
An Inverse Factorization Algorithm for Linear Prediction

James Nagy*

Department of Mathematics

North Carolina State University

Raleigh, North Carolina 276958205

and

Robert J. Plemmons+

Department of Mathematics and Computer Science

Wake Forest University

P.O. Box 7388

Winston-Salem, North Carolina 27109

Submitted by Biswa Datta

ABSTRACT

A new inverse factorization technique is presented for solving linear prediction
problems arising in signal processing. The algorithm is similar to a scheme of Qiao in
that it uses the rectangular Toeplitz structure of the data to recursively compute the
prediction error and to solve the problem when the optimum filter order has been
found. The novelty of the scheme presented here is the use of an inverse factorization

scheme due to Pan and Plemmons for solving the linear prediction problem with low
computational complexity and without the need for solving triangular systems. We also

provide a linear systolic array for solving these problems.

1. INTRODUCTION

In linear prediction, one estimates a sample of a signal by a linear
combination of its past values. That is, given a sequence (ti}rcl, one finds

*Research supported by the US Air Force under grant AFOSR-91-0388.

‘Research supported by the US Air Force under grant AFOSR-91-0388.

Llh!EAR ALGEBRA AND ITS APPLICATIONS 172: 169-195 (1992) 169

0 Elsevier Science Publishing Co., Inc., 1992

655 Avenue of the Americas, New York, NY 10010 0024-3795/92/$5.00

170 JAMES NAGY AND ROBERT J. PLEMMONS

coefficients aI, a2, . . . , up (p < n) wh ic minimize the error function h

n+P

E(p) = ,Fl (tj + Ulti-1 + ... +apti-p)‘.

The parameter p is problem dependent and is called the order of the
predictor.

The linear prediction (LP) problem can be interpreted as finding a vector

a’(p)= [Ul,U,,..., up] which minimizes

where T(p) is an (n + p) x p column circulant matrix whose first column is

1 0 t, *** t, 0 ... OIT

and x’(p) = [tr, . . . , t,, 0, . . . ,O]. That is, we wish to solve the least squares

problem

min II T(PM P) + xc 4 II2 (1)

for the LP vector a(p), where 1) * 11 2 d enotes the usual Euclidean norm.
The solution to a least squares problem such as (1) can be found in many

different ways. In particular, consider the normal equations

T’(P)T(P)U(P) = -T’(P)X(P).

The matrix Tr(p)T(p) is now a symmetric, positive definite [provided T(p)
has full column rank] p x p Toeplitz matrix. This system can then be sol-
ved using any of the fast [0(p2)] Toeplitz solvers such as Levinson’s algorithm
[9], or using the more recent superfast [0(p log2 p)] methods such as that of
Ammar and Gragg [3]. But it is well known [9] that the normal equations
approach to a least squares problem can produce inaccurate solutions for
ill-conditioned problems, due to the squaring of the condition number of

T(PI-

INVERSE FACTORIZATION ALGORITHM 171

The most stable methods for solving a least squares problem are based on
the QR factorization [9]. Since T(p) is a circulant matrix, one can take
advantage of its structure to obtain a fast QR factorization of T(p). The lattice
algorithm [7] uses this observation. More recently, Qiao [15] has proposed a
more efficient algorithm for solving the LP problem. Qiao’s method recur-
sively computes R(p) and u(p) = Q’(p) x(p), where T(p) = Q(p) R(p), until
an optimal p is reached. Then a(p) is computed using back substitution.

In this paper we describe a method which is based on a fast QR factoriza-
tion algorithm of Bojanczyk, Brent, and de Hoog [5] and the generalization of
their work by Chun, Kailath, and Lev-Ari [6]. More specifically, we recursively
compute R-‘(p) and u(p) = Q’(p)x(p) using hyperbolic rotations (see [9,
Section 12.6.41) until an optimal p is reached. Then the solution to the LP
problem is given by a(p) = - R-‘(p)u(p). The numerical complexity of the
algorithm proposed in this paper is similar to that of Qiao. But in
our algorithm no back solve is required, making it more amenable to
parallel processing and to an efficient systolic array implementation.

The question of when an optimal p is attained needs to be addressed.
Although this is an important topic in linear prediction, it will not be a main
part of our discussion. Rather, our focus will be on solving the recursive least
squares problems (1). For a more complete discussion on finding the order of
the predictor see [8, 11, 121. To make our LP algorithm complete, though, we
will need some stopping criterion. One of the simplest is based on the fact
that, as p increases, E(p) 1 evels off. Moreover, as p increases T(p) can
become ill-conditioned. Thus, we would like to find a minimum p = p, such
that, for p > p,, E(p) 1s relatively flat. One way to test for flatness is the
threshold test, which requires that

for several consecutive steps [ll]. The value of 6 and the number of consecu-
tive steps are chosen empirically by the user. This is the stopping criterion
used by Qiao [15] and, for consistency in comparing methods, will be the one
we employ in our algorithm.

