Matrices that preserve the value of the generalized matrix function of the upper triangular matrices

Rosário Fernandes

Departmento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

Received 26 February 2003; accepted 4 August 2003
Available online 14 October 2003
Submitted by R. Merris

Dedicated to G. de Oliveira

Abstract

Let H be a subgroup of the symmetric group S_n and χ an irreducible character of H. In this paper we give conditions that characterize matrices that leave invariant the value of a given generalized matrix function on the set of upper triangular matrices. In some cases we describe completely these matrices.

© 2003 Elsevier Inc. All rights reserved.

AMS classification: 15A15

Keywords: Matrix preservers; Generalized matrix function; Triangular matrix

1. Introduction

Let S_n be the symmetric group of degree n. Let F be an arbitrary field of characteristic zero and c a function, not identically zero, from S_n into F. If $X = [x_{ij}]$ is an $n \times n$ matrix over F, the generalized Schur function $d_c(X)$ is defined by [5,6]

$$d_c(X) = \sum_{\sigma \in S_n} c(\sigma) \prod_{i=1}^n x_{i\sigma(i)}.$$

This research was done within the activities of “Centro de Estruturas Lineares e Combinatórias”.

E-mail address: rosario@hermite.cii.fc.ul.pt (R. Fernandes).

0024-3795/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2003.08.009
Let c coincide with a character χ of a subgroup H of S_n and be zero in $S_n \setminus H$. We then denote $d_c(X)$ by $d^H_c(X)$ and say that it is the generalized matrix function associated with H and χ.

Let $M_n(F)$ be the linear space of n-square matrices with elements in F. In [3] Marcus and Chollet defined the set, $\mathcal{S}(H, \chi)$, of the matrices $A \in M_n(F)$ satisfying

$$d^H_c(AX) = d^H_c(X)$$

for all $X \in M_n(F)$.

They showed that this set is a subgroup of the multiplicative group of nonsingular matrices, $GL(n, F)$.

In [7] Oliveira and Dias da Silva characterize completely this subgroup: If $\theta \in S_n$, we denote by $P(\theta)$ the $n \times n$ permutation matrix whose (i, j) entry is

$$P(\theta)_{ij} = \delta_{i\theta(j)}, \quad i, j \in \{1, \ldots, n\}.$$

Let H^{id}_T be the subgroup of H generated by those transpositions, τ, of H such that $\chi(\tau) = -\chi(id)$ and denote by $Z(H, \chi)$ the set of elements π of H satisfying

$$\chi(id)\chi(\pi\sigma) = \chi(\pi)\chi(\sigma)$$

for all σ in H.

Theorem 1.1. The matrix A belongs to $\mathcal{S}(H, \chi)$ if and only if

$$A = MP(\gamma),$$

where

1. $M = [m_{ij}], m_{ij} = 0$ whenever i and j belong to different orbits of H^{id}_T,
2. $\gamma \in Z(H, \chi)$,
3. $\det(M) = \frac{\chi(\gamma)}{\chi(id)}$.

Here we study the set, $\mathcal{S}(H, \chi)$, of the matrices $A \in M_n(F)$ satisfying

$$d^H_c(AX) = d^H_c(X)$$

for all $X \in T^U_n(F)$, where $T^U_n(F)$ is the set of n-square upper triangular matrices.

Since $I_n \in \mathcal{S}(H, \chi)$, $\mathcal{S}(H, \chi)$ is a nonempty set. It is also easy to see that $\mathcal{S}(H, \chi) \subseteq \mathcal{S}(H, \chi)$.

Let $\sigma \in H$ such that $\chi(\sigma^{-1}) \neq 0$. We denote by $V_{\sigma}(H, \chi)$ the set of matrices $L \in T^U_n(F)$ (the set of n-square lower triangular matrices) with diagonal elements equal to 1, satisfying

$$d^H_c(P(\sigma)LX) = d^H_c(P(\sigma)X)$$

for all $X \in T^U_n(F)$.

In Section 2 we give a description of the matrices in the set $\mathcal{T}(H, \chi)$ and establish a relationship between the set $\mathcal{T}(H, \chi)$ and the sets $V_\sigma(H, \chi)$. In Section 3, using the Murnaghan–Nakayama rule [1] we present, in some cases, a complete description of the matrices in $V_\sigma(S_n, \chi)$.

2. The matrices in $\mathcal{T}(H, \chi)$

The purpose of this section is to characterize matrices in the set $\mathcal{T}(H, \chi)$, where H is a subgroup of S_n and χ is a character of H. The main results are the following:

Theorem 2.1

$$\mathcal{T}(H, \chi) = \bigcup_{\sigma \in H, \chi(\sigma^{-1}) \neq 0} \{ P(\sigma)L R : L \in V_\sigma(H, \chi), R \in T_n^U(F), \det(R) = \frac{\chi(id)}{\chi(\sigma^{-1})} \}.$$

Let $\sigma \in H$ such that $\chi(\sigma) \neq 0$. Denote by H_σ^T the subgroup of H generated by those transpositions, τ, of H satisfying $\chi(\sigma^{-1}\tau) = -\chi(\sigma^{-1})$, i.e., $\chi(\sigma^{-1}\tau) = \chi(\sigma^{-1})\epsilon(\tau)$.

Theorem 2.2. Let $L = [l_{ij}] \in T_n^L(F)$ with diagonal elements equal to 1 and let $\sigma \in H$ such that $\chi(\sigma) \neq 0$. If $L \in V_\sigma(H, \chi)$ then $l_{ij} = 0$ whenever i and j belong to different orbits of H_σ^T.

There are some cases where the converse of Theorem 2.2 also holds.

Theorem 2.3. Let $L = [l_{ij}] \in T_n^L(F)$ with diagonal elements equal to 1 and let $\sigma \in Z(H, \chi)$. Then $L \in V_\sigma(H, \chi)$ if and only if $l_{ij} = 0$ whenever i and j belong to different orbits of H_σ^T.

Let x be an indeterminate over the field F and $E^{(i)}+x^{(j)}$ the matrix obtained from the identity matrix by adding x times column j to column i.

Proposition 2.4. Let $L = E^{(k)}+x^{(k+1)} \in T_n^L(F)$ with $x \neq 0$ and $\sigma \in H$ such that $\chi(\sigma) \neq 0$. Then $L \in V_\sigma(H, \chi)$ if and only if the transposition $(k, k+1) \in H$ and $\chi((k, k+1)\sigma^{-1}) = -\chi(\sigma^{-1})$.

