 2, the 
two boundaries at r = +∞ and r = −∞ are connected. In this way the total flux computed on 
the boundaries r = ±∞ cancels out at any time t .

To summarize, normalizable modes in the pair of Poincaré patches are given by

φ
ω,�k(r, t, �x) = e−iωt+i�k·�x · [C+(ω, �k)2ν�(1 + ν)e

i
2 π( d

2 +ν)r− d
2 Jν

(√
ω2 − �k2/r

)
+ C−(ω, �k)2−ν�(1 − ν)e

i
2 π( d

2 −ν)r− d
2 J−ν

(√
ω2 − �k2/r

)]
(3.27)



I. Fujisawa, R. Nakayama / Nuclear Physics B 886 (2014) 135–165 147
for r > 0, and

φ
ω,�k(r, t, �x) = e−iωt+i�k·�xeiα

[
SC+(ω, �k)2ν�(1 + ν)e

i
2 π( d

2 +ν)(−r)−
d
2 Jν

(
−
√

ω2 − �k2/r
)

− 1

S
C−(ω, �k)2−ν�(1 − ν)e

i
2 π( d

2 −ν)(−r)−
d
2 J−ν

(
−
√

ω2 − �k2/r
)]

(3.28)

for r < 0. Note that these mode functions are rapidly oscillating and blowing up near the horizon 
r = 0 like ∼ r

1−d
2 cos(

√
ω2 − �k2/r − (±2ν + 1)π/4). However, this very rapid oscillation actu-

ally makes the mode functions cancel out and vanish at the horizon. We will show in Section 6
that the solution (6.12) to the boundary-value problem, constructed by smearing these mode 
functions by source functions which have compact supports, has a milder behaviour φ ∼ |r|Δ±

for r → 0, where Δ± = d/2 ± ν. By means of the coordinate7 ρ̃ ≡ log |r| this can be written as 
φ ∼ eΔ±ρ̃ , and φ asymptotes to zero exponentially near the horizon ρ̃ = −∞. In this sense, the 
mode functions are smoothly connected at the horizon.

3.3. Conservation of energy

In AdSd+1 there is a time-like Killing vector and by contracting this with a stress-energy 
tensor, a formally conserved energy can be defined. To obtain an exactly conserved energy, one 
needs to show that the energy-flux vanishes or cancels at the horizon and boundaries. In AdS 
space the Riemann scalar R is constant, d(d + 1) (in units � = 1), and a coupling Rφ2 is equiva-
lent to a mass term. Hence we may replace the mass squared m2 by m2 − ξd(d + 1) + ξR in the 
action. Here ξ is a constant and the conformal coupling corresponds to ξ = ξc ≡ −(d − 1)/(4d). 
We will leave ξ as a free parameter and fix its value below.8

The stress-energy tensor is, after substitution of the solution into the equation of motion, 
given by

Tμν = (1 + 2ξ)∂μφ∂νφ + 2ξφ∇μ∇νφ +
(

2ξ − 1

2

)
m2gμνφ

2

− 1

2
(1 + 4ξ)gμνφ∇λ∇λφ − d2ξgμνφ

2. (3.29)

Energy flux∫
t,r fixed

dd−1 �x√−ggrrTrt (3.30)

can be calculated as in the previous subsection for the particle number flux. Trt is given by

Trt = (1 + 2ξ)∂rφ∂tφ + 2ξφ∂r∂tφ − 2ξ

r
φ∂tφ (3.31)

7 This variable ρ̃ is different from ρ of the global coordinates (2.3).
8 In [2] it was shown that in the global coordinates of AdS space, energy of either Dirichlet or Neumann mode is 

conserved by choosing stress-tensor with a conformal coupling ξ = ξc .
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and it is easily shown that the fluxes at r = +0 and r = −0 vanish. It turns out, however, that for 
general ξ , the energy-fluxes at r = ±∞ contain an infinity |r|2ν associated with the modes ψ−. 
This infinity can be removed by fine tuning ξ .

ξ = 2ν − d

4(d − 2ν + 1)
(3.32)

Interestingly, at ν = 1
2 , this agrees with the conformal value ξc presented above. There still remain 

finite (O(r0)) fluxes at the two boundaries. It can, however, be shown that the remaining fluxes 
at r = +∞ and r = −∞ cancel out completely by using (3.16), exactly as in the particle number 
flux. Hence the energy associated with both kinds of modes ψ± is conserved in the pair of 
Poincaré patches.

4. Mode expansion of φ and canonical commutation relations

In this section we will perform canonical quantization of a free scalar field in AdSd+1 in 
a pair of Poincaré coordinates. We use mode expansions (3.27) and (3.28). By replacing the 
coefficients C+,− by annihilation and creation operators, and integrating over ω and �k, we obtain 
the following operator:

Φ(r, t, �x) =
∞∫

−∞
dd−1�k

∞∫
|�k|

dω
[
e−iωt+i�k·�x(a+(ω, �k)ψ̂+(r,ω, �k) + a−(ω, �k)ψ̂−(r,ω, �k)

)

+ eiωt−i�k·�x(a†
+(ω, �k)ψ̂∗+(r,ω, �k) + a

†
−(ω, �k)ψ̂∗−(r,ω, �k)

)]
. (4.1)

The integration region is restricted to |�k| ≤ ω. This operator is defined for both r > 0 and r < 0. 
The functions ψ̂± are obtained by slightly modifying ψ±, and given by

ψ̂+(r,ω, �k) =
{

2ν�(1 + ν)r− d
2 Jν

(√
ω2 − �k2/r

)
(r > 0),

Seiα · 2ν�(1 + ν)(−r)− d
2 Jν

(−√ω2 − �k2/r
)

(r < 0),
(4.2)

ψ̂−(r,ω, �k) =
{

2−ν�(1 − ν)r− d
2 J−ν

(√
ω2 − �k2/r

)
(r > 0),

− 1
S
eiα · 2−ν�(1 − ν)(−r)− d

2 J−ν

(−√ω2 − �k2/r
)

(r < 0).
(4.3)

This operator and its canonical conjugate momentum Π(r, t, �x) = |r|d−3∂tΦ must sat-
isfy the canonical commutation relations: [Φ(r, t, �x), Π(r ′, t, �x′)] = iδ(r − r ′)δ(d−1)(�x − �x′), 
[Φ(r, t, �x), Φ(r ′, t, �x′)] = 0 and [Π(r, t, �x), Π(r ′, t, �x′)] = 0. It can be shown that this is 
achieved by setting α = 0 or π and imposing the following commutators. (Other commutators 
are vanishing.)