Our algorithm is based on hyperbolic rotations and their relation to rank-l
downdating, which we review in Section 2. In Section 3 we show how R(p)

can be recursively computed, and in Section 4 we describe how this
is modified to construct R-‘(p). In Sections 5 and 6 the LP algorithm is
derived. In Section 7 the algorithm is stated and some numerical experiments
comparing our method with that of Qiao [14] are discussed. In Section 8 we
develop a parallel implementation for the inverse factorization LP algorithm.

172 JAMES NAGY AND ROBERT J. PLEMMONS

2. RANK-1 DOWNDATING

The derivation of our linear prediction algorithm depends on ideas from
rank-l downdating. More specifically, let R be an n x n upper triangular
matrix and let z E !I?“. Downdating refers to the problem of finding an upper
triangular matrix i such that

ii=i = R=R - ZZ=. (2)

If fi exists [2, 91, then it can be easily found using hyperbolic rotations.
In this section we describe hyperbolic rotations and how they can be used

to introduce zeros into selected entries of a matrix. Once this is done, it
follows easily that, by applying a sequence of hyperbolic rotations, we can find
li satisfying (2). 0 ur discussions on these topics follow those given in Golub
and Van Loan [9].

An elementary hyperbolic rotation H(i, j, 0) is a matrix which is the
identity everywhere except hii = hjj = c and hji = hij = -s, where c =
c(e) = cash 0 and s = s(0) = sinh 0 for some 8. That is,

H(i, j,e) =

1

C . . . -S

-s -** C

1

Let b E sn, hr =]b, * * * bi * * * bj * * . b,], with bi f bj* If 1 bi I >
1 bj) and we choose

then

(3)

where 6, = dw. A similar choice for c and s can be made if 1 bj I >
1 bi I. Thus hyperbolic rotations can be used to introduce zeros into a vector.

INVERSE FACTORIZATION ALGORITHM 173

If we are required to introduce zeros into a matrix, we simply let b be the

column of the matrix which contains the element to be zeroed, and construct
the hyperbolic rotation as above. We point out that in practice there are more
stable ways to choose c and s than (3) [2].

Notice that H(i, j, 0) is completely defined by the scalars c = c(O) and
s = s(O). Moreover, H(i, j, ~9) is constructed using only two scalars, bj and bj.
Because of this observation, we will often use

[c,s] = [c(e),s(e)] =hs(bi,bj)

to denote the hyperbolic rotation H(i, j, 0) which rotates the ith row into the
jth row and zeros out bj.

In the downdating problem, we attempt to find a product of hyperbolic
rotations of the form

H= H(n,n+l,O,)... H(2,n+1,02)H(1,n+l,8,)

so that

where k is an upper triangular matrix. It can be shown that if RrR - zzr is
nonsingular, then such a product of hyperbolic rotations can be found [2].

Now, since c’(8,) - s2(Oi) = 1, it follows that

Hr(i, n + l,B,)SH(i, n + l,Bi) = S,

where

s= p-1 _l].

Thus H=SH = S. Using this result, we see that

R=R--a==[@ z]S ’ =[RT z]H=SH R
[1 ZT [1 z=

= $A,
and hence A satisfies (2).

174 JAMES NAGY AND ROBERT J. PLEMMONS

3. COMPUTING R(p + 1) FROM R(p)

Let { ti}rEi be a given sequence, and define x’(0) = [t,, . . . , tn] and x(p),
T(p), and a(p) as in Section 1. Suppose T(p) = Q(p) R(p) is the
factorization of T(p), where Q(p) is (n + p) x p. Observe that when p
we have Tr(1) = [0, t,, . . . , t,]. Thus

Q(1) = ,,T;1),,, T(l) and R(l) = rll = II T(l) II2 = II w IL

QR
= 1

Since T(p + 1) has the Toeplitz structure, one can partition T(p + 1) as

T(p+ 1) = [‘by) “i.“‘] = [.;b) &]. (4)

where yr(p) = [0, . . . , t,, . . . , t,_l] is an n + p-vector. The following lemma
shows the relationship between R(p + 1) and R(p).