We start by proving some easy results.

Proposition 2.5. If $A \in \mathcal{T}(H, \chi)$, then $\det(A) \neq 0$.

The proof of this proposition is analogous to Theorem 2.1 in [7].
Proof. Assume A is singular. There is a nonzero column matrix

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

such that $Ax = 0$. Let $p \in \{1, \ldots, n\}$ be the largest integer such that $x_p \neq 0$. Let X be the matrix those pth column is x, $x_{ii} = 1$, for $i \neq p$, the remaining elements being zero. Then $X \in T_n^U(F)$ and AX has a zero column. Thus $d_H^H(AX) = 0$ but $d_H^H(X) = \chi(id)x_p \neq 0$, violating the definition of $\mathcal{F}(H,\chi)$. □

Remarks

(1) In [3], it was proved that the set $\mathcal{S}(H,\chi)$ is a subgroup of $GL(n, F)$. In general, the set $\mathcal{T}(H,\chi)$ is not a subgroup of $GL(n, F)$.

Example 2.6. Let χ be the irreducible character of S_4 such that $\chi(\sigma) = F(\sigma) - 1$, i.e.,

$$\chi = \begin{bmatrix} 1^4 & 2 \, 1^2 & 3 \, 1 & 2^2 & 4 \\
3 & 1 & 0 & -1 & -1 \end{bmatrix}$$

It is easy to prove that the matrices

$$A = \begin{bmatrix} 0 & 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad A' = \begin{bmatrix} 3 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \end{bmatrix}$$

belong to $\mathcal{F}(S_4,\chi)$. But the product

$$AA' = \begin{bmatrix} 3 & 3 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \end{bmatrix}$$

is such that

$$-9 = d_{S_4}^S(AA' I_4) \neq d_{S_4}^S(I_4) = 3.$$

So, $AA' \notin \mathcal{F}(S_4,\chi)$.

(2) If $A \in \mathcal{F}(H,\chi)$ and $R \in T_n^U(F)$ with $\det(R) = 1$, then $AR \in \mathcal{F}(H,\chi)$.

Proof. Let $X \in T_n^U(F)$. Since $R \in T_n^U(F)$ then $RX \in T_n^U(F)$. Because $A \in \mathcal{F}(H,\chi)$,

$$d_H^H(ARX) = d_H^H(RX) = \chi(id)\det(RX) = \chi(id)\det(X) = d_H^H(X).$$

So, $AR \in \mathcal{F}(H,\chi)$. □

(3) If $A \in \mathcal{F}(H,\chi)$ then $d_H^H(A) = \chi(id)$.

Proof. Since $I_n \in T_n^U(F)$ and $A \in \mathcal{F}(H,\chi)$,

$$d_H^H(A I_n) = d_H^H(I_n) = \chi(id).$$ □
(4) If $H = S_n$ and $\chi = \epsilon$ is the alternating character then
$$\mathcal{T}(S_n, \epsilon) = \{ A \in M_n(F) : \det(A) = 1 \}.$$

Proposition 2.7. Let H be a subgroup of S_n and χ be a character of H. Then a matrix A is in $\mathcal{T}(H, \chi)$ if and only if there exist $\sigma \in H$ such that $\chi(\sigma) \neq 0$ and $L \in T_n^U(F)$ with diagonal elements equal to 1 satisfying

(i) $L^{-1} P(\sigma^{-1}) A \in T_n^U(F),$
(ii) $\det(A) = \frac{\chi(id)\epsilon(\sigma)}{\chi(\sigma^{-1})},$
(iii) $d_H^\chi(P(\sigma)LZ) = \chi(\sigma^{-1})\det(Z)$, for all $Z \in T_n^U(F)$.

Proof. Let $A \in \mathcal{T}(H, \chi)$. It is well known that there is a permutation σ in S_n such that $A = P(\sigma)LR$, where $L \in T_n^L(F)$ with diagonal elements equal to 1 and $R \in T_n^U(F)$. Then, $L^{-1} P(\sigma^{-1}) A = R \in T_n^U(F)$. So, we have (i). For $X \in T_n^U(F)$, since $A \in \mathcal{T}(H, \chi)$,
$$d_H^\chi(AX) = d_H^\chi(X).$$

Then,
$$d_H^\chi(P(\sigma)LRX) = d_H^\chi(X).$$
Setting $Z = RX$, since L, A are nonsingular, R is nonsingular and Z is arbitrary in $T_n^U(F)$. So we get
$$d_H^\chi(P(\sigma)LZ) = d_H^\chi(R^{-1}Z).$$
If $Z = I_n$, then
$$d_H^\chi(P(\sigma)L) = d_H^\chi(R^{-1}) = \chi(id) \prod_{i=1}^n r_i^{-1} \neq 0.$$
But,
$$d_H^\chi(P(\sigma)L) = \begin{cases} \chi(\sigma^{-1}) & \text{if } \sigma \in H, \\ 0 & \text{if } \sigma \notin H. \end{cases}$$
Then, $\sigma \in H$ and $\chi(\sigma^{-1}) \neq 0$. Therefore
$$\chi(\sigma^{-1}) = \chi(id) \prod_{i=1}^n r_i^{-1}. $$
Consequently, $\det(R) = \frac{\chi(id)\epsilon(\sigma)}{\chi(\sigma^{-1})}$ and
$$\det(A) = \det(P(\sigma)LR) = \epsilon(\sigma)\det(R) = \frac{\chi(id)\epsilon(\sigma)}{\chi(\sigma^{-1})}$$
and we have (ii).
Now, because
\[d_H^\chi (R^{-1}Z) = \chi(id)\det(R^{-1})\det(Z) = \chi(\sigma^{-1})\det(Z) \]
we get
\[d_H^\chi (P(\sigma)LZ) = d_H^\chi (P(\sigma)LRR^{-1}Z) = d_H^\chi (AR^{-1}Z) = d_H^\chi (R^{-1}Z) = \chi(\sigma^{-1})\det(Z). \]
Consequently, we have (iii).