[
a+(ω, �k), a

†
+
(
ω′, �k′)]= 1

21+2ν(2π)d−1�(1 + ν)2

1

1 + S2
δ
(
ω − ω′)δ(d−1)

(�k − �k′),
[
a−(ω, �k), a

†
−
(
ω′, �k′)]= 1

21−2ν(2π)d−1�(1 − ν)2

S2

1 + S2
δ
(
ω − ω′)δ(d−1)

(�k − �k′).
(4.4)

Because eiα is multiplied by S or 1/S in (4.2), (4.3), we can set α = 0 by allowing S to take 
positive or negative values.
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The role of parameter S is to specify the relative magnitude of the mode functions (4.2)–(4.3)
in the two patches. One can replace ψ− by S−1ψ̃− and a− by Sã− without changing the form 
of (4.1). Then, S-dependences of [a+, a†

+] and [ã−, ã†
−] become the same: 1/(1 +S2). If one sets 

S = 0, then the mode ψ̃− is quantized only in the patch with r < 0, while ψ+ is quantized only 
in the r > 0 patch. At present we do not have an argument to determine S, and in this paper we 
will leave the value of S undetermined.

First let us consider [Φ(r, t, �x), Φ(r ′, t, �x′)]. This is given as

[
Φ(r, t, �x),Φ

(
r ′, t, �x′)]

=
∫

dd−1�k
∞∫

|�k|
dω(2π)1−d

(
1 + S2)−1

ei�k·(�x−�x′)

·
[

2−1−2ν 1

�(1 + ν)2

{
ψ̂+(r,ω, �k)ψ̂∗+

(
r ′,ω, �k)− ψ̂∗+(r,ω,−�k)ψ̂+

(
r ′,ω,−�k)}

+ 2−1+2ν S2

�(1 − ν)2

{
ψ̂−(r,ω, �k)ψ̂∗−

(
r ′,ω, �k)− ψ̂∗−(r,ω,−�k)ψ̂−

(
r ′,ω,−�k)}].

(4.5)

For rr ′ > 0, terms on the right-hand side cancel out completely. For r > 0 and r ′ < 0, we have

[
Φ(r, t, �x),Φ

(
r ′, t, �x′)]

=
∫

dd−1�k
∞∫

0

dμ
μ√

�k2 + μ2
ei�k·(�x−�x′) S

2(1 + S2)
(2π)1−d

· (e−iα − eiα
)[

Jν

(
μ

r

)
Jν

(
μ

−r ′

)
+ J−ν

(
μ

r

)
J−ν

(
μ

−r ′

)](−rr ′)− d
2 . (4.6)

Here we set ω =
√

�k2 + μ2 and integration over ω is replaced by that over μ. This vanishes, if 

eiα = ±1. Similar result is obtained for r < 0 and r ′ > 0. By a similar analysis it can be shown 
that [Π(r, t, �x), Π(r ′, t, �x′)] = 0, if eiα = ±1.

Next we turn to [Φ(r, t, �x), Π(r ′, t, �x′)]. In this case we have

[
Φ(r, t, �x),Π

(
r ′, t, �x′)]

=
∫

dd−1�k
∞∫

|�k|
dω(2π)1−d

(
1 + S2)−1

ei�k·(�x−�x′)iω
∣∣r ′∣∣d−3

·
[

2−1−2ν 1

�(1 + ν)2

{
ψ̂+(r,ω, �k)ψ̂∗+

(
r ′,ω, �k)+ ψ̂∗+(r,ω,−�k)ψ̂+

(
r ′,ω,−�k)}

+ 2−1+2ν S2

�(1 − ν)2

{
ψ̂−(r,ω, �k)ψ̂∗−

(
r ′,ω, �k)+ ψ̂∗−(r,ω,−�k)ψ̂−

(
r ′,ω,−�k)}].

(4.7)



150 I. Fujisawa, R. Nakayama / Nuclear Physics B 886 (2014) 135–165
For rr ′ > 0, this yields

[
Φ(r, t, �x),Π

(
r ′, t, �x′)]= ∫ dd−1�k

∞∫
0

dμ(2π)1−d
(
1 + S2)−1

ei�k·(�x−�x′)iμ|r ′|d−3

· (rr ′)− d
2

[
Jν

(
μ

r

)
Jν

(
μ

r ′

)
+ S2J−ν

(
μ

r

)
J−ν

(
μ

r ′

)]
. (4.8)

By using a formula

∞∫
0

dx xJν(ax)Jν(bx) = 1

a2 − b2

[
x
(
Jν(ax)J ′

ν(bx) − Jν(bx)J ′
ν(ax)

)]∞
0 (4.9)

and the identities for distributions used in the previous section, it can be shown that (4.8) agrees 
with iδ(r − r ′)δ(d−1)(�x − �x′). For r > 0 and r ′ < 0 we have[

Φ(r, t, �x),Π
(
r ′, t, �x′)]

=
∫

dd−1�k
∞∫

0

dμ(2π)1−d S

2(1 + S2)
ei�k·(�x−�x′)iμ|r ′|d−3

· (e−iα + eiα
)(−rr ′)− d

2

[
Jν

(
μ

r

)
Jν

(
μ

−r ′

)
− J−ν

(
μ

r

)
J−ν

(
μ

−r ′

)]
. (4.10)

This vanishes due to (4.9). The commutators with r < 0 and r ′ > 0 also vanish.

5. Wightman function

In this section we will compute Wightman function for a scalar field in AdSd+1 space.

G
(
r, t, �x; r ′, t ′, �x′)= 〈0|Φ(r, t, �x)Φ

(
r ′, t ′, �x′)|0〉. (5.1)

Here |0〉 is a vacuum which is annihilated by a+ and a−.
By using the mode expansion (4.1) and the commutation relations (4.4), Wightman function 

is given by

G
(
r, t, �x; r ′, t ′, �x′)= G+

(
r, t, �x; r ′, t ′, �x′)+ G−

(
r, t, �x; r ′, t ′, �x′),

G± =
∫

dd−1�k
(2π)d−1

∞∫
|�k|

dω
1

2(1 + S2)
e−iω(t−t ′)+i�k·(�x−�x′)

· 1

2±2ν�(1 ± ν)2
ψ̂±(r,ω, �k)ψ̂∗±

(
r ′,ω, �k), (5.2)

G± can be expressed as integrals (A.1) of a flat-space Wightman function integrated over a 
mass parameter μ. We will display the results for space-like separation of the plane (Ed−1,1) 
coordinates.(

x − x′)2 ≡ −(t − t ′
)2 + (�x − �x′)2 > 0. (5.3)
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From the structure of the mode functions (4.2), (4.3), we have

G+
(
r, t, �x; r ′, t ′, �x′)= Sθ(−r)+θ(−r ′)G+

(|r|, t, �x; ∣∣r ′∣∣, t ′, �x′), (5.4)

G−
(
r, t, �x; r ′, t ′, �x′)= (−S)−θ(−r)−θ(−r ′)G−

(|r|, t, �x; ∣∣r ′∣∣, t ′, �x′). (5.5)

By using some mathematical formulae in, for example [16], we can show that

G+
(
r, t, �x; r ′, t ′, �x′)

= Sθ(−r)+θ(−r ′)

1 + S2

�(d
2 + ν)

2π
d
2 �(1 + ν)

P
d
2 +ν

2F1

(
d

2
+ ν,

1

2
+ ν,1 + 2ν;−4P

)
, (5.6)