LEMMA 1. Given the QR factorization T(p) = Q(p)R(p). if T(p +

1) = Q(p + l)R(p + 1) is the QR factorization of T(p + l), then R(p + 1)
can be partitioned as

R(p+ 1) =

where z(p) and Z(p) are p-vectors and Rb(p) is a p X p upper triangular

matrix.

Proof. The proof essentially follows from Lemma 1 in [15]. n

Since T(p) = Q(p)R(p) and T(p + 1) = Q(p + l)R(p + l), using the
relation

T’(p + l)T(p + 1) = R’(p + l)R(p + l),

we obtain for Rb(p) in (5) the relation

Ri(P) Rb(P) = R’(P) R(P) - z(P) z’(P) (6)

INVERSE FACTORIZATION ALGORITHM

where

q p) = xT(PPY 4
t-11

175

Observe that zT(p) = [z’(p - 1) zp] for some scalar zp. Then from Equation
(5), to compute R(p + 1) from R(p), we need zp and the last column of
Rb(p). Since zp can be computed from (7) the last column of Rb(p) can be
computed, as in Section 2, via hyperbolic rotations. In particular, one can

construct H(p), a product of hyperbolic rotations, such that

(8)

Thus a recursive algorithm for computing R(p + 1) can be derived from
Equations (5), (7), and (8).

4. COMPUTING R-‘(p + 1) FROM R-‘(p)

In the last section we saw how one can compute R(p + 1) from R(p).

In this section we modify the approach to generate R- ‘(p + 1) from

R-‘(P). Notice first that since R(1) = I] x(O))] a, it follows that

R-‘(I) = I/ II r(O) II 2.
If R(p + 1) is partitioned as in (5) then RWT(p + 1) can be partitioned as

R-‘(p + 1) =
1 R-'(P) 0

-
rP+~P+lz’W’(P) l

rp+1, p+l

1
- OT
rll =

- $RiT(P)Z(P) RbT(P)
i.

I (9)

(10)

176 JAMES NAGY AND ROBERT J. PLEMMONS

From Equations (9) and (10) we notice that if A-r(p) is known, then to

compute ReT(p + 1) we need z(p) and the last row of RbT(p). Since z(p)
can be computed from (7), we need only find the last row of Rhr(p). The

following lemma shows how this can be done.

LEMMA 2. L&b(p) = R_T(p)z(p), andzet

H(p) = H(p, p + 1, BP) * - * qz p + L8,)H(L p + LO,)

be a product of hyperbolic rotations, where H(i, p + 1, Oi) rotates the i th row

into the (p + l)st row, such that

H(4[“‘p’] = [ypp)]

with y(p) = J1 - IIb(p)IIZ. Then

H(P$:$] = [“a’p’]

H(P)[~-;;“‘] = [R$$’

for some vector h(p).

Proof. See Theorem 8 in [13].

(11)

We now describe how the transformation matrix H(p) in Lemma 2 can be

constructed. Suppose

H(p - 1) = H(p - 1, p,f$,_r) ... H(2, p,&)H(l, P,&)

INVERSE FACTORIZATION ALGORITHM 177

is known and we wish to find H(p). Notice that

fbp “I = [bbb, ‘J],

where

b, = e;R-‘(p)z(p). (12)
Thus

It follows that

where y(p - 1) = Jl _ bf _ b,2 _ . . . - bi_l . Thus to determine H(p),
we need only find H(p, p + 1, ep). That is, we need to find cp and s,, such
that

[‘“:, Qyy(Pb: l,] = [,p,,l (13)

and c: - si = 1. Using the notation of Section 2, we can write this as

[cp, sp] = hyp(y(p - l), bp). Then it follows that

H(P) = H(P, p + 1, BP) - - - H(2, p + l,B,)H(l, p + i,e,).

178 JAMES NAGY AND ROBERT J. PLEMMONS

Note that H(p) is completely determined by ck and Sk, k = 1, . . . , p. Thus
at the pth stage of the algorithm we need only compute cp and sp which
satisfy the above conditions.

5. AN ALGORITHM TO COMPUTE R- r(p + 1)

In the last section we showed how cp and sp, which completely determine

H(p), can be recursively computed. Lemma 2 then indicates how the last row
of Rbr(p) can be computed in 0(p’) multiplications. Direct application of

Lemma 2, however, is not required. In this section we show how the last row
of RbT(p) can be constructed in 0(p) multiplications. The scheme in turn

gives the last row of R-r(p + 1).