Conversely, let \(A, L, P(\sigma) \) be matrices satisfying the conditions (i)–(iii). Let \(X \in T_n^U(F) \). Using (i) and (iii) we get
\[d_H^\chi (AX) = d_H^\chi (P(\sigma)LX) = \chi(\sigma^{-1})\det(L^{-1}P(\sigma^{-1})AX) = \chi(\sigma^{-1})\epsilon(\sigma)\det(A)\det(X). \]
Using (ii), we can conclude that
\[d_H^\chi (AX) = \chi(id)\det(X) = d_H^\chi (X). \]
Consequently, \(A \in \mathcal{F}(H, \chi). \)

It is easy to prove Theorem 2.1 using the last proposition and the fact that, if \(\sigma \in H \) then
\[d_H^\chi (P(\sigma)Z) = \chi(\sigma^{-1})\det(Z) \]
for all \(Z \in T_n^U(F) \).

Now, for each \(\sigma \in H \) such that \(\chi(\sigma^{-1}) \neq 0 \), we are going to study matrices in \(V_\sigma(H, \chi) \).

Proof of Theorem 2.2. Let \(k \) be an integer such that \(k \in \{1, \ldots, n\} \) and for all \(n \geq s > k, (k, s) \notin H^n_F \).

We are going to prove that \(l_{k+1} = \cdots = l_n = 0 \).

Using \(X = E^{(k+1)+x(k)} \), since \(L \in V_\sigma(H, \chi) \) and \(X \in T_n^U(F) \),
\[d_H^\chi (P(\sigma)LX) = \chi(\sigma^{-1})\det(X) = \chi(\sigma^{-1}). \]
But,
\[d_H^\chi (P(\sigma)LX) = \begin{cases} \chi(\sigma^{-1})(1 + xl_{k+1}) & \text{if } (k, k+1) \notin H, \\ \chi(\sigma^{-1}) + (\chi(\sigma^{-1}) + xl_{k+1}) & \text{if } (k, k+1) \in H. \end{cases} \]
Because \((k, k+1) \notin H^n_F \) and \(x \) is arbitrary then \(l_{k+1} = 0 \).
Next, using $X = E^{(k+2)+x(k)}$ then

$$\chi(\sigma^{-1}) = d_H^X(P(\sigma)LX) = \begin{cases}
\chi(\sigma^{-1})(1 + xl_{k+2k}) & \text{if } (k, k + 2) \notin H, \\
\chi(\sigma^{-1}) + (\chi(\sigma^{-1}) + (\chi((k, k + 2)\sigma^{-1}))(xl_{k+2k}) & \text{if } (k, k + 2) \in H.
\end{cases}$$

Because $(k, k + 2) \notin H$ and x is arbitrary then $l_{k+2k} = 0$.

Then with $X = E^{(k+3)+x(k)}$ we prove that $l_{k+3k} = 0$, etc. In this way we can show that $l_{k+1k}, l_{k+2k}, \ldots, l_{nk}$ are equal to zero.

Now let r be the largest integer such that $1 \leq r < k$ and $(k, r) \in H$. Taking $X = E^{(r+1)+x(r)}$ we prove $l_{r+1r} = 0$. Then with $X = E^{(r+2)+x(r)}$ we prove that $l_{r+2r} = 0$, etc. Consequently we have $l_{r+1r} = \cdots = l_{k-1r} = l_{k+1r} = \cdots = l_{nr} = 0$.

Therefore we can conclude that $l_{iu} = 0$ if u, k belong to the same orbit of H and i, k belong to different orbits of H. Since k is arbitrary, we get the theorem. □

In general, the converse of Theorem 2.2 does not hold.

Example 2.8. Let χ be the irreducible character of S_5 such that

$$\begin{array}{cccccc}
1 & 2 & 1 & 3 & 1 & 2 \\
5 & 4 & 1 & 4 & 2 & 3
\end{array}$$

Using $\sigma = (1, 2)$, it is easy to see that $(1, 2) \in (S_5)^{(1,2)}$. Taking $L = E^{(1)+1(2)}$, L is such that $l_{ij} = 0$ whenever i, j belong to different orbits of $(S_5)^{(1,2)}$. But, using $X = E^{(2)+1(1)}$,

$$d_S^X(P(1, 2)LX) = \chi(id) + 2\chi(1, 2) = 7 \neq 1 = \chi(1, 2) = d_S^X(P(1, 2)X).$$

Consequently, $L \notin V_{(1,2)}(S_5, \chi)$.

Proposition 2.9. If $\sigma \in Z(H, \chi)$ then

$$V_{\sigma}(H, \chi) = V_{id}(H, \chi).$$

Proof. Let $Z \in T_n^U(F)$. Using the definition of d_H^X, we have

$$d_H^X(P(\sigma)LZ) = \sum_{\pi \in H} \chi(\pi) \prod_{i=1}^n (P(\sigma)LZ)_{\pi(i)} = \sum_{\pi \in H} \chi(\pi) \prod_{j=1}^n (LZ)_{j\pi(j)}. $$

Since $\chi(\rho^{-1}) = \chi(\sigma^{-1})$ and $\rho \in Z(H, \chi)$, we can conclude that

$$d_H^X(P(\sigma)LZ) = \frac{\chi(\sigma^{-1})}{\chi(id)} \sum_{\rho \in H} \chi(\rho) \prod_{j=1}^n (LZ)_{j\rho(j)} = \frac{\chi(\sigma^{-1})}{\chi(id)} d_H^X(LZ).$$
Consequently, $L \in V_\sigma(H, \chi)$ if and only if \(\frac{z^{(\sigma^{-1})}}{\chi(id)} d_X^{(\sigma^{-1})} d_X^T(Z) = \frac{z^{(\sigma^{-1})}}{\chi(id)} d_X^{(\sigma^{-1})} d_X^T(Z) \) if and only if $L \in V_{id}(H, \chi)$. □

Proof of Theorem 2.3. Using Theorem 2.2, if $L = [l_{ij}] \in V_\sigma(H, \chi)$, then $l_{ij} = 0$ whenever i, j belong to different orbits of H^T_σ. Conversely, let $L = [l_{ij}] \in T_n(F)$ with diagonal elements equal to 1 such that $l_{ij} = 0$ whenever i, j belong to different orbits of H^T_σ. Since $\sigma \in Z(H, \chi)$, using the last proposition, we are prove that $L \in V_{id}(H, \chi)$. Because $H^T_\sigma = H_{id}^T$, by Theorem 1.1, $L \in S(H, \chi)$. But, $S(H, \chi) \subseteq T(H, \chi)$, consequently, $L \in V_{id}(H, \chi) = V_{\sigma}(H, \chi)$. □