G−
(
r, t, �x; r ′, t ′, �x′)

= (−S)θ(r)+θ(r ′)

1 + S2

�(d
2 − ν)

2π
d
2 �(1 − ν)

P
d
2 −ν

2F1

(
d

2
− ν,

1

2
− ν,1 − 2ν;−4P

)
. (5.7)

Here 2F1(a, b, c; z) is a hypergeometric function, and θ(x) is a step function (θ(x) = 1 for x > 0
and 0 for x < 0). P is defined by

P = 1

|rr ′|
1

( 1
|r| − 1

|r ′| )2 + (x − x′)2
(5.8)

and related to the chordal distance σ ≡ X · X′ + 1 by

P −1 =
{−2σ (rr ′ > 0),

2(σ − 2) (rr ′ < 0).
(5.9)

Note that σ = 0 for X = X′, and σ = 2 for X = −X′. Hence P −1 vanishes either if the points 
coincide X = X′ (rr ′ > 0), or if they are antipodal to each other, X = −X′ (rr ′ < 0). The 
hypergeometric functions in (5.6) and (5.7) can be singular at −4P = 0, 1, ∞. As discussed 
above, condition P = ∞, which is equivalent to(

1

|r| − 1

|r ′|
)2

+ (x − x′)2 = 0, (5.10)

is satisfied for X = ±X′ (coincident and antipodal points).9 A singularity at P = −1/4 occurs 
for (

1

|r| + 1

|r ′|
)2

+ (x − x′)2 = 0. (5.11)

These singularities (5.10) and (5.11) are associated with a real charge and its image [12]. If d ≥ 2, 
P = 0 is not a singularity due to the pre-factors P

d
2 ±ν in (5.6) and (5.7). The result (5.6) is derived 

in Appendix A. When r ′ is sent to infinity, the above functions approach the bulk–boundary 
propagators: G± ∼ const · |r ′|−Δ±((1 + r2(x − x′)2)/|r|)−Δ± . For null and time-like separation 
(P −1 ≤ 0), G is given by analytically continuing the above result by iε prescription t − t ′ →
t − t ′ − iε. Feynman propagator iGF is obtained from G by replacement P −1 → P −1 + iε. 
Feynman propagator of a scalar field in a Poincaré patch of AdS space with a single type of 
modes was obtained in [11].

9 It can be shown by using (5.6)–(5.7) that singularities at X = −X′ cancel out between G+ and G− .
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6. AdS/CFT correspondence

In the preceding sections we have learnt that a general solution φ to the K–G equation in a 
pair of Poincaré patches has the structure (3.2). As discussed at the end of Section 3, ϕ± in a 
coordinate ρ̃ ≡ log |r| effectively asymptote to zero exponentially near the horizon ρ̃ → −∞, 
and φ is smooth at the horizon, even if ϕ± are multiplied by S and −1/S for r < 0. As we 
will see, this structure imposes some constraints on the boundary conditions for φ at r = ±∞. 
The above relations remind us of the connection between Fourier series expansion in an interval 
(−π, π), and sinusoidal and cosinusoidal Fourier series expansions in a half interval (0, π) [1–3].
In that case the sinusoidal one is odd under the reflection and the cosinusoidal one is even. Here 
this correspondence is modified by the extra factors S and 1/S.

6.1. Wick rotation

In what follows we will switch to Euclidean Anti-de Sitter space (EAdSd+1) by Wick rotation. 
In contrast to AdSd+1, the quadric in Ed+1,1 is composed of two hyperbolic spaces Hd+1 (dis-
connected balls Bd+1). Each piece has r > 0 and r < 0, respectively. One of the two is EAdSd+1. 
Hence one usually quantizes a scalar field in a single Poincaré patch. When the entire Lorentzian 
AdS space is considered, however, one cannot go from a Lorentzian signature to a Euclidean 
one, and then come back through analytical continuation. Our primary concern is to study a 
scalar field theory in Lorentzian AdS space, not in EAdS. We perform Wick rotations in order 
to make integrals which contain products of bulk–boundary propagators well-defined, when the 
UV divergence is regularized by cutoff |r| = finite. Hence, in what follows, we will consider 
both pieces of the hyperbolic spaces, and glue together the two half spaces at the horizon, which 
is also part of the boundary. Then, we assume that the structure of the solution (3.2) is the same 
after Wick rotation, although the topology of the spacetime has changed by Wick rotation. The 
coordinates on the boundary will be denoted as �y instead of (τ = it, �x). The bulk action integral 
for the scalar field is given by

I0 =
∞∫

−∞
dr

∫
ddy

√
g

(
−1

2

1√
g

φ∂μ

(√
ggμν∂νφ

)+ 1

2
m2φ2

)
. (6.1)

Here note that this action has an asymmetric form. This is different from the action in ordinary 
form by surface terms. This is arranged so that the on-shell value of I0 vanishes [8]. Surface 
action integrals I± will also be introduced later, and the total action is I = I0 + I+ + I−. The 
metric tensor is given by

ds2
E = gμν dxμdxν = r−2dr2 + r2 (d �y)2. (6.2)

The equation of motion for φ in the bulk has solutions of a form φ ∼ r−(d−Δ) as |r| → ∞. 
There are two values of Δ

Δ = Δ± ≡ d ± ν, ν =
√(

d
)2

+ m2. (6.3)

2 2
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BF bound [2] is given by m2 ≥ − d2

4 . When Δ− satisfies the unitarity bound Δ− ≥ d−2
2 , ν will 

be in the range 0 < ν < 1.10 If ν is in this range, there are two scalar operators O+, O− with 
scaling dimensions Δ+, Δ− in the boundary CFT. Discussion in this paper will be restricted to 
this case. Then Δ− < d

2 < Δ+.

6.2. Green functions and solutions to boundary-value problem

Euclidean Green function GE(r, y; r ′, y′) is obtained from Feynman propagator iGF (y =
(τ, �x)) by the relation

GE

(
r, τ, �x; r ′, τ ′, �x′)= iGF

(
r,−iτ, �x; r ′,−iτ ′, �x′) (6.4)

The bulk–boundary Green functions are given by [7,15]

KΔ±
(�y, �y′, r

)= �(Δ±)

πd/2�(Δ± − d
2 )

(
r

1 + r2(�y − �y′)2

)Δ±
. (6.5)

Near the boundary (r → ∞), these have the asymptotics:

KΔ±
(�y, �y′, r

)→ r−(d−Δ±)δ(d)
(�y − �y′)+ r−Δ± �(Δ±)

πd/2�(Δ± − d
2 )

1

|�y − �y′|2Δ± + · · · .
(6.6)

Due to (5.6)–(5.7) these are related to G± by

G±
(|r|,−iτ, �x; ∣∣r ′∣∣,−iτ ′, �x′)= 1

±2(1 + S±2)ν

1

|r ′|Δ± KΔ±
(�y, �y′, |r|), r ′ → ∞. (6.7)

Then we can write down the general solution to the Klein–Gordon equation in the pair of Poincaré 
patches for EAdSd+1:

φ(r, �y) = 1

1 + S2

[∫
dd �y′ KΔ+

(�y, �y′, r
)
φ+
(�y′)+ S

∫
dd �y′ KΔ+

(�y, �y′, r
)
φ̄+
(�y′)]

+ 1

1 + S2

[
S2
∫

dd �y′ KΔ−
(�y, �y′, r

)
φ−
(�y′)

− S

∫
dd �y′ KΔ−

(�y, �y′, r
)
φ̄−
(�y′)] (r > 0) (6.8)

and

φ(r, �y) = 1

1 + S2

[
S

∫
dd �y′ KΔ+

(�y, �y′,−r
)
φ+
(�y′)+ S2

∫
dd �y′ KΔ+

(�y, �y′,−r
)
φ̄+
(�y′)]

+ 1

1 + S2

[
−S

∫
dd �y′ KΔ−

(�y, �y′,−r
)
φ−
(�y′)

+
∫

dd �y′ KΔ−
(�y, �y′,−r

)
φ̄−
(�y′)] (r < 0). (6.9)

10 Values ν = 0, 1 are not considered in this paper.
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Here φ±(�y) and φ̄±(�y) are boundary conditions at r = +∞ and r = −∞, respectively. Accord-
ing to (3.2), these functions must be related by

φ̄+(�y) = Sφ+(�y), (6.10)

φ̄−(�y) = − 1

S
φ−(�y). (6.11)

After substituting the above into (6.8) we obtain

φ(r, �y) =
{ ∫

dd �y′ KΔ+(�y, �y′, r)φ+(�y′) + ∫ dd �y′ KΔ−(�y, �y′, r)φ−(�y′) (r > 0),

S
∫

dd �y′ KΔ+(�y, �y′,−r)φ+(�y′) − 1
S

∫
dd �y′ KΔ−(�y, �y′,−r)φ−(�y′) (r < 0).

(6.12)

Now the boundary conditions on φ are

φ(r, �y) =
{

f+(�y)r−Δ− + f−(�y)r−Δ+ +O(r−2−Δ±) (r → +∞),

f̄+(�y)(−r)−Δ− + f̄−(�y)(−r)−Δ+ +O(r−2−Δ±) (r → −∞).
(6.13)

Here f±(�y) and f̄±(�y) are functions which are determined in terms of φ±(�y):

f+ = φ+(�y) + �(Δ−)

π
d
2 �(−ν)

∫ ∣∣�y − �y′∣∣−2Δ−φ−
(�y′)dd �y′, (6.14)

f− = φ−(�y) + �(Δ+)

π
d
2 �(ν)

∫ ∣∣�y − �y′∣∣−2Δ+φ+
(�y′)dd �y′, (6.15)

f̄+ = Sφ+(�y) − 1

S

�(Δ−)

π
d
2 �(−ν)

∫ ∣∣�y − �y′∣∣−2Δ−φ−
(�y′)dd �y′, (6.16)

f̄− = − 1

S
φ−(�y) + S

�(Δ+)

π
d
2 �(ν)

∫ ∣∣�y − �y′∣∣−2Δ+φ+
(�y′)dd �y′. (6.17)

The first terms are source functions and the second terms are ‘responses’ to the sources. In 
actual calculations of the asymptotics of a given solution, one cannot distinguish the two. For the 
integrals in f− and f̄−, some regularization for the singularities at �y = �y′ will be necessary. Now 
the O(r−Δ−) and O(r−Δ+) terms in φ(r, �y) are fixed on the boundaries, and in the derivation of 
the equation of motion, the variation of φ is at most δφ(r, �y) = O(r−2−Δ−). Then the variations 
of the action on the boundaries vanish: 

∫
dd �y √

gφr∂rδφ → 0, 
∫

dd �y √
gδφr∂rφ → 0 (r →

±∞). Hence the variational problem is well-posed. To determine f± and f̄± in terms of φ±, 
one needs to know KΔ± .11 In an asymptotically AdS space, such as the one in the presence of 
black holes, one would need to use a bulk–boundary propagator K ′

Δ± of a scalar field in such a 
background.

Let us now turn to the behaviour of the solution (6.12) near the horizon. We consider inte-
grals 

∫
dd �y′[r/(1 + r2(�y − �y′)2)]Δ±φ±(�y′). As far as the source functions φ±(�y) have compact 

supports, these integrals can be approximated as rΔ±
∫

dd �y′ φ±(�y′) as r → 0. Hence∫
dd �y′KΔ+

(�y, �y′, r
)
φ+
(�y′)∼ �(Δ±)

π
d
2 �(Δ± − d

2 )

[∫
dd �y′φ±

(�y′)]rΔ± (6.18)

11 The mode functions ψ± (3.8) have asymptotic behaviours r− d
2 ±ν , respectively. However, after integrating over the 

modes, each bulk–boundary propagator KΔ± acquires both power behaviours (6.6). In order to impose the boundary 
condition on the scalar field, one needs to use KΔ± .
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and the solution φ to the boundary-value problem behaves near the boundary as φ ∼ rΔ± , al-
though the mode functions (3.27) and (3.28) are blowing up and oscillating rapidly near the 
horizon. Then, φ and (r ∂r )

n φ = ∂n
ρ̃

φ vanish on the horizon, and the surface terms on the hori-
zon are not required.

6.3. Two-point functions and boundary terms

According to AdS/CFT correspondence, in the semi-classical regime, the on-shell action of 
the scalar field in the AdS background is supposed to give generating functional of two-point 
functions of single-trace operators O+ or O− in boundary CFT. In this paper we will try to 
realize AdS/CFT correspondence for O+ and O− altogether at the same time. Since the bulk 
action I0 (6.1) vanishes on shell, we need to introduce boundary terms (and counterterms). The 
choice of the boundary terms defines definite theories. Because there are two boundaries, we can 
introduce boundary action I± on each boundary. They must be local functionals of φ and its 
derivatives. We will consider the following form.

I± = ± lim
r→±∞

∫
r=fixed

dd �y|r|d[α1φ
2 + α2φr∂rφ + α3(r∂rφ)2 + α4φ(r∂r )

2φ
]

= ± lim
r→±∞

∫
r=fixed

dd �y[±α2
√

gφgrr∂rφ + √
γ
{
α1φ

2 + α3g
rr (∂rφ)2 + α4g

rrφ∂2
r φ
}]

.

(6.19)

Here αi (i = 1, 2, 3, 4) are constants, and γij is an induced metric on the boundaries. It will 
turn out that the generating functional is universal up to a multiplicative constant, and we can 
set α3 = α4 = 0. These boundary terms are invariant under reparametrizations which keep the 
boundary unchanged.