We know H(p - 1) = H(p - 1, p, 8,_,) *. * H(1, p, 0,) satisfies

H(p - 1) 1 rT(p- 1)
OT

L

Furthermore,

RbT(P)

[1 R-T(p)
h’(4

=H(P)
[OT

= H(p, P + 13,

R-T(p-l) 0 = H(P)

[1 Z’(4
OT 0

where Z’(p) is the last row of RmT(p). Let I:(p) be the last row of RbT(p).
and suppose that hT(p - 1) and ZT(p) are given. Then hT(p) and I:(p) can be

computed as

Thus the last row of R- ‘(p + 1) is

Z’(P + 1) = [-$qP)z(P) G(P)]. (15)

The following algorithm summarizes the above observations.

INVERSE FACTORIZATION ALGORITHM 179

ALGORITHM 1. Given X’(O) = [tl, . . . , t,], this algorithm recursively com-

putes ReT(p), where T(p) = Q(p)R(p), for each p.

41) = l/ II x(O)112
z(l) = xT(V(0)l II x(O) II 2

zz= l = 1,2, . . . , until stop

b, = eLR-‘(p)z(p)
tc,, sol = hn$y(P - 9 b,)
Y(P) = -Spbp + cpr(P -‘I)

z+y= [,~~(P)z(P)~IIx(o)II~ lb’(~)]
e,+,T (P + 1)x(P + I)/ II 40) II 2

4P + 1) = V(P) z,+J

The vector ZT(p) is the last row of RMT(p).

6. AN ALGORITHM TO COMPUTE u(p + 1) = Q’(p + 1)x(p + 1)

Suppose u(p) = Q’(p) x(p) and H(p) are known, and we want to find
the vector u(p + 1) = Q’(p + 1) x(p + 1). From Section 3 we know that
QT(l) = (l/ql)T*(l). Th us f rom (7) we have u(l) = QT(l)r(l) = z(l). The

following lemma shows how u(p + 1) and u(p) are related.

LEMMA 3. Let Q(p) and Q(p + 1) be the orthogonal matrices of the QR
factorization of T(P) and T(p + l), respectively. If u(p) = QT(p)x(p) and

~(p+l)=Q~(p+l)x(p+l)then

u(p+l)= .
[1 4 4

up+1

Proof. See Lemma 2 in [15]. n

We seek a way to compute up+1 from the knowledge of u(p) and H(p).

To do this, we will modify the work of Chun, I&lath, and Lev-Ari [6], which
is based on the displacement structure of the data matrix, for the linear
prediction problem.

180 JAMES NACY AND ROBERT J. PLEMMONS

Let s E % k, and define the upper triangular matrix U(s) as

where Z E $3 kxk is a matrix with ones on its subdiagonal and zeros elsewhere.
Let wF(p) = [t-r1 z’(p)] and u$(p) = [0 z’(p)]. Then it is easy to see that

T’(p + l)T(p + 1) = U’(Wl)U(Wl) - u’(w2)++

where, to simplify the notation in the following discussion, we make the
identification wi = wi(p). i = 1,2.

Define a matrix J by

, where Z,+r =

Then a matrix 23 is said to be J-orthogonal if BrJB = J. Using the matrices
U(w,) and U(wa), one can obtain R(p + 1) as follows.

Suppose C3(p) is a J-orthogonal matrix such that

where R is upper triangular. Let

r I +J ,, x;o),, T’(p + 1)
=

+4 ,, x;o),, TT(p + 1) 1 and @ =

Setting

rW(p)Jc3(p)r = G-J@,

QT

* I$ (‘6)

R QT il 1 0 *

it follows that R(p + 1) = R and Q(p + 1) = Q.

INVERSE FACTORIZATION ALGORITHM 181

Our goal is to find a way to construct u(p + 1) = Q’(p + 1) x(p + 1).

The above observations indicate that if such a e(p) exists, then u(p + 1) can

be computed. More specifically, suppose f3(p) is a]-orthogonal matrix which
satisfies (16), and observe that

z(p+ l) = ,,x;q,, -TT(p+ l)r(p+ 1).

Then

We now describe how 8(p) can be constructed. Recall that

H(p)=H(p,p+l,e,)~~~ H(2, p + l,e,)H(l, p + L8,)

is a product of hyperbolic rotations and that

Let 0(p) = &, - * * fi2 El, where

i& = H(p + 1,2p + 2 - k,&) ... H(k + 2, p + 3,8k)

H(k + 1, p + 2,&).

Each fik is J-orthogonal; hence e(p) is J-orthogonal. The following theorem

shows that this 0(p) satisfies (16).

THEOREM 1.

Proof. We will show that each I?, will zero the kth superdiagonal of the

lower half of

and produce the (k + l)th row of R(p + 1).

