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Abstract

In this paper characterizations of connected unicyclic and bicyclic graphs in terms of the degree sequence, as well as the graphs
in these classes minimal with respect to the degree distance are given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let Gn be the class of connected graphs of order n. We shall consider two subclasses of Gn: G1
n and G2

n which denote
the classes of connected unicyclic and bicyclic graphs, respectively. Note that any graph in G1

n contains a unique cycle
and it has n edges and every graph in G2

n contains two linearly independent cycles, having n + 1 edges.
For a graph G ∈ Gn, the distance d(x, y) between vertices x and y is defined as the length of the shortest path

between them. The eccentricity of a vertex x is ecc(x) = maxy∈V (G) d(x, y) and the diameter of G is diam(G) =
maxx∈V (G) ecc(x) = maxx,y∈V (G) d(x, y). We shall use the notations D(x) = ∑

y∈V (G) d(x, y) and D(G) =∑
x∈V (G) D(x).
Topological indices and graph invariants based on the distances between the vertices of a graph are widely used

in theoretical chemistry to establish relations between the structure and the properties of molecules. They provide
correlations with physical, chemical and thermodynamic parameters of chemical compounds [1–3,10,12].

The Wiener index is a well-known topological index which equals the sum of distances between all pairs of vertices
of a molecular graph [6]. It is used to describe molecular branching and cyclicity and establish correlations with various
parameters of chemical compounds. Dobrynin and Kotchetova [4] and Gutman [5] introduced a new graph invariant
that is more sensitive than the Wiener index. It is defined in the following way: given G ∈ Gn, the degree distance of a
vertex x ∈ V (G) is defined by D′(x) = d(x)D(x), where d(x) in the degree of x. The degree distance of G is

D′(G) =
∑

x∈V (G)

D′(x) =
∑

x∈V (G)

d(x)D(x) = 1

2

∑

x,y∈V (G)

d(x, y)(d(x) + d(y)).

In [11] it was proved that minG∈Gn
D′(G)=3n2 −7n+4 and the equality holds if and only if G is K1,n−1. In the next

sections it will be shown that min
G∈G1

n
D′(G)=3n2 −3n−6, where n�3, respectively min

G∈G2
n
D′(G)=3n2 +n−18,

where n�4, and the corresponding extremal graphs are unique up to an isomorphism.
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2. Preliminary results

It is well known [7,9], that natural numbers d1 �d2 � · · · �dn �1 are the degrees of the vertices of a tree if and only
if

∑n
i=1 di = 2n − 2. In the same spirit, the next two lemmas characterize connected unicyclic and bicyclic graphs by

their degree sequence.

Lemma 2.1. Let n�3. The integers d1 �d2 � · · · �dn �1 are the degrees of the vertices of a graph G ∈ G1
n if and

only if

(i)
∑n

i=1di = 2n;
(ii) at least three of them are greater than or equal to 2.

Proof. Suppose that G ∈ G1
n. If G has m edges, its cyclomatic number is m−n+1=1, hence m=n and (i) is verified.

Additionally, (ii) is also verified since the vertices of the unique cycle have the degrees greater than or equal to 2.
The sufficiency will be proved by induction on n. For n=3 we deduce that d1 =d2 =d3 =2 and the cycle C3 ∈ G1

3 is
the only graph having this degree sequence. Suppose that n�4 and that the statement is true for all n′ �n− 1. If dn �2
it follows that d1 =d2 =· · ·=dn =2 and the cycle Cn ∈ G1

n has these degrees. Otherwise, one has dn =1. If di �2 for all
1� i�n−1 then

∑n
i=1 di �2n−1, which contradicts the hypothesis. Hence there exists a maximal index j, 1�j �n−1

such that dj �3, dj+1 �2 and d1 � · · · �dj−1 �dj > dj+1 � · · · �dn =1. We have
∑n−1

k=1,k �=j dk + (dj −1)=2(n−1)

and at least three numbers of the sequence d1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dn−1 are greater than or equal to 2. By
the induction hypothesis there exists a graph G1 ∈ G1

n−1 having this degree sequence. By adding a new vertex, joined
by an edge with the vertex of degree dj − 1 of G1, we get a connected unicyclic graph of order n having the degree
sequence d1, . . . , dn, where dn = 1. �

Lemma 2.2. Let n�4. The integers d1 �d2 � · · · �dn �1 are the degrees of the vertices of a graph G ∈ G2
n if and

only if

(i)
∑n

i=1di = 2n + 2;
(ii) at least four of them are greater than or equal to 2;

(iii) d1 �n − 1.

Proof. Let G ∈ G2
n. Because G has the cyclomatic number m − n + 1 = 2, it follows that m = n + 1, hence∑n

i=1 di = 2n + 2. Two cycles contain together at least four vertices of degrees greater than or equal to 2 and (ii) is
verified. Also, d1 � |V (G)| − 1 = n − 1.

The sufficiency will be shown also by induction on n. For n = 4 we deduce that d1 = d2 = 3 and d3 = d4 = 2. In this
case, C4 + e ∈ G2

4 is the only graph having this degree sequence. Let n�5 and suppose that the statement is true for all
n′ �n−1. If dn �2 then the only possibilities are: (a) d1=4, d2=d3=· · ·=dn=2 and (b) d1=d2=3, d3=d4=· · ·=dn=2.
In the first case, any graph consisting of two cycles Cp and Cn+1−p having a common vertex (3�p�n − 2) is in
G2

n and has the above mentioned degree sequence. In the second case, any cycle with a chord Cn + e has this degree
sequence.

The remaining case is dn=1. If d1=n−1 then the only possibilities are d1=n−1, d2=d3=d4=d5=2, d6=· · ·=dn=1
and d1 = n − 1, d2 = 3, d3 = d4 = 2, d5 = · · · = dn = 1. These degree sequences have unique realizations in G2

n,
namely K1,n−1 plus two vertex disjoint edges and two edges having a common extremity, respectively. Suppose that
d1 �n − 2. If di �2 for each 1� i�n − 1 then

∑n
i=1 di �2n − 1, a contradiction. By the same reasoning as above, we

can find a maximal index j, 1�j �n − 1 such that dj �3, dj+1 �2 and d1 � · · · �dj−1 �dj > dj+1 � · · · �dn = 1.
At least four numbers of the sequence d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1 are greater than or equal to 2, d1 �n − 2
and

∑n−1
k=1,k �=j dk + (dj −1)=2(n−1)+2. Applying the induction hypothesis, there exists a graph G2 ∈ G2

n−1 having
this degree sequence. By adding a new vertex, joined by an edge with the vertex of degree dj − 1 of G2 we obtain a
connected bicyclic graph of order n having the degree sequence d1, . . . , dn, where dn = 1. �

We note that a slightly different characterization was obtained for unicyclic and bicyclic graphs by Schocker in [8].
However, it is not convenient for our approach.
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Let xi denote the number of vertices of degree i of G ∈ Gn, for 1� i�n − 1. If d(v) = k then D(v)�k + 2(n − k −
1) = 2n − k − 2 and the equality holds if and only if ecc(x)�2. Consequently,

D′(G) =
∑

v∈V (G)

d(v)D(v)�
n−1∑

k=1

kxk(2n − k − 2),

where the equality holds if and only if diam(G)�2.
By denoting as in [11]

F(x1, . . . , xn−1) =
n−1∑

k=1

kxk(2n − k − 2),

we will find the minimum of F(x1, . . . , xn−1) over all natural numbers x1, . . . , xn−1 �0 satisfying the conditions in
Lemmas 2.1 and 2.2.