Proof of Proposition 2.4. Let $L = E^{(k+1)}(k)$ with $x \neq 0$. Let $Z \in T_n(F)$. Using the definition of d_X^T, if $(k, k+1) \in H$ we have

\[
d_X^T(P(\sigma)LZ) = \sum_{\rho \in H} \chi(\rho^{-1}) \prod_{j=1}^{n} (LZ)_{j\rho(j)}
\]

\[
= \chi^{(\sigma^{-1})} \prod_{i=1, i \neq k+1}^{n} z_{ii}(z_{k+1}k+1 + xz_{kk+1})
+ \chi((k, k+1)\sigma^{-1}) \prod_{i=1, i \neq k+1}^{n} z_{ii}(xz_{kk+1}).
\]

If $\sigma \in H$ is such that $\chi((k, k+1)\sigma^{-1}) = -\chi(\sigma^{-1})$ then $d_X^T(P(\sigma)LZ) = \chi(\sigma^{-1})\det(Z)$. Consequently, $L \in V_{\sigma}(H, \chi)$. Conversely, if $L \in V_{\sigma}(H, \chi)$, taking $Z = E^{(k+1)}(k)$ we have,

\[
d_X^T(P(\sigma)LZ) = \chi(\sigma^{-1})
\]

and

\[
d_X^T(P(\sigma)LZ) = \begin{cases} 2\chi(\sigma^{-1}) & \text{if } (k, k+1) \notin H, \\ 2\chi(\sigma^{-1}) + \chi((k, k+1)\sigma^{-1}) & \text{if } (k, k+1) \in H. \end{cases}
\]

So, $(k, k+1) \in H$ and $\chi((k, k+1)\sigma^{-1}) = -\chi(\sigma^{-1})$. □

3. Murnaghan–Nakayama rule and $V_{\sigma}(S_n, \chi)$

In this section we characterize some sets $V_{\sigma}(S_n, \chi)$ where χ is an irreducible character of S_n and $\sigma \in S_n$ is such that $\chi(\sigma) \neq 0$.

We define a partition α of n as $\alpha = (\alpha_1, \ldots, \alpha_r)$ where the α_i’s are integers, $\alpha_1 \geq \cdots \geq \alpha_r \geq 0$, and $\alpha_1 + \cdots + \alpha_r = n$. We do not distinguish between two
partitions that differ by a sequence of zeros. If \(\alpha = (\alpha_1, \ldots, \alpha_r) \) is a partition of \(n \) and \(\alpha_r > 0 \), we say that \(r \) is the length of \(\alpha \). Each partition \(\alpha = (\alpha_1, \ldots, \alpha_r) \) of length \(r \) is related to a Young diagram, denoted by \([\alpha]\), which consists of \(r \) left justified rows of boxes. The number of boxes in the \(i \)th row is \(\alpha_i \).

If \(\alpha = (\alpha_1, \ldots, \alpha_r) \) is a partition of \(n \), the \(\alpha_1 \)-tuple \(\alpha' = (\alpha'_1, \ldots, \alpha'_\alpha_1) \) \([2]\), defined by

\[
\alpha'_i = \lfloor \{ j : \alpha_j \geq i \} \rfloor
\]
is also a partition of \(n \) called the conjugate partition of \(\alpha \).

We say that a Young diagram is symmetric if it is associated with a partition \(\alpha \) such that \(\alpha = \alpha' \).

It is well known that the irreducible characters of \(S_n \) are in a bijective correspondence with the ordered partitions of \(n \). We identify the irreducible character \(\lambda \) with the partition that corresponds to \(\lambda \). If \(\lambda \) is an irreducible character of \(S_n \), the character \(\lambda' \) such that

\[
\lambda'(\sigma) = \epsilon(\sigma)\lambda(\sigma)
\]

for all \(\sigma \in S_n \) is an irreducible character called the character associated with \(\lambda \). If \(\lambda = \lambda' \) we say that \(\lambda \) is self-associated.

The main results of this section are:

\textbf{Theorem 3.1.} Let \(\chi \) be an irreducible character of \(S_n \). Then

\[
\bigcup_{\sigma \in S_n, \chi(\sigma) \neq 0} V_\sigma(S_n, \chi) = \{I_n\}
\]

if and only if

\[\chi = 1 \text{ or } \chi \text{ is self-associated.} \]

\textbf{Theorem 3.2.} Let \(\chi = (n-1, 1) \) be the irreducible character of \(S_n \) with \(n > 3 \). Let \(\sigma \in S_n \) be a cycle with length \(n - 2 \) and \(L = [l_{ij}] \in T_n^2(F) \) with diagonal elements equal to 1. Then

\[L \in V_\sigma(S_n, \chi) \]

if and only if \(L \) satisfies the condition:

"For \(r > p \), if there exists an integer \(k \) such that \(p \leq k \leq r \) and \(\sigma(k) \neq k \) then \(l_{rp} = 0 \)."

\textbf{Theorem 3.3.} Let \(\chi = (s, 1^{n-s}) \) be the irreducible character of \(S_n \) satisfying

(i) \(s - 1 > n - s \geq 1 \),
(ii) if \(s = 6 \) then \(n \notin \{9, 10\} \),
(iii) if \(s \) is odd and \(s \geq 5 \) then \(2(n - s) \neq s - 1 \).
Let $\sigma \in S_n$ be a cycle with length $s - 1$ such that
\[\{ j : \sigma(j) \neq j \} = \{ u, u + 1, \ldots, u + s - 2 \} \]
for some integer $u < n - s + 2$. Let $L = [l_{ij}] \in T_n^I(F)$ with diagonal elements equal to 1. Then
\[L \in V_\sigma(S_n, \chi) \]
if and only if L satisfies the condition:
"For $r > p$, if there exists an integer k such that $p \leq k \leq r$ and $\sigma(k) \neq k$ then $l_{rp} = 0$".

We start by proving some auxiliary lemmas:

Lemma 3.4. Let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_p)$ be a partition of n with $\alpha_2 > 1$ and length p. Let t be the largest integer such that $\alpha_t > 1$ and $\alpha' = (\alpha'_1, \ldots, \alpha'_p)$ be the conjugate partition of α. If
\[(\alpha_2 - 1, \ldots, \alpha_t - 1) = (\alpha_2 - 1, \ldots, \alpha_t - 1)' \]
then $\alpha_l = \alpha'_l$ for $l \in \{2, \ldots, t\}$.

Proof. Let $\beta = (\beta_1, \ldots, \beta_{t-1})$ be the partition $(\alpha_2 - 1, \ldots, \alpha_t - 1)$ and $\beta' = (\beta'_1, \ldots, \beta'_{t-1})$ be the conjugate partition of β.