182 JAMES NAGY AND ROBERT J. PLEMMONS

Recall that

H(4 = H(p, p - l,B,) -*- H(2, P + L&)

and observe that:

[lst row of U(w,)] = [lst row of R(p + l)].

the Toephtz structure of V(w,) implies [2nd row of U(w,)] = [0 1st row of

R(P)I.
1st row of U(w,)] = [0 z’(p)].

NowapplyI?,=H(p+1,2p+l,B,)~~- H(2,p+2,8,)to

and overwrite. Then:

[lst row of U(q)] = [lst row of R(p + l)].

[2nd row of lJ(w,)] = [0 1st row of Rb(p)] = [2nd row of R(p + I)].
The Toeplitz structure of rows 2, . . . , p + 1 of U(w,) is preserved, and the

Toephtz structure of U(w,) is preserved.
the previous two comments imply that [3rd row of U(w,)] = [0 2nd row of

R(P)I-
[lst row of U(W,)] = [0 zr(p)], where zr(p) is defined by

[Thus, the first superdiagonal of U(w,) has all zeros.]

Now apply fis = H(p + 1,2 p, 0,) - * * H(4, p + 3, 02)H(3, p + 2,0,) to

fi +d
[1 l qw2>

INVERSE FACTORIZATION ALGORITHM 183

and overwrite. Then:

[lst row of U(w,)] = [lst row of R(p + l)].

[2nd row of U(w,)] = [2nd row of R(p + l)].
[3rd row of U(w,)] = [0 2nd row of Rb(p)] = [3rd row of R(p + l)].
The Toeplitz structure of rows 3,. . . , p + 1 of U(w,) is preserved, and the

Toeplitz structure of U(wz) is preserved.

The previous two comments imply that [4th row of U(w,)] = [0 3rd row of

R(PN-
[lst row of U(w,)] = [0 zi(p)], where z2(p) is defined by

H(2, p + l,&p(L P + L8,) [:$g = [.:;p,l*

[Thus the second superdiagonal of U(w,) has all zeros.]

It is now easy to see that if we continue in this manner, then

qp)[;;:;;I = [“‘p’ “I.

Next, define g(p + 1) by

and suppose u(p) and g(p) are known. Then the following theorem shows
how u(p) can be computed recursively.

THEOREM 2. Let ck, Sk, k = 1,. . . , p, be the parameters which determine
H(p). Then

H(1,2JI,) *** ~(1, P~,)H(L P - v,)
[:i;;] = [;;;;I

with g’(P + 1) = Lf’(P) z,+J

184

Proof. By definition

JAMES NAGY AND ROBERT J. PLEMMONS

Q(P - 1) = ,=-__,
P i

Iyq k + i, P + i, f%) I
and

Since multiplication
we have

= k$p i=plj+lH(k + i? P + i + 1J,) .
i 1

on the left by H(i, j, 19) only acts on the ith and jth rows,

provided i # I, k and j f 1, k.
Using this result, observe that

&H(P+1>2P+2-k>ei)
P I

.

Since

it follows that

4p)
i$kH(k + i> p + i + U’k))[“+l

44
Zp+l

w =
e4 I

[
UC 4
Zp+l

= g(p)
Zp+l

[

I.

4 4
1 44 ’

INVERSE FACTORIZATION ALGORITHM 185

Thus

4 4
&J(p + 1,2p + 2 -k&J %+I I I =

u(P + 1)

d P) [1 g(p+ 1) .

Zp+l

Since H(p + 1,2 p + 2 - k, 13,) only affects the subvector

the result follows.

Using Theorem 2, we obtain the following algorithm for computing u(p)

recursively.

ALGORITHM 2. Given r(O), cp, and sp, which define H(p), p = 1,. . . ,
this algorithm recursively computes u(p) fore each p.

0) = 4wP)/ II x(O) II 2

u(1) = g(1) = z(1)
for p = 1,2, . . . until stop

zp+r = ep+r

up+1

for k = 1,2, . . . , p - 1

L

r TT(p+ l)x(p+ 1)/IIWII2
= gp+d P + 1) = Zp+l

I[
7. A LINEAR PREDICTION ALGORITHM

Algorithms 1 and 2 form the basis for the inverse factorization linear

prediction algorithm. Recall that the stopping criterion is to test when the
error curve becomes flat. We use the threshold test from [I5], which requires

186 JAMES NAGY AND ROBERT J. PLEMMONS

that

for a few consecutive steps. The value of 6 and the number of consecutive

steps are problem dependent. Applying the threshold test at each step does
n;t require much work, since it can be shown [15] that E(p + 1) = E(p) -

u,,+~. Combining this and Algorithms 1 and 2, we have the following scheme.