Rewriting Lemmas 2.1 and 2.2 in terms of the above notations, yields:

Corollary 2.3. Let n�3. The integers x1, . . . , xn−1 �0 are the multiplicities of the degrees of a graph G ∈ G1
n if and

only if:

(i)
∑n−1

i=1 xi = n;

(ii)
∑n−1

i=1 ixi = 2n;

(iii) x1 �n − 3.

Corollary 2.4. Let n�4. The integers x1, . . . , xn−1 �0 are the multiplicities of the degrees of a graph G ∈ G2
n if and

only if:

(i)
∑n−1

i=1 xi = n;

(ii)
∑n−1

i=1 ixi = 2n + 2;

(iii) x1 �n − 4.

Denote by �1 and �2 the sets of vectors (x1, . . . , xn−1) where x1, . . . , xn−1 are non-negative integers satisfying the
conditions (i)–(iii) in Corollaries 2.3 and 2.4, respectively.

Let G ∈ Gn with the associated multiplicities of the degrees (x1, . . . , xn−1) and let m�2, p > 0, m + p�n −
2, xm �1, xm+p �1. Now consider the transformation t1 defined as follows:

t1(x1, . . . , xn−1) = (x′
1, . . . , x

′
n−1)

= (x1, . . . , xm−1 + 1, xm − 1, . . . , xm+p − 1, xm+p+1 + 1, . . . , xn−1).

We have x′
i =xi for i /∈ {m−1, m, m+p, m+p+1} and x′

m−1 =xm−1 +1, x′
m =xm −1, x′

m+p =xm+p −1, x′
m+p+1 =

xm+p+1 + 1.

Lemma 2.5. Let (x1, . . . , xn−1) ∈ �1.Then t1(x1, . . . , xn−1) ∈ �1 unlessm=2 andx1=n−3.Also, if (x1, . . . , xn−1) ∈
�2 then t1(x1, . . . , xn−1) ∈ �2 unless m = 2 and x1 = n − 4. Moreover

F(t1(x1, . . . , xn−1)) < F(x1, . . . , xn−1).

Proof. We obtain
∑n−1

i=1 x′
i=

∑n
i=1 xi ,

∑n−1
i=1 ix′

i=
∑n−1

i=1 ixi . If (x1, . . . , xn−1) ∈ �1 then x′
1 > n−3 if and only if m=2

and x1 = n − 3; a similar conclusion holds if (x1, . . . , xn−1) ∈ �2. By a simple calculation we get F(x1, . . . , xn−1) −
F(t1(x1, . . . , xn−1)) = 2p + 2 > 0. �
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We shall consider a second transformation t2 which acts on the vectors from �1 ∪ �2 as follows. Let m such that
2�m�n − 2 and xm �2. We define

t1(x1, . . . , xn−1) = (x′
1, . . . , x

′
n−1)

= (x1, . . . , xm−1 + 1, xm − 2, xm+1 + 1, . . . , xn−1).

i.e. x′
i = xi for i /∈ {m − 1, m, m + 1} and x′

m−1 = xm−1 + 1, x′
m = xm − 2, x′

m+1 = xm+1 + 1.

Lemma 2.6. Let (x1, . . . , xn−1) ∈ �1. We have t2(x1, . . . , xn−1) ∈ �1 unless m=2 and x1 =n−3; if (x1, . . . , xn−1) ∈
�2 then t2(x1, . . . , xn−1) ∈ �2 unless m = 2 and x1 = n − 4. Also

F(t2(x1, . . . , xn−1)) < F(x1, . . . , xn−1).

Proof. The proof is similar to the proof of the previous lemma, taking p = 0. �

3. Main results

Theorem 3.1. For every n�3 we have

min
G∈G1

n

D′(G) = 3n2 − 3n − 6

and the unique extremal graph is K1,n−1 + e.