By definition
\[\beta'_u = |\{ i : \beta_i \geq u \}| = |\{ i : \alpha_{i+1} \geq u + 1 \}| \]
for $u \in \{1, \ldots, \beta_{t-1}\}$. □

Claim. $\beta'_u = \alpha'_u + 1$, for $u \in \{1, \ldots, \beta_{t-1}\}$.

Proof. Suppose that $a = \alpha'_u + 1$. Then a is the largest integer such that $\alpha_a \geq u + 1$. Consequently, $\alpha_{a+1} < u + 1$. Therefore, $\beta'_u = a - 1 = \alpha'_u - 1$. □

Since $\beta = \beta'$, we have $t - 1 = \beta_{t-1}$ and
\[\alpha_{t+1} - 1 = \beta_t = \beta'_t = \alpha'_{t+1} - 1 \]
for $l \in \{1, \ldots, t - 1\}$. Consequently, $\alpha_l = \alpha'_l$ for $l \in \{2, \ldots, t\}$. □

Lemma 3.5. Let D be the Young diagram associated with the partition $\alpha = (\alpha_1, \ldots, \alpha_p)$ with length p such that $\alpha_2 > 1$. Let t be the largest integer such that $\alpha_t > 1$. If D is not symmetric but the diagram obtained by omitting all the boundary boxes of D is, then there is a unique way of omitting the regular boundary of length
\[\max(\alpha_2 + p - 2, \alpha_1 + t - 2) \]
and the diagram so obtained is not symmetric.
Proof. Let D_1 be the Young diagram obtained by omitting all the boundary boxes of D. Since $D_1 = [(\alpha_2 - 1, \ldots, \alpha_t - 1)]$ is symmetric then, using Lemma 3.4,
\[\alpha_l = \alpha'_l\]
for $l \in \{2, \ldots, t\}$, where $\alpha' = (\alpha'_1, \ldots, \alpha'_p)$ is the conjugate partition of α. In particular,
\[\alpha_2 = t.\]
Since D is not symmetric, then $\alpha_1 > p$ or $\alpha_1 < p$. Consequently, there is a unique way of omitting the regular boundary of length $\max\{\alpha_2 + p - 2, \alpha_1 + t - 2\}$.
Let D_2 be the Young diagram so obtained.
If $\alpha_1 > p$ then $\max\{\alpha_2 + p - 2, \alpha_1 + t - 2\} = \alpha_1 + t - 2$. So, $[(\alpha_2 - 1, \ldots, \alpha_t - 1, 1, \alpha_{t+1}, \ldots, \alpha_p)] = D_2$. Since $\alpha_2 = t < p$ then $\alpha_2 - 1 < p$. Consequently, D_2 is not symmetric.
If $\alpha_1 < p$ then $\max\{\alpha_2 + p - 2, \alpha_1 + t - 2\} = \alpha_2 + p - 2$. So, $[(\alpha_1, \alpha_1 - 1, \ldots, \alpha_1)] = D_2$. Since $\alpha_1 \geq \alpha_2 = t$ then $\alpha_1 > t - 1$. Consequently, D_2 is not symmetric. □

Lemma 3.6. Let $\chi = (1^p)$ be the irreducible character of S_p where $p \geq 2$. Let $\sigma, (i, i+1) \in S_p$, then
\[\chi(\sigma(i, i+1)) = -\chi(\sigma) \neq 0.\]
Proof. Since $\chi = \epsilon$ is the alternating character of S_p, the result follows. □

Lemma 3.7. Let $\chi = (p + a, p + 1, 1^l)$ be the irreducible character of S_m such that $a > l + 1$ and $p = l + 2$. Then there exist $\sigma \in S_m$ and a transposition $(i, i+1) \in S_m$ such that $\chi(\sigma) \neq 0$ and
\[\chi(\sigma(i, i+1)) = -\chi(\sigma).\]
Proof. The proof follows from an exhaustive consideration of cases, which we list:

1. $l = 0$. In this case, $a > 1$ and $p = 2$.
 (1.1) $a = 2$,
 (1.2) $a = 3$,
 (1.3) $a = 4$,
 (1.4) $a \geq 5$.
2. $l \geq 1$. In this case, $a > l + 1$ and $p = l + 2$.
 (2.1) $a \neq l + 3$,
 (2.2) $a = l + 3, l \geq 2$,
 (2.3) $a = l + 3, l = 1$.
Details are omitted. □
Lemma 3.8. Let \(\chi = (p - s, 1^s) \) be the irreducible character of \(S_p \) such that \(p - s \geq 2, s \geq 1 \) and \(p - s \neq s + 1 \). Then there exist \(\sigma \in S_p \) and a transposition \((i, i + 1) \in S_p \) such that \(\chi(\sigma) \neq 0 \) and
\[
\chi(\sigma(i, i + 1)) = -\chi(\sigma).
\]

Proof. Let \(D \) be the Young diagram associated with the partition \((p - s, 1^s) \). We divide the proof into two cases:

1. \(p - s > s + 1 \).
 Consider the permutation of \(S_p \), \((1, \ldots, p - s - 1)\). Since this cycle is a cycle with length \(p - s - 1 \) and \(p - s > s + 1 \) then \(p - s - 1 > s \). So, there is a unique way of omitting \(p - s - 1 \) boundary boxes of \(D \). If \(D_1 \) is the Young diagram obtained, then \(D_1 = [(1^{s+1})] \). Therefore, by Murnaghan–Nakayama rule we have
 \[
 \chi((1, \ldots, p - s - 1)(p - s, p - s + 1)) = -1 = -\chi((1, \ldots, p - s - 1)).
 \]

2. \(p - s < s + 1 \).
 Since \(p - s - 1 < s \), there is a unique way of omitting \(s \) boundary boxes of \(D \). Let \(D_2 \) be the Young diagram obtained, then \(D_2 = [(p - s)] \). Therefore, by the Murnaghan–Nakayama rule we have
 \[
 \chi((1, \ldots, s)(s + 1, \ldots, p)(s, s + 1)) = (-1)^s = -\chi((1, \ldots, s)(s + 1, \ldots, p)).
 \]

Lemma 3.9. Let \(\chi = (p, 2, 1^l) \) be the irreducible character of \(S_m \) such that \(p \geq 2 \) and \(p \neq l + 2 \). Then there exist \(\sigma \in S_m \) and a transposition \((i, i + 1) \in S_m \) such that \(\chi(\sigma) \neq 0 \) and
\[
\chi(\sigma(i, i + 1)) = -\chi(\sigma).
\]