ALGORITHM 3. Given x*(O) = [tr, . . . , t,], this algorithm computes the
solution a(po) to the least squares problem min I] T(p)a(p) + x(p) 11 2, with
p = p, = (optimal p).

E(1) = II WII 2> 01) = I/ II Wll,
z(l) = evP)/ II x(O) II
u(l) = z(l), g(l) = z(l), Y(0) = 1
p=l

until 1 - E(p + l)/E(p) < 6 for several consecutive steps

b,

[$\]:= [c:, i~pj[h’;~!~) o]

17 P + ‘)T = - G(P)Z(P)l II w II 2 a P)

z +1 = ep+l TT(P + l)X(P + 1)/IIwll2
4 P + 1) = r4 P) Zp+ll

up+1 = &+1(P + 1) = Zp+l
fork=1,2,...,p-1

L[gp+2;;+ 1,1:= [Cl ::"I[,,,+p_1; P,]

E(P + 1) = E(P) - u”,+I

a(p) = -WPMP)

Y(P) = -Q, + CI;Y(P - 1)

1

= e,TR-r(p)z(p)
]cP. sPl = hyp(y(P - 9 bp)

This algorithm requires np + 5p2 multiplications, where generally n >>

p. Although Qiao’s algorithm takes np + $p2 multiplications, his method
computes a(p) by using a backsolve, and is thus not amenable to efficient
implementation on a systolic array. The method presented in this paper,
however, does not require a backsolve, since it recursively constructs R- ‘(p)

instead of R(p).

We now discuss some numerical tests which compare our method with
Qiao’s [15]. These tests were performed using FORTRAN with double precision

INVERSE FACTORIZATION ALGORITHM 187

TABLE 1

PREDICTIONCOEFFICIENTS FROM I.F. ANDQIAOMETHODS

n = 100 n = 400

I.F. method Qiao method I.F. method Qiao method

- 2.233225368847 -2.233225368844 -2.259211248247 -2.259211247215

1.564271147812 1.564271147802 1.596641992375 1.596641989163

-0.419212611098 -0.419212611090 -0.427765467145 -0.427765463068

0.112579296451 0.112579296476 0.114419870511 0.114419870103

- 0.031104574728 -0.0311045747’78 -0.029914020105 -0.029914023844

0.007622415344 0.007622415368 0.005887873539 0.005887875789

arithmetic. In each of the experiments, the values used in the threshold test
were 6 = 0.01, and the number of consecutive time steps was 3. These are the
same parameters used by Qiao [14].

The first test consisted of constructing signals

r=12 . . . n n . . .
[2 2

21 I
for n = 100 and n = 400. These signals are used by Qiao in [14] in order to

obtain a matrix T(p) which is ill conditioned. In each case we obtained the

same value for the optimal p (which was p, = 6 for both n = 100 and
n = 400), and the prediction coefficients agreed up to at least 7 decimal
places. The results are shown in Table 1, in which we have denoted our
inverse factorization algorithm by “I.F. method,”

We also compared the two methods using several random signals r whose
lengths varied from 50 to 400. In each case both methods obtained the same
optimal p values, and the prediction coefficients agreed up to at least I2
decimal places.

8. SYSTOLIC ARRAY IMPLEMENTATION

To obtain a systolic array for the LP problem we will simplify the notation
of Algorithm 3. Since the optimal p. = p is not known before the computa-
tion begins, we will assume that m is an upper bound for p,. Recall that
generally n >> po, so one could choose m = n. Furthermore, in some appli-
cations the value of p, is fixed before the computation begins [I2].

Let Zij denote the i, j entry of RwT(po) and notice that Zl= I,,,,,: p+l.
We use the notation 1: k, for 1 < k, to indicate the sequence 1,. . . , k.
Overwriting h and g, we can reformulate Algorithm 3 as follows.

188 JAMES NAGY AND ROBERT J. PLEMMONS

ALGORITHM 3’.

Initialize: 41 = 1/ II XWll~ z:= z(m) = lllTT(m)x(m), d = -l,,z,

a1 = l,lZ,, g = u = z, E(1) = 11 r(O))I 2, h = 0, y = 1, p = 1
while 1 - E(p + l)/E(p) < 6 for several consecutive steps

b, = &,:,z,:,
[cp’ spl = hYp(y, bp)
y = -spb, + cpy

[‘P+;;;+l]:=

3

[‘“:, J[pJ

~~jy~~~‘~1[;r_,i

E(P + 1) = E(P) - $+I
ap+l = 0

a1:p+1:= %:p+1 + ~p+lq+Wp+l
p=p+l

Notice that in Algorithm 3’, z(m) is computed when all that is needed is
z(p). In the parallel implementation, as will be seen, all of z(m) is not
computed. We write z in this way because TT(m) x(m) is a convolution
operation, and many efficient systolic arrays exist for convolution [lo].