Proof. In order to find the minimum of D′(G) over all G ∈ G1
n, we will find min(x1,...,xn−1)∈�1 F(x1, . . . , xn−1). Firstly,

let us consider the case n = 3. The only graph G ∈ G1
3 is C3 and D′(C3) = 12 = �(3), where �(n) = 3n2 − 3n − 6;

moreover C3 = K1,2 + e and the theorem is proved in this case.
Let n�4. If xn−1 �2 consider two different vertices x, y ∈ V (G) such that d(x) = d(y) = n − 1. Since n�4 we

can choose two different vertices z, t ∈ V (G)\{x, y}. We have xy, xz, xt, yz, yt ∈ E(G), hence G has at least two
cycles x, y, z, x and x, y, t, x, which contradicts the hypothesis. Therefore xn−1 �1.

Let us analyse the possible values for x3, . . . , xn−2 in the case of minimum. If there exist 3� i < j �n − 2 such that
xi �1 and xj �1, then, by applying t1 for the positions i and j, we obtain a new vector (x′

1, . . . , x
′
n−1) ∈ �1 for which

F(x′
1, . . . , x

′
n−1) < F(x1, . . . , xn−1). Similarly, if there exists 3� i�n− 2 such that xi �2, then by t2 we obtain a new

degree sequence in �1 for which F(x′
1, . . . , x

′
n−1) < F(x1, . . . , xn−1).

The two remaining cases are (a) x3 = x4 = · · · = xn−2 = 0 and (b) there is only one index i, 3� i�n − 2 such that
xi = 1 and xk = 0 for all 3�k�n − 2, k �= i. Let us prove that in the latter one F(x1, . . . , xn−1) cannot be minimum.
We will show that we can apply t1 for the positions 2 and i. But for this to be possible we need to have x2 �1 and
x1 �n − 4.

Indeed, suppose that x2 = 0. It follows that x1 + xn−1 = n − 1. Prior, we have seen that xn−1 �1. If xn−1 = 0 then
x1 = n − 1, and xn−1 = 1 implies x1 = n − 2. Both of these subcases contradict condition (iii) of Corollary 2.3. Thus
we have x2 �1.

Consider now that x1 > n − 4, which again, by condition (iii) entails x1 = n − 3. Condition (i) can be written
n − 3 + x2 + 1 + xn−1 = n, hence x2 = 2 − xn−1. Condition (ii) implies that n − 3 + 2x2 + i + (n − 1)xn−1 = 2n or
n + 4 + (i − 3) + (n − 3)xn−1 = 2n, which, by the fact that i�3 leads to (n − 3)xn−1 �n − 4. If xn−1 = 0 then x2 = 2
and, by (ii), we deduce i =n−1, a contradiction. If xn−1 =1 then x2 =1 and, by (ii), we have i =2, also a contradiction.
Finally, x1 �n − 4 and now it is possible to apply t1 for positions 2 and i, obtaining a new vector (x′

1, . . . , x
′
n−1) ∈ �1

for which F(x′
1, . . . , x

′
n−1) < F(x1, . . . , xn−1).

Therefore case (a) holds, thus implying x3=· · ·=xn−2=0. The degree sequence at this point is (x1, x2, 0, . . . , 0, xn−1)

with xn−1 ∈ {0, 1}. Let us consider the case xn−1 = 0. We have x1 + x2 = n and x1 + 2x2 = 2n, implying that x2 = n

and x1 = 0 (the corresponding graph in G1
n being Cn). In this case, (0, n, 0, . . . , 0) cannot be a point of minimum in

�1 since transformation t2 can be applied to this vector. The remaining case is xn−1 = 1. Conditions (i) and (ii) of
Corollary 2.3 imply that x2 = 2 and x1 = n − 3.
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It follows that F(x1, . . . , xn−1) is minimum if and only if x1 = n − 3, x2 = 2, x3 = · · · = xn−2 = 0, xn−1 = 1 and
the corresponding graph is K1,n−1 + e. Hence,

min
G∈G1

n

D′(G)� min
(x1,...,xn−1)∈�1

F(x1, . . . , xn−1)

= F(n − 3, 2, 0, . . . , 0, 1) = 3n2 − 3n − 6 = D′(K1,n−1 + e),

which concludes the proof. �

Note that min
G∈G1

n

D′(G) = min
(x1,...,xn−1)∈�1

F(x1, . . . , xn−1) since K1,n−1 + e has diameter 2 and D(v) = 2n − k − 2

for every v of degree k in V (K1,n−1 + e).