Proof. Let \(D \) be the Young diagram associated with the partition \((p, 2, 1^l) \). We divide the proof into two cases:

1. \(p > l + 2 \).
 Consider the permutation of \(S_m \), \((1, \ldots, p)\). Since this cycle is a cycle with length \(p \) and \(p > l + 2 \) then there is a unique way of omitting \(p \) boundary boxes of \(D \). If \(D_1 \) is the Young diagram so obtained, then \(D_1 = [(1^{l+2})] \). Therefore, by the Murnaghan–Nakayama rule we have
 \[
 \chi((1, \ldots, p)(p + 1, p + 2)) = -1 = -\chi((1, \ldots, p)).
 \]

2. \(p < l + 2 \).
 Consider the permutation \(\rho = (1, \ldots, l + 2) \) with length \(l + 2 \). So, there is a unique way of omitting \(l + 2 \) boundary boxes of \(D \). Let \(D_2 \) be the Young diagram so obtained, then \(D_2 = [(p)] \). Because \(l + p + 1 \) is the number of the boundary
boxes of D and is the length of the permutation $\rho(l + 3, \ldots, l + p + 1)(l + 2, l + 3)$, by the Murnaghan–Nakayama rule we have
\[
\chi(\rho(l + 3, \ldots, l + p + 1)(l + 2, l + 3)) = -l^{l+1} = -\chi(\rho(l + 3, \ldots, l + p + 1)).
\]
□

Lemma 3.10. Let $\chi = (p + a, p + 1, 1^l)$ be the irreducible character of S_m such that $p \geq 2$ and $a \geq 1$. Then there exist $\sigma \in S_m$ and a transposition $(i, i + 1) \in S_m$ such that $\chi(\sigma) \neq 0$ and $\chi(\sigma(i, i + 1)) = -\chi(\sigma)$.

Proof. Again, the proof involves an exhaustive consideration of cases which we list:

1. $l + 1 = a$.
 1.1) $l \geq 1$, $p \neq l + 2$,
 1.2) $l \geq 1$, $p = l + 2$, l even,
 1.3) $l \geq 1$, $p = l + 2$, l odd,
 1.4) $l = 0$, $p = 2$,
 1.5) $l = 0$, $p = 3$,
 1.6) $l = 0$, $p \geq 4$.
2. $l + 1 < a$.
 2.1) $p \neq l + 2$,
 2.2) $p = l + 2$.
3. $l + 1 > a$.

Details will be omitted. □

Proof of Theorem 3.1. **Sufficiency.** If χ is self-associated then $\chi(\pi) = 0$ whenever $\epsilon(\pi) = -1$. Let $\sigma \in S_n$ such that $\chi(\sigma) \neq 0$. Suppose there exists a transposition $\rho \in S_n$ such that $\chi(\sigma \rho) = -\chi(\sigma)$.

Since $\chi(\sigma) \neq 0$ then $\epsilon(\sigma) = 1$. Consequently, $\epsilon(\sigma \rho) = -1$ and $\chi(\sigma \rho) = 0$. Contradiction. Therefore, $(S_n)^T = \{id\}$ and using Theorem 2.2 we have, $\bigcup_{\sigma \in S_n, \chi(\sigma) \neq 0} V_\sigma(S_n, \chi) = \{I_n\}$.

Since if $\chi = (m)$ then $\chi(\rho) = 1$ for all $\rho \in S_n$ and so $(S_n)^T = \{id\}$. Using Theorem 2.2 we have, $\bigcup_{\sigma \in S_n, \chi(\sigma) \neq 0} V_\sigma(S_n, \chi) = \{I_n\}$.

Necessity. Suppose that $\chi \neq (m)$ and χ is not self-associated. Let D be the Young diagram associated with the partition $\alpha = \chi$. Because χ is not self-associated, D is not symmetric. If not all boxes of D are boundary boxes, we do the following procedure:
Procedure

Let \(U \) be the Young diagram associated with the partition \((a_1, \ldots, a_p)\) with length \(p \) such that \(U \) is not symmetric and not all boxes of \(U \) are boundary boxes. Let \(t \) be the largest integer such that \(a_t > 1 \).

We omit all the boundary boxes of \(U \), if the diagram so obtained is not symmetric.

We omit \(\max\{a_2 + p - 2, a_1 + t - 2\} \) boxes of \(U \), otherwise.

Using Lemma 3.5 we see that the diagram obtained in each step of the procedure is not symmetric.

Repeat this procedure until the Young diagram so obtained, \(P \), has all boxes in the boundary. This diagram is associated with one of the following partitions:

(1) \((1^p)\) with \(p \geq 2 \),
(2) \((p)\) with \(p \geq 2 \),
(3) \((p - s, 1^s)\) with \(p - s \geq 2 \), \(s \geq 1 \) and \(p - s \neq s + 1 \).

The result now follows from an exhaustive consideration of cases. \(\square \)

Lemma 3.11. Let \(\chi = (r, 1^{n-r}) \) be the irreducible character of \(S_n \) with \(r > 1 \), \(n \geq 3 \) and \(n - r \neq 0 \). Let \(\chi_1 = (r - 1, 1^{n-r}) \) and \(\chi_2 = (r, 1^{n-r-1}) \) be irreducible characters of \(S_{n-1} \). Then

\[\chi(id) = \chi_1(id) + \chi_2(id). \]

Proof. Immediate from the Murnaghan–Nakayama rule. \(\square \)

Given two partitions \(\rho = (\rho_1, \ldots, \rho_r) \), \(\pi = (\pi_1, \ldots, \pi_t) \) of \(n \), the symbol \(\rho > \pi \) denotes strict majorization that is, \(r \leq t \)

\[\sum_{i=1}^{k} \rho_i \geq \sum_{i=1}^{k} \pi_i, \quad 1 \leq k \leq r, \]

and there exists \(j \leq r \) such that

\[\sum_{i=1}^{j} \rho_i > \sum_{i=1}^{j} \pi_i. \]

Lemma 3.12. Let \(\chi = (s, 1^{n-s}) \), \(\lambda = (t, 1^{n-t}) \) be distinct irreducible characters of \(S_n \) with \(n \geq 6 \). If \(\chi' > \lambda > \chi \)

then

\[\lambda(id) > \chi(id) + 2. \]
Proof. We proof the result by induction on n. When $n = 6$, we have 6 irreducible characters of S_6 satisfying the conditions of the lemma, $\lambda_1 = (6)$, $\lambda_2 = (5, 1)$, $\lambda_3 = (4, 1^2)$, $\lambda_4 = (3, 1^3)$, $\lambda_5 = (2, 1^4)$, $\lambda_6 = (1^6)$.