We will describe the systolic array implementation of the LP problem in
six steps. The first step is the initialization stage, and the remaining steps
compute various parts of the main loop. We then combine the arrays of step 2
through step 6 to obtain a systolic array for the main loop.

In the sequel we assume that time delays are present where appropriate.
That is, each cell of the array is active only when all required data are present.
In addition, if an input to a cell is initially zero, we represent this by omitting
that input line, For example, Figure l(a) shows a typical inner product cell
which has input values a, b, and c. If c is to be initially zero, the input line for
c will not be present, as illustrated in Figure l(b).

b 0 b 0

E = ab
c 0 E t=c+nb

b
0: b

(1
a

(4 (b)

FIG. 1. Example of inner product cells.

INVERSE FACTORIZATION ALGORITHM 189

Step 1: Computation of I,,, z, d, and E,

This is the initialization step. A straightforward computation of I,, and z
would require m + 1 inner products. But the circulant structure of T(m)

implies that Tr(m) x(m) is a convolution, which can be efficiently imple-
mented with a systolic array. The cells needed for this step are shown in
Figure 2.

Some remarks on the cells are needed. The convolution cell in Figure 2(a)
is similar to that used for design R2 by Kung [lo]. Notice that the cell holds a

for one clock cycle, while b passes directly through. Furthermore the cell
holds c for n clock cycles. That is, only after the nth clock cycle is c passed
out of the cell. The inner product cell used in this step is very general, and
will be used again in subsequent steps.

Using these basic cells, a systolic array for the initialization stage can be
designed as in Figure 3 (where m = 5). Notice that the first row of the input
sequence (ti} takes twice as long to move through the convolution cells as the
second row of the { ti}. It is easy to see that after n + 3 time steps Z,,, zr, d,,

and E, are available, and hence the main loop can begin.

Step 2: Computation of b,

In this step we need to compute inner products of length p, p = 1, . . . ,
p, - 1. Thus the basic cell needed for this step is the inner product cell
shown in Figure 1. The systolic array for this step is shown in Figure 4 for
m = 4.

e=c+ab

a c 0

+

P Li=l/& b Q l b E=e+ab

Ii a

(b) Cc)

FIG. 2. Cells for step 1.

190 JAMES NAGY AND ROBERT J. PLEMMONS

FIG. 3. Array for step 1.

Here we are assuming that the Zij are available. Also notice that the flow of

the lij in this array is consistent with the manner in which they are computed.

More specifically, from Algorithm 3’ we see that only lpk is needed to obtain
1 p+l, k+lp k= l,..., p. The boxes in Figure 4 represent this observation.

Step 3: Computation of cp, sp, and y
Given b, and y, we need a cell which computes the parameters cp and s,,

for the hyperbolic rotations. This cell is shown in Figure 5. It is similar to the

Givens rotation cell used by Alexander, Ghirnikar, and Plemmons [l] for a

parallel implementation of inverse QR updating.
Assuming the b, are available, Figure 5 also shows an array for computing

cp and sp for m = 3. Each cell propagates a copy of c,, and sp both right and

left. This is so that the (p + l)st row of R-T and up+r can be computed
concurrently.

FIG. 4. Array for step 2.

INVERSE FACTORIZATION ALGORITHM 191

FIG. 5. Cell and array for step 3.

Step 4: Computation of lij

In this step we need two types of cells. One cell applies the hyperbolic
rotation and is shown in Figure 6. The other cell is the inner product cell used
in step 2. Figure 7 shows the array used for computing lij for m = 5.

Step 5: Computation of up + I and Check for Convergence

For this step we need a cell which applies the hyperbolic rotations as in
step 4, except the direction of flow is reversed. We also need cells to update
the error and check for convergence. These cells are shown in Figure 8.

The variable 6 is the tolerance in Algorithm 3’, and # is the number of
steps required for the convergence test. The value of 1 indicates whether the
optimal p is attained. If I = 0 then we continue the algorithm, but if I = 1
the algorithm terminates.

The array for this step is illustrated in Figure 9. Note that when the
optimal p is reached, the algorithm must output the parameters aI, . . . , aPg,.

We describe how this can be done in the next step.