We will substitute the general solution (6.8)–(6.9) into (6.19). It is necessary to evaluate inte-
grals of a form limr→∞

∫
dd �y rd(r∂r )

nKΔ(�y, �y1, r)(r∂r )
n′

KΔ′(�y, �y2, r) with n, n′ = 0, 1, 2. The 
method will be explained in Appendix B. Then, the on-shell boundary action I+ (6.19) is given 
by12

I+ = A1

∫
dd �y1

∫
dd �y2 φ+(�y1)y

−2Δ+
12 φ+(�y2)

+ A2r
2ν

∫
dd �y1

∫
dd �y2 φ+(�y1)y

−2Δ−
12 φ−(�y2)

+
∫

dd �y1

∫
dd �y2 φ−(�y1)

(
A3r

2νy
d−4Δ−
12 + A4y

−2Δ−
12

)
φ−(�y2). (6.20)

The coefficients A1, . . . , A4 are given by

A1 = 2�(Δ+)

π
d
2 �(ν)

[
α1 − d

2
α2 + Δ+Δ−α3 + 1

2

(
Δ2+ + Δ2−

)
α4

]
, (6.21)

12 We also evaluated these integrals using Fourier transforms of the bulk–boundary Green functions (6.5), K̃Δ(�k) =
2

d
2 −Δ+1

�(Δ − d
2 )−1r

− d
2 |�k|Δ− d

2 K d
2 −Δ

(|�k|/r), with identical results. Kd/2−Δ on the right-hand side is a McDonald 
function.
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A2 = 2�(Δ−)

π
d
2 �(−ν)

[
α1 − Δ−α2 + Δ2−(α3 + α4)

]
, (6.22)

A3 = �(d
2 − 2ν)�(ν)2

π
d
2 �(2ν)�(−ν)2

[
α1 − Δ−α2 + Δ2−(α3 + α4)

]
, (6.23)

A4 = 2�(Δ−)

π
d
2 �(−ν)

[
α1 − d

2
α2 + Δ+Δ−α3 + 1

2

(
Δ2+ + Δ2−

)
α4

]
. (6.24)

This result can also be obtained more easily by using (6.6) and an integral formula∫
dd �y |�y − �y1|−2Δ|�y − �y2|−2Δ′ = yd−2Δ−2Δ′

12 π
d
2
�(Δ + Δ′ − d

2 )�(d
2 − Δ)�(d

2 − Δ)

�(Δ)�(Δ′)�(d − Δ − Δ′)
,

(6.25)

which is a result of analytic continuation. Especially, the following identities hold.∫
dd �y |�y − �y1|−2Δ+ |�y − �y2|−2Δ− = 0, (6.26)

∫
dd �y |�y − �y1|−2Δ−|�y − �y2|−2Δ− = π

d
2 �(ν)2

�(Δ−)2�(2ν)
y−d+4ν

12 . (6.27)

Those coefficients A2 and A3 in (6.24), which multiplies those terms divergent as r → ∞, 
must vanish. These conditions put a constraint on the parameters αi:

α1 − Δ−α2 + Δ2−(α3 + α4) = 0. (6.28)

There are still free parameters in addition to an overall constant. Note that this finiteness pre-
scription eliminates the coupling between φ+ and φ−.

Finally we get

−I+ = 4ν

π
d
2

(α2 − 2Δ−α3 − dα4)

∫
dd �y1

∫
dd �y2

[
�(Δ+)

�(ν)
y

−2Δ+
12 φ+(�y1)φ+(�y2)

+ �(Δ−)

�(−ν)
y

−2Δ−
12 φ−(�y1)φ−(�y2)

]
. (6.29)

We believe that even if further boundary terms are introduced in (6.19), the result for −I+
is unique up to an overall constant. From (6.29) we can read off the two-point functions 
〈O±(y1)O±(y2)〉 in boundary CFT by means of functional differentiations of −I+. This result 
shows that there is some kind of universality. Even if we add extra boundary terms to the action 
as in (6.19), after suitable renormalization, the result will be proportional to a universal generat-
ing function. There is, however, a serious problem in the present case. Since �(−ν) is negative 
for 0 < ν < 1, for any choice of α2, α3 and α4, 〈O+(�y1)O+(�y2)〉 or 〈O−(�y1)O−(�y2)〉 necessarily 
turns out negative. This would imply that CFT would be non-unitary.

This problem is actually resolved, when we also use I− as given in (6.19) with an overall 
negative sign with respect to I+. Due to the relative coefficients in (6.12), we have from (6.29),

−I− = − 4ν

π
d
2

(α2 − 2Δ−α3 − dα4)

∫
dd �y1

∫
dd �y2

[
S2 �(Δ+)

�(ν)
y

−2Δ+
12 φ+(�y1)φ+(�y2)

+ S−2 �(Δ−)
y

−2Δ−
12 φ−(�y1)φ−(�y2)

]
. (6.30)
�(−ν)
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The sum I = I+ + I− yields the following two point functions:〈
O+(�y1)O+(�y2)

〉= 8ν

π
d
2

�(Δ+)

�(ν)
((α2 − 2Δ−α3 − dα4)

(
1 − S2)y−2Δ+

12 , (6.31)

〈
O−(�y1)O−(�y2)

〉= 8ν

π
d
2

�(Δ−)

�(−ν)
((α2 − 2Δ−α3 − dα4)

(S2 − 1)

S2
y

−2Δ+
12 , (6.32)〈

O+(�y1)O−(�y2)
〉= 0 (6.33)

To reinstate unitarity, we need to adjust the parameters such that (α2 − 2Δ−α3 − dα4)(1 −
S2) > 0. If the bulk action (6.1) is rewritten into an ordinary symmetric form by partial integra-
tion, boundary terms − 1

2

∫
r→+∞ dd �y |r|dφr∂rφ and − 1

2

∫
r→−∞ dd �y |r|dφr∂rφ will appear, and 

to cancel the first term we must set α2 = 1
2 . In this case the second term is not canceled. Then, 

α3 = α4 = 0 and α1 = 1
2Δ− will be the simplest choice of parameters. Hence, S2 < 1. The above 

prescription is different from the previous ones [5,7,8].
To summarize, after partial integration, the action integral is given by

I =
∞∫

−∞
dr

∫
ddy

√
g

(
1

2
gμν∂μφ∂νφ + 1

2
m2φ2

)

+ lim
r→+∞

∫
r fixed

dd �y √
γ

1

2
Δ−φ2 − lim

r→−∞

∫
r fixed

dd �y √
γ

1

2
Δ−φ2

− lim
r→−∞

∫
r fixed

dd �y √
γφr∂rφ. (6.34)

7. Three-point functions

The Euclidean Green function satisfies(
1√
g

∂μ

(√
ggμν∂ν

)− m2
)

GE

(
x, x′)= − 1√

g
δ(d+1)

(
x, x′). (7.1)

Let us consider a λφ3 interaction with λ being of order of 1/N [14]:

I0 =
∞∫

−∞
dr

∫
dd �y√

g

(
−1

2
φ

1√
g

∂μ

(√
ggμν∂ν

)
φ + 1

2
m2φ2 + 1

3
λφ3
)

. (7.2)

Equation of motion Δ φ − m2 φ = λ φ2 can be solved by using the Green function GE:

φ(r, �y) =
∫

dd �y′KΔ+
(�y, �y′, r

)
φ+
(�y′)+ ∫ dd �y′KΔ−

(�y, �y′, r
)
φ−
(�y′)

− λ

∫
dd �y′

∞∫
−∞

dr ′
√

g
(
r ′)GE

(
r, �y; r ′, �y′)φ(�y′, r ′)2 (r > 0), (7.3)

φ(r, �y) = S

∫
dd �y′KΔ+

(�y, �y′,−r
)
φ+
(�y′)− 1

S

∫
dd �y′KΔ−

(�y, �y′,−r
)
φ−
(�y′)

− λ

∫
dd �y′

∞∫
dr ′
√

g
(
r ′)GE

(
r, �y; r ′, �y′)φ(�y′, r ′)2 (r < 0). (7.4)
−∞
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These equations can be solved by iterations. Up to the first order in λ, the solution is given as 
follows:

φ(r, �y) =
∫

dd �y′KΔ+
(�y, �y′, r

)
φ+
(�y′)+ ∫ dd �y′KΔ−

(�y, �y′, r
)
φ−
(�y′)

− λ

∞∫
0

dr ′
∫

dd �y′
√

g
(
r ′)GE

(
r, �y; r ′, �y′)[∫ dd �y′′KΔ+

(�y′, �y′′, r ′)φ+
(�y′′)

+
∫

dd �y′′KΔ−
(�y′, �y′′, r ′)φ−

(�y′′)]2

− λ

∞∫
0

dr ′
∫

dd �y′
√

g
(
r ′)GE

(
r, �y;−r ′, �y′)[S ∫ dd �y′′KΔ+

(�y′, �y′′, r ′)φ+
(�y′′)

− 1

S

∫
dd �y′′KΔ−

(�y′, �y′′, r ′)φ−
(�y′′)]2

+O
(
λ2) (r > 0), (7.5)

φ(r, �y) = S

∫
dd �y′KΔ+

(�y, �y′,−r
)
φ+
(�y′)− 1

S

∫
dd �y′KΔ−

(�y, �y′,−r
)
φ−
(�y′)

− λ

∞∫
0

dr ′
∫

dd �y′
√

g
(
r ′)GE

(
r, �y; r ′, �y′)[∫ dd �y′′KΔ+

(�y′, �y′′, r ′)φ+
(�y′′)

+
∫

dd �y′′KΔ−
(�y′, �y′′, r ′)φ−

(�y′′)]2

− λ

∞∫
0

dr ′
∫

dd �y′
√

g
(
r ′)GE

(
r, �y;−r ′, �y′)[S ∫ dd �y′′KΔ+

(�y′, �y′′, r ′)φ+
(�y′′)

− 1

S

∫
dd �y′′KΔ−

(�y′, �y′′, r ′)φ−
(�y′′)]2

+O
(
λ2) (r < 0). (7.6)

By substituting equation of motion into the bulk part (7.2) we get a total action

I =
∞∫

−∞
dr

∫
dd �y√

g

(
−1

6
λφ3
)

+
∫

r→+∞
dd �y rd

(
1

2
Δ−φ2 + 1

2
rφ∂rφ

)

−
∫

r→−∞
dd �y (−r)d

(
1

2
Δ−φ2 + 1

2
rφ∂rφ

)
. (7.7)

The generating functional for three-point functions up to order O(λ1) has two kinds of contribu-
tions: the bulk part and the boundary one.

The bulk part is obtained by substituting the solution for the free theory (6.12) into the bulk 
action in (7.7). The corresponding diagram [7] is presented in Fig. 5. The wavy lines are bulk–
boundary propagators KΔσ . There are actually a lot of terms and, a typical form of the terms is 
given by
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Fig. 5. Graph contributing to three-point functions.

Fig. 6. Graph contributing to three-point functions via boundary terms.

I (3,bulk) = lim
r→∞λ

∞∫
0

dr rd−1
∫

dd �y
∫

dd �y1

∫
dd �y2

∫
dd �y3 KΔ1(�y, �y1, |r|)

× KΔ2(�y, �y2, |r|)KΔ3(�y, �y3, |r|)φσ1(�y1)φσ2(�y2)φσ3(�y3). (7.8)

Here σi = ± and Δi ≡ Δσi
. Integral of the form (7.8) is evaluated in [15] by using an inversion, 

as

I (3,bulk) = λ

∫
a

|�y1 − �y2|Δ1+Δ2−Δ3 |�y1 − �y3|Δ1+Δ3−Δ2 |�y2 − �y3|Δ2+Δ3−Δ1

× φσ1(�y1)φσ2(�y2)φσ3(�y3)d
d �y1 dd �y2 dd �y3, (7.9)

where a is a constant given by

−�( 1
2 (Δ1 + Δ2 − Δ3))�( 1

2 (Δ2 + Δ3 − Δ1))�( 1
2 (Δ1 + Δ3 − Δ2))

2πd�(Δ1 − d
2 )�(Δ2 − d

2 )�(Δ3 − d
2 )

× �

(
1

2
(Δ1 + Δ2 + Δ3 − d)

)
. (7.10)

The boundary part of the generating function is obtained by substituting the solution 
(7.5)–(7.6) into the boundary terms in (7.7). The corresponding diagram is depicted in Fig. 6, 
and a typical form of the integrals is given by
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λ lim
r→+∞

∫
dd �y rd

∫
dd �y1 φσ1(�y1)

∞∫
0

dr0 rd−1
0

∫
dd �y0 F(�y, �y1, �y0, r, r0)

×
∫

dd �y2 Kσ2(�y0, �y2, r0)φσ2(�y2)

∫
dd �y3 Kσ3(�y0, �y3, r0)φσ3(�y3). (7.11)

Here F is defined by

F(�y, �y1, �y0, r, r0) ≡ Δ−KΔ1(�y, �y1, r)GE(r, �y; r0, �y0)

+ 1

2
r∂rKΔ1(�y, �y1, r)GE(r, �y; r0, �y0)

+ 1

2
KΔ1(�y, �y1, r)r∂rGE(r, �y; r0, �y0). (7.12)

The propagator GE = G+ + G− with (5.4)–(5.5) and (6.7) is to be substituted into (7.11). Upon 
substitution, each boundary term gives divergences. However, the linear combinations in the 
boundary terms work correctly, and the sum of all turns out finite. Moreover, the integral (7.11)
can be explicitly carried out, and the result is proportional to the result of integral (7.9). The 
three-point functions are obtained by summing the bulk and boundary contributions. The details 
will be reported elsewhere. Here only the results of a three-point function of O+ is presented:

〈
O+(�y1)O+(�y2)O+(�y3)

〉= λ
−1 + 5S2 − 4S3 + 2S5

1 + S2

�(
Δ+
2 )3�( 1

2 (3Δ+ − d))

πd/2�(ν)3

· 1

|�y1 − �y2|Δ+|�y1 − �y3|Δ+|�y2 − �y3|Δ+ . (7.13)

8. Discussion

We showed a prescription for quantizing two sets of scalar modes in a pair of Poincaré patches 
of AdS space, and also presented a prescription for semi-classically obtaining two- and three-
point functions in the boundary CFT. This is possible since the two boundaries at r = ±∞ are 
connected, as a result of which the KG norm is conserved. Needless to say, more analysis is 
necessary. This will be left to future study. There are a few comments.