Theorem 3.2. For every n�4 we have

min
G∈G2

n
D′(G) = 3n2 + n − 18.

The extremal graph is unique and may be obtained from K1,n−1 by adding two edges having a common extremity.

Proof. Let G ∈ G2
n be a connected bicyclic graph with the multiplicities of the degrees (x1, . . . , xn−1) ∈ �2. As for

Theorem 3.1, in order to find the minimum of D′(G) over all G ∈ G2
n, we will find the minimum of F(x1, . . . , xn−1)

over all (x1, . . . , xn−1) ∈ �2.
Firstly, for n = 4 the only graph G ∈ G2

n is C4 + e and D′(C4 + e) = 34 = �(4), where �(n) = 3n2 + n − 18.
Let n�5. By a similar reasoning as before, we have xn−1 �1. Similarly, on positions 4, . . . , n−2 we cannot have two

values greater than or equal to 1 or one value greater than or equal to 2. Let us show that all vectors (x1, . . . , xn−1) ∈ �2
realizing the minimum of F have x4 = x5 = · · · = xn−2 = 0.

Indeed, suppose that there is an index 4� i�n−2 such that xi =1 and xk =0 for all 4�k�n−2, k �= i. In this case,
if x3 �1 we can apply t1 for positions 3 and i and obtain a smaller value for F. Suppose that x3 = 0. As xn−1 ∈ {0, 1},
we will analyse separately the two cases: (a) xn−1 = 1 and (b) xn−1 = 0.

(a) In this case xn−1 = xi = 1, where i�4. We can consider different vertices x, y, u, v, w ∈ V (G) such that
d(x) = n − 1�4, d(y) = i�4, xy, xu, xv, xw, yu, yv, yw ∈ E(G). We have found three linearly independent cycles
x, y, u, x; x, y, v, x; x, y, w, x, which contradicts the hypothesis about G.

(b) If xn−1 = 0 then �2 is characterized by x1 + x2 = n − 1, x1 + 2x2 + i = 2n + 2 and x1 �n − 4. We deduce that
x1 = i − 4�n − 6 and x2 = n + 3 − i�1. In this case we can apply t1 for positions 2 and i and deduce a smaller value
for F.

To sum up, we have x4 = x5 = · · · = xn−2 = 0 and xn−1 ∈ {0, 1}. If xn−1 = 0, then x1 + x2 = n − x3 and
x1 +2x2 =2n+2−3x3, which imply x1 =x3 −2. It follows that x3 �2; by applying t2 for position 3 we obtain a smaller
value for F. If xn−1=1 then x1+x2+x3=n−1 and x1+2x2+3x3=n+3. If x3=0 we obtain (n−5, 4, 0, . . . , 0, 1) ∈ �2
and if x3 = 1 we get (n − 4, 2, 1, 0, . . . , 0, 1) ∈ �2. But t2(n − 5, 4, 0, . . . , 0, 1) = (n − 4, 2, 1, 0, . . . , 0, 1). It follows
that F(x1, x2, . . . , xn−1) is minimum in �2 if and only if x1 =n− 4, x2 = 2, x3 = 1, x4 =· · ·= xn−2 = 0 and xn−1 = 1.
The corresponding graph is K1,n−1 + 2e, where the additional edges have a common extremity. This graph has also
diameter 2. As in Theorem 3.1, we have

min
G∈G2

n

D′(G)� min
(x1,...,xn−1)∈�2

F(x1, . . . , xn−1)

= F(n − 4, 2, 1, 0, . . . , 0, 1) = 3n2 + n − 18 = D′(K1,n−1 + 2e). �
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