In this case,

\[
\begin{align*}
\lambda'_6(id) &= \lambda_1(id) = 1 = \lambda'_1(id) = \lambda_6(id), \\
\lambda'_5(id) &= \lambda_2(id) = 5 = \lambda'_2(id) = \lambda_5(id), \\
\lambda'_4(id) &= \lambda_3(id) = 10 = \lambda'_3(id) = \lambda_4(id)
\end{align*}
\]

and

\[
\lambda'_6 > \lambda'_5 > \lambda'_4 > \lambda_4 > \lambda_5 > \lambda_6.
\]

Therefore, if $\lambda'_i > \lambda'_j > \lambda_i$ for $i, j \in \{4, 5, 6\}$, then $\lambda_j(id) > \lambda_i(id) + 2$.

So, suppose that the result is true for $n = k$. Then, if χ and λ are two distinct irreducible characters of S_k, with $k \geq 6$, satisfying the conditions of the lemma, such that $\chi > \lambda > \chi$ then $\lambda(id) > \chi(id) + 2$.

Let $\alpha = (a, 1^{k+1-a})$, $\beta = (b, 1^{k+1-b})$ be two distinct irreducible characters of S_{k+1} such that

\[
\alpha' > \beta > \alpha
\]

then, $k + 2 - a > b > a$. Since $a \geq 1$, then $b > a \geq 1$. Therefore, $b > 1$.

But $k + 2 - a \leq k + 2 - 1 = k + 1$. Since $b < k + 2 - a \leq k + 1$ then $b < k + 1$. This is $k + 1 - b \neq 0$. Using Lemma 3.11 we have

\[
\beta(id) = \beta_1(id) + \beta_2(id),
\]

where $\beta_1 = (b, 1^{k-b})$ and $\beta_2 = (b - 1, 1^{k+1-b})$.

We have to consider several cases:

1. $a = 1$. In this case, $\alpha = (1^{k+1})$. Let $\alpha_1 = (1^k)$.

 1.1 If $b < k$, then $\alpha'_1 > \beta_1 > \alpha_1$. Using the induction hypothesis we have $\beta_1(id) > \alpha_1(id) + 2 = 1 + 2$. Therefore, $\beta(id) > \beta_1(id) > 1 + 2 = \alpha(id) + 2$.

 1.2 If $b = k$, since $k \geq 6$, then $\alpha'_1 > \beta_2 > \alpha_1$. Using the induction hypothesis we have $\beta_2(id) > \alpha_1(id) + 2 = 1 + 2$. Therefore, $\beta(id) > \beta_2(id) > 1 + 2 = \alpha(id) + 2$.

2. $a > 1$. Let $\alpha_2 = (a, 1^{k-a})$, $\alpha_3 = (a - 1, 1^{k+1-a})$ be irreducible characters. Since

 \[
 k + 2 - a > b > a \text{ and then } k + 2 - a > b - 1 > a - 1 \text{ and } \alpha'_1 > \beta_2 > \alpha_3, \text{ then } k + 1 - a \geq b > a.
 \]

 2.1 If $b = k + 1 - a$, then $\alpha_2(id) = \beta'_1(id) = \beta_1(id)$. By induction hypothesis,

 \[
 \beta(id) = \beta_1(id) + \beta_2(id) > \alpha_2(id) + \alpha_3(id) + 2.
 \]

 Because $a < b < k + 1$, using Lemma 3.11, we get $\alpha_2(id) + \alpha_3(id) = \alpha(id)$.

 Therefore, $\beta(id) > \alpha(id) + 2$.
(2.2) If \(b < k + 1 - a \) then \(\alpha' > \beta > \alpha_2 \). By induction hypothesis,
\[
\beta(id) = \beta_1(id) + \beta_2(id) > \alpha_2(id) + 2 + \alpha_3(id) + 2 > \alpha(id) + 2.
\]
So we get the result. □

Remark. For \(n = 5 \) the irreducible characters of \(S_5 \), satisfying the conditions of Lemma 3.12, are \(\lambda_1 = (5) \), \(\lambda_2 = (4, 1) \), \(\lambda_3 = (3, 1^2) \), \(\lambda_4 = (2, 1^3) \), \(\lambda_5 = (1^5) \). In this case we have
\[
\begin{align*}
\lambda_1(id) &= 1 = \lambda_5(id), \\
\lambda_2(id) &= 4 = \lambda_4(id), \\
\lambda_3(id) &= 6.
\end{align*}
\]
For \(n = 4 \) the irreducible characters of \(S_4 \), satisfying the conditions of Lemma 3.12, are \(\lambda_1 = (4) \), \(\lambda_2 = (3, 1) \), \(\lambda_3 = (2, 1^2) \), \(\lambda_4 = (1^4) \). In this case,
\[
\begin{align*}
\lambda_1(id) &= 1 = \lambda_4(id), \\
\lambda_2(id) &= 3 = \lambda_3(id).
\end{align*}
\]
For \(n = 3 \) the irreducible characters of \(S_3 \), satisfying the conditions of Lemma 3.12, are \(\lambda_1 = (3) \), \(\lambda_2 = (2, 1) \), \(\lambda_3 = (1^3) \). In this case,
\[
\begin{align*}
\lambda_1(id) &= 1 = \lambda_3(id), \\
\lambda_2(id) &= 2.
\end{align*}
\]
For \(n = 2 \) the irreducible characters of \(S_2 \), satisfying the conditions of Lemma 3.12, are \(\lambda_1 = (2) \), \(\lambda_2 = (1^2) \). In this case,
\[
\lambda_1(id) = 1 = \lambda_2(id).
\]
For \(n = 1 \) the irreducible character of \(S_1 \), satisfying the conditions of Lemma 3.12, is \(\lambda_1 = (1) \) and \(\lambda_1(id) = 1 \).