If we want to quantize only a single set of scalar modes, or if ν > 1 and only modes ψ̂+
in (4.2) are allowed, we can still do this in a pair of Poincaré patches. Mode expansion is 
(4.1) with only a+ and a†

+ retained. Canonical commutation relation is [a+(ω, �k), a†
+(ω′, �k′)] =

2−1−2ν(2π)−d+1�(1 + ν)−2δ(ω − ω′)δ(d−1)(�k − �k′). Wightman function is proportional to G+
in (5.6), and the commutator [Φ(r, t, �x), Π(r ′, t, �x′)] contains a term iSδ(r + r ′)δ(d−1)(�x − �x′), 
which is harmless since a singularity at r ′ = −r is beyond the horizon.

If the two operators O+ and O− are present in the boundary CFT, the sum of the scaling 
dimensions Δ+ and Δ− is d , and by using a composite operator 

∫
dd �y O+O−, a marginal de-

formation of the CFT may be considered. A prescription for realizing this deformation in our 
formalism in the form of an interpolating geometry in r direction is an interesting question.

In the study of this paper, a parameter S which parametrize quantization is introduced. The 
role of this parameter is to specify the relative magnitude of the mode functions in the two 
patches. We have not reached a concrete use of this degree of freedom yet. It is also discussed in 
Section 4 that by setting S = 0 one can quantize only one of the two sets of the scalar modes on 
each of the two Poincaré patches.
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The procedure of this paper can be extended to the black hole geometry. Schwarzschild-
AdSd+1 black hole solution in Poincaré coordinates is given by

ds2 = �2
(

−f (r) dt2 + 1

f (r)
dr2 + r2 d �x2

)
, (8.1)

where

f (r) = r2
{

1 −
∣∣∣∣ r+r
∣∣∣∣
d}

. (8.2)

Event horizon is at r = r+(> 0) and temperature is T = d
4π

r+. To quantize two sets of modes of 

a scalar field with mass m in the range 0 < (m�)2 + d2

4 < 1 in this background, we consider a pair 
of Poincaré patches with r > 0 and r < 0. Event horizons are at r = ±r+. The line element (8.1)
is to be used in both patches. In Lorentzian space, the boundary conditions for scalar field at 
the event horizons must be in-going conditions. The fluxes across the horizons vanish due to 
f (±r+) = 0. At the boundaries, the boundary conditions for the scalar field must be such that 
the fluxes at the boundaries cancel out. These will be (6.10) and (6.11). It is interesting to compute 
partition functions and entropies for the black hole geometries.

Appendix A. Calculation of Wightman function

By substituting ω =
√

�k2 + μ2 ≡ ω(�k, μ) into (5.2) with r, r ′ > 0, we obtain

G+ = 1

(1 + S2)(rr ′) d
2

∞∫
0

dμμJν

(
μ

r

)
Jν

(
μ

r ′

)
GFlat(t, �x, t ′, �x′;μ). (A.1)

Here

GFlat(t, �x, t ′, �x′;μ)= ∫ dd−1 �k
(2π)d−12ω(�k,μ)

e−iω(�k,μ)(t−t ′)+i�k·(�x−�x′) (A.2)

is a Wightman function for a free scalar field of mass μ in flat space. In the literature [11], it was 
argued that the coincident-point singularity of Wightman function (or, Feynman propagator) in 
AdS space should agree with that in flat space and this fixes its normalization. By using the fact 
that Wightman function is a function of AdS-invariant distance and satisfies a certain differential 
equation, Wightman function was determined. In this appendix, calculation of integral (A.1) is 
explicitly carried out.

For space-like separation of the plane coordinates, we can set t − t ′ = 0 by using the Lorentz 
symmetry of the integral. We also set �x′ = �0. It suffices to consider the case r, r ′ > 0. To perform 
integration over �k, we note the following formulae [16]:

π∫
0

eiz cos θ sin2ν θ dθ = √
π�

(
ν + 1

2

)(
2

z

)ν

Jν(z), (A.3)

∞∫
0

dxxν+1(x2 + y2)−μ−1
Jν(ax)

= aμyν−μ

μ
Kν−μ(ay)

[
for 2 Re(μ) + 3

> Re(ν) > −1

]
. (A.4)
2 �(μ + 1) 2
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Kν(z) is McDonald function. By using these, we find that

∫
dd−1�k

(2π)d−1

1√
�k2 + μ2

ei�k·�x = 2

(2π)
d
2

( |�x|
μ

)1− d
2

K d
2 −1(μ|�x|). (A.5)

This leads to

G+
(
r, �x; r ′, �0)= 1

(2π)
d
2 (1 + S2)(rr ′) d

2

∞∫
0

dμμ

( |�x|
μ

)1− d
2

K d
2 −1(μ|�x|)Jν

(
μ

r

)
Jν

(
μ

r ′

)
.

(A.6)

Now by using the formulae [16]

∞∫
0

dx xμ+1Kμ(ax)Jν(bx)Jν(cx)

= 1√
2π

aμb−μ−1c−μ−1e−(μ+ 1
2 )πi
(
u2 − 1

)− 1
2 μ− 1

4 Q
μ+ 1

2

ν− 1
2
(u)

[
2bcu = a2 + b2 + c2, Re(a) > |Im(b)| + |Im(c)|, Re(ν) > −1, Re(μ + ν) > −1

]
,

(A.7)

Qμ
ν (z) = eμπi�(ν + μ + 1)�( 1

2 )

2ν+1�(ν + 3
2 )

(
z2 − 1

)μ
2 z−ν−μ−1

× 2F1

(
ν + μ + 2

2
,
ν + μ + 1

2
, ν + 3

2
; 1

z2

)
, (A.8)

we obtain

G+
(
r, �x; r ′, �0)= �(ν + d

2 )

2(S2 + 1)π
d
2 �(ν + 1)

1

(rr ′)ν+ d
2 ( 1

r2 + 1
r ′ 2 + �x2)ν+ d

2

× 2F1

(
d

4
+ ν + 1

2
,
d

4
+ ν

2
, ν + 1; 4

(rr ′)2

1

( 1
r2 + 1

r ′ 2 + �x2)2

)
. (A.9)

Finally by using a quadratic transform of a hypergeometric function [16],

2F1(a, b,2b;2z) = (1 − z)−a
2F1

(
a

2
,
a + 1

2
, b + 1

2
;
(

z

1 − z

)2)
, (A.10)

we have

G+
(
r, �x; r ′, �0)= �(ν + d

2 )

2π
d
2 (1 + S2)�(ν + 1)

P ν+ d
2 2F1

(
d

2
+ ν, ν + 1

2
,2ν + 1;−4P

)
.