Step 6: Computation of up

The array for this step is similar to that of step 2. The only difference is a
slight modification of the inner product cell, which is shown in Figure 10. This
cell is the same as that shown in Figure 2(c), except that the output of the
accumulated inner product can be directed out of one of two lines. The small
circles in Figure 10 represent this. The darkened circle indicates that the line
is closed. That is, no values are exited through this line. If the small circle is
open, then the line is open. Figure 10 shows that if I = 0, then the inner

FIG. 6. Cell for step 4.

192 JAMES NAGY AND ROBERT J. PLEMMONS

FIG. 7. Array for step 4.

product flows out of the southeast part of the cell, and if I = 1, out of the

northeast line. The array for this step is shown in Figure 11 for p, = 4.

Combining the arrays in steps 2 through 6, we obtain the systolic array for
the main loop of the LP algorithm. This is shown in Figure 12 with pa = 3.

Recall that Algorithm 3 requires np, + 5~: multiplications. The numbers
of time steps for our systolic array are given by: (1) n + 3p, for the initializa-
tion, and (2) &$ + $a for the main loop. Thus the set of coefficients

ai, f f . , UP” are obtained in a total of only n + ipg + ?&, time steps.

9. CONCLUDING REMARKS

In this paper we have presented an inverse factorization method for solv-
ing linear prediction problems. The scheme totally avoids the need for
solving triangular systems, and is thus amenable to parallel implementation.

FIG. 8. Cells for step 5.

INVERSE FACTORIZATION ALGORITHM

FIG. 9. Array for step 5.

1

FIG. 10. Cell for step 6.

193

FIG. 11. Array for step 6.

194 JAMES NAGY AND ROBERT J. PLEMMONS

FIG. 12. Final array.

Other applications of this principle are described in [16]. We have shown that
our algorithm has low numerical complexity, and can be implemented on a
linear systolic array in n + ipi + $$,, time steps, where n is the number of
data samples and pa the optimal order of the predictor.

REFERENCES

S. T. Alexander, A. L. Ghirnikar, and R. J. Plemmons, A parallel
implementation of the inverse QR adaptive filter, Computers in Electrical
Engineering, to appear
S. T. Alexander, C.-T. b

1992).
an, and R. J. Plemmons, Analysis of a recursive

least squares hyperbolic rotation algorithm for signal processing, Linear
Algebra Appl. 98:3-40 (1988).
G. Ammar and W. Gragg, Superfast solution of real positive definite
Toeplitz systems, SZAMJ. Matrix And. Appl. 9:61-76 (1988 .
A. W. Bojanczyk, Systolic implementation of the lattice 1 a gorithm for
least squares linear prediction problems, Linear Algebra Appl. 77:27-42

(1986).
A. W. Bojanczyk, R. P. Brent, and F. R. de Hoog, QR factorization of
Toe litz matrices, Numer. Math. 49:81-94 (1986).
J. &run, T. Kailath, and H. Lev-Ari, Fast parallel algorithms for QR and
triangular factorization, SZAM J. Sci. Statist. Comput. 8:899-913 (1987).
G. Cybenko, A general orthogonalization technique with applications to
time series analysis and signal processing, Math. Comp. 40:323-336

(1983).

INVERSE FACTORIZATION ALGORITHM 195

8

9

10

11

12

13

14

15

16

P. M. Djurif and S. M. Kay, Model order estimation of 2D autoregressive
processes, in Proceedings of ZCASSP, July 1991.
G. H. Golub and C. Van-Loan, Matrix Computations, 2nd ed., Johns
Hopkins U.P., Baltimore, 1989.
H. T. Kung, Why systolic architectures?, IEEE Trans. Comput. 15:37-46

(1982).
J. Makhoul, Linear prediction: A tutorial review, Proc. 1EEE 63:561-580

(1975).
D. G. Manolakis and J. G. Proakis, Introduction to Digital Signal

Processing, Macmillan, 1988.
C. T. Pan and R. J. Plemmons, Least squares modifications with inverse
factorization: Parallel implications, J. Comput. Appl. Math. 27:109-127

(1989).
S. Qiao, Parallel Implementation of a Linear Prediction Algorithm, Tech-
nical Report, Mathematical Sciences Inst., Cornell Univ., Mar. 1987.
S. Qiao, Recursive least squares algorithm for linear prediction problems,
SIAM J. Matrix Anal. Appl. 9:323-328 (1988).
M. Moonen and J. Vandewalle, A systolic array for recursive least squares
computations, Proc. IEE Conf. on Acoustics, Speech and Sig. Proc.,
Toronto, Canada, May 1991, pp. 1013-1016.

Received 2 June 1991; final manuscript accepted 31 January 1992