(A.11)

P is defined in (5.8). Similar expression for G− can be obtained by replacement ν → −ν in G+
and multiplying the result by S2. For example, for d = even, G = G+ + G− behaves near the 
singularity P → ∞ as
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G
(
r, �x; r ′, �0)→ 1

4π
d+1

2

�

(
d − 1

2

)[
rr ′
{(

1

r
− 1

r ′

)2

+ �x2
}]− d−1

2

. (A.12)

This does not depend on S, ν or Δ. Hence normalization of the singularity of Wightman function 
cannot be used to fix the value of S. It can be checked that Eq. (A.11) with S = 0 agrees with 
Eq. (7.4) for iGF (x, x′) in [11] after replacements λ± = Δ±, n = d + 1, a = �−1 = 1, 2/u =
−4P and substitution y0 − y′ 0 = 0.

Appendix B. Calculation of the integrals necessary for evaluating boundary actions I±

Here the method for evaluating integrals of a form limr→∞
∫

dd �y rd(r∂r )
nKΔ(�y, �y1, r)

(r∂r )
n′

KΔ′(�y, �y2, r) will be explained for the cases n = n′ = 0. First, let us consider an inte-
gral,

L1 = lim
r→∞

∫
dd �y rdKΔ+(�y, �y1, r)KΔ+(�y, �y2, r). (B.1)

We use Feynman’s parameter-integral formula

1

X
m1
1

· · · 1

X
mn
n

=
1∫

0

dt1 · · ·
1∫

0

dtn δ

(∑
i

ti − 1

) ∏
i t

mi−1
i

[∑i tiXi]
∑

i mi

�(
∑

i mi)∏
i �(mi)

, (B.2)

and perform y integration [15].

L1 = �(2Δ+ − d
2 )

π
d
2 �(Δ+ − d

2 )2
r2Δ+

1∫
0

dt
tΔ+−1(1 − t)Δ+−1

[1 + r2t (1 − t)y2
12]2Δ+− d

2

. (B.3)

Here �y12 = �y1 − �y2. In the r → ∞ limit, regions near t = 0 and t = 1 have dominant contri-
butions. These contributions from 0 ≤ t ≤ ε and 1 − ε ≤ t ≤ 1 with ε = r−1 can be evaluated 
by setting t = r−2y−2

12 z or t = 1 − r−2y−2
12 z and replacing t integral by z integral. These two 

contributions have the same values and we have

2 × �(2Δ+ − d
2 )

π
d
2 �(Δ+ − d

2 )2
r2Δ+

ry2
12∫

0

dz zΔ+−1(r−2y−2
12

)Δ+ 1

(1 + z)2Δ+− d
2

→ 2
�(2Δ+ − d

2 )

π
d
2 �(Δ+ − d

2 )2
B

(
Δ+,Δ+ − d

2

)
y

−2Δ+
12 . (B.4)

Here B(a, b) is Euler’s beta function. There is also a region of t which must be taken into account. 
For the region ε < t < 1 − ε, we can replace 1 + r2t (1 − t)y2

12 in the denominator of (B.3) by 
r2t (1 − t)y2

12. This yields a contribution proportional to

r−2νy
d−4Δ+
12

1−ε∫
ε

dt
[
t (1 − t)

]−1−ν ∼ 2

ν
r−νy

d−4Δ+
12 . (B.5)

For ν > 0 this damps in the r → ∞ limit. So finally, we obtain a finite result.
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L1 = 2�(Δ+)

π
d
2 �(Δ+ − d

2 )
y

−2Δ+
12 . (B.6)

In the above calculation it is assumed that �y1 �= �y2, and ultra local terms such as δ(d)(�y1 − �y2)

are neglected.
We then consider an integral

L2 = lim
r→∞

∫
dd �y rdKΔ+(�y, �y1, r)KΔ−(�y, �y2, r)

= �(d
2 )

π
d
2 �(Δ+ − d

2 )�(Δ− − d
2 )

1∫
0

dt
rd tΔ+−1(1 − t)Δ−−1

[1 + r2t (1 − t)y2
12]

d
2

. (B.7)

Contribution from the region 0 ≤ t ≤ ε to the integral is

r−2νy
−2Δ+
12

ry2
12∫

0

dz zΔ+−1(1 + z)−
d
2 ∼ r−2νy

−2Δ+
12

1

ν

(
ry2

12

)ν → 0. (B.8)

The one from the region 1 − ε ≤ t ≤ 1 is

r2νy
−2Δ−
12

ry2
12∫

0

dzzΔ−−1(1 + z)−
d
2 . (B.9)

Although the integral is finite in the limit r → ∞, we need to take O(r−ν) correction into account 
because of the prefactor r2ν :

r2νy
−2Δ−
12

[
B

(
Δ−,

d

2
− Δ−

)
− 1

ν
r−νy−2ν

12 + O
(
r−ν−1)]. (B.10)

From the region ε < t < 1 − ε, we obtain contribution

1−ε∫
ε

dt y−d
12 tν−1(1 − t)−ν−1 ∼ 1

ν
y−d

12 rν. (B.11)

Hence we get

L2 = �(Δ−)

π
d
2 �(Δ− − d

2 )
y

−2Δ−
12 r2ν . (B.12)

A final example is

L3 = lim
r→∞

∫
dd �y rdKΔ−(�y, �y1, r)KΔ−(�y, �y2, r)

= �(2Δ− − d
2 )

π
d
2 �(Δ− − d

2 )2

1∫
0

dt
rd tΔ−−1(1 − t)Δ−−1

[1 + r2t (1 − t)y2
12]2Δ−− d

2

. (B.13)

Actually, �y integration converges only for d − 4Δ− < 0. If d ≥ 4, this condition is satisfied, 
because 0 < ν < 1. Otherwise, ν must be in the range 0 < ν < d/4. At the end of the calculation, 
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we will analytically continue the results in variable ν to its remaining region. Contribution to the 
integral from regions 0 ≤ t ≤ ε and 1 − ε ≤ t ≤ 1 is

2y
−2Δ−
12

ry2
12∫

0

dz zΔ−−1(1 + z)
d
2 −2Δ− . (B.14)

This is divergent as r → ∞ and is expanded as

2y
−2Δ−
12

[
1

ν
rνy2ν

12 + B(Δ−,−ν)

]
. (B.15)

From integral in the region ε < t < 1 − ε, we obtain

r2νy
d−4Δ−
12

1−ε∫
ε

dt
[
t (1 − t)

]ν−1
. (B.16)

This is expanded as

r2νy
d−4Δ−
12

{
B

(
d

2
− Δ−,

d

2
− Δ−

)
− 2

ν
r−ν

}
. (B.17)

Hence we get

L3 = �(2Δ− − d
2 )�(ν)2

π
d
2 �(2ν)�(−ν)2

r2νy
4Δ−−d

12 + 2
�(Δ−)

π
d
2 �(−ν)

y
−2Δ−
12 . (B.18)

In a similar way cases n, n′ �= 0 can also be worked out.
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