Let \(\chi \) be an irreducible character of \(S_n \) and \(\sigma \in S_n \) such that \(\chi(\sigma) \neq 0 \). Denote by \(R_\sigma \) the set of transpositions \((a, b) \in S_n \) such that
\[
\chi(\sigma(a, b)) = -\chi(\sigma).
\]

Proposition 3.13. Let \(\chi = (s, 1^{n-s}) \) be the irreducible character of \(S_n \) where
\[
1. s - 1 > n - s \geq 1, \\
2. 2s \geq 5 \text{ and } s \text{ is odd then } 2(n - s) \neq s - 1, \\
3. \text{if } s = 6 \text{ then } n \notin [9, 10].
\]
Let \((a, b) \) be a transposition of \(S_n \) and \(\sigma \in S_n \) be a cycle of length \(s - 1 \) such that \(\chi(\sigma) \neq 0 \). Then,
\[
(a, b) \in R_\sigma \text{ if and only if } \sigma(a) = a, \sigma(b) = b.
\]
Proof. Sufficiency. If \(\sigma(a) = a \) and \(\sigma(b) = b \) then \(\sigma \) and \((a, b) \) are disjoint permutations. Since the length of \(\sigma \) is \(s-1 \) and \(s-1 > n-s \), using the Murnaghan–Nakayama rule, \(\chi(\sigma) = 1 \) and \(\chi(\sigma(a, b)) = -1 \). So, \((a, b) \in R_\sigma \).

Necessity is proved by contradiction through the consideration of several cases and subcases which we list:

1. \(\sigma(a) \neq a \) and \(\sigma(b) = b \),
2. \(\sigma(a) = a \) and \(\sigma(b) \neq b \),
3. \(\sigma(a) \neq a \) and \(\sigma(b) \neq b \). In this case, \(\sigma(a, b) = \sigma_1\sigma_2 \) where \(\sigma_1, \sigma_2 \) are two disjoint cycles, \(\sigma_i \) with length \(r \), \(\sigma_2 \) with length \(t \) and \(r + t = s - 1 \), \(r \geq 1 \), \(t \geq 1 \), \(r \equiv t \).

(3.1) \(t = 1 \). Since \(s-1 > n-s \) then \(s-2 \geq n-s \).

(3.1.1) \(s-2 > n-s \),

(3.1.2) \(s-2 = n-s \),

(3.2) \(t > 1 \).

(3.2.1) \(r \geq t > n-s \),

(3.2.2) \(r > n-s \geq t \),

(3.2.3) \(n-s \geq r = t \),

(3.2.4) \(n-s \geq r > t \).

Details are omitted. \(\square \)

Proof of Theorem 3.2. Since \(n > 3 \) then, if \(n-1 \geq 5 \) and \(n-1 \) is odd we have \(2(n-(n-1)) = 2 \neq n-2 \). If \(n-1 = 6 \) then \(n \notin [9, 10] \). Using Proposition 3.13, if \((a, b) \) is a transposition of \(S_n \), then \((a, b) \in R_\sigma \) if and only if \(\sigma(a) = a \) and \(\sigma(b) = b \).

Since \(\sigma \) is a cycle of length \(n-2 \), there are only two integers \(u, v \in \{1, \ldots, n\} \), \(u > v \) such that \(\sigma(u) = u \) and \(\sigma(v) = v \). Consequently, \(R_\sigma = \{(u, v)\} \) and \((S_n)^T = (\langle u, v \rangle) \).

Necessity. Suppose that \(L = \{l_{ij}\} \in V_\sigma(S_n, \chi) \). By Theorem 2.2, if \(a > b, a, b \in \{1, \ldots, n\} \) and \(\sigma(a) \neq a \) or \(\sigma(b) \neq b \) then \(l_{ab} = 0 \).

Suppose there exists an integer \(k \) such that \(u > k > v \) and \(\sigma(k) \neq k \). Let \(Z \) be the matrix whose \((v+1)\)th column is the \(v \)th column of \(I_n \) and the \(u \)th column of \(Z \) is the \((v+1)\)th column of \(I_n \), the remaining columns of \(Z \) are the columns of \(I_n \). Then

\[
\chi^S(P(\sigma)LZ) = (\chi(\sigma^{-1}(v+1, u))) + (\chi(\sigma^{-1}(v+1, u, v)))l_{uv}.
\]

Since \(\sigma^{-1}(v+1) \neq v+1 \) and \(\sigma^{-1}(u) = u \) then \(\sigma^{-1}(v+1, u) \) is a cycle of length \(n-1 \). Using the Murnaghan–Nakayama rule,

\[
\chi(\sigma^{-1}(v+1, u)) = 0.
\]

But \(\chi(\sigma^{-1}(v+1, u, v)) \) is a cycle of length \(n \), then \(\chi(\sigma^{-1}(v+1, u, v)) = -1 \). Therefore,

\[
\chi^S(P(\sigma)LZ) = -l_{uv}.
\]

Since \(L \in V_\sigma(S_n, \chi) \),

\[
-l_{uv} = d^S(\sigma)p(\sigma)Z = d^S(\sigma)Z = 0.
\]

Consequently, \(l_{uv} = 0 \) and we have the condition.
Sufficiency. Let $L = [l_{ij}]$ be a matrix satisfying the condition of the theorem. Then
\[L = \begin{cases}
I_n & \text{if } u \neq v + 1, \\
I_n + E^v + l_{a,s}(u) & \text{if } u = v + 1.
\end{cases} \]

Let $X \in T^n$. If $u \neq v + 1$, $a^n (P(\sigma)LX) = d^n_s (P(\sigma)LX) = d^n_s (P(\sigma)X)$. If $u = v + 1$, $a^n (P(\sigma)LX) = \chi(\sigma^{-1}) \prod_{s=1}^n x_{ss} = d^n_s (P(\sigma)X)$. Consequently, $L \in V_\sigma(S_n, \chi)$. \square

Proof of Theorem 3.3. Using Proposition 3.13, we see that $(S_n)^\chi_\pi$ is generated by those transpositions, $(a \ b)$ such that $\sigma (a) = a$ and $\sigma (b) = b$. Consequently, if $\pi \in (S_n)^\chi_\pi$, π, σ^{-1} are disjoint permutations and by Murnaghan–Nakayama rule we have, $\chi (\sigma^{-1}) = \epsilon (\pi) \chi (\sigma^{-1}) = \epsilon (\pi)$.

Necessity. Using Theorem 2.2, if $a > b$, a, $b \in \{1, \ldots, n\}$ and $\sigma (a) \neq a$ or $\sigma (b) \neq b$ then $l_{ab} = 0$.

Suppose that $i > j$, $i, j \in \{1, \ldots, n\}$ and there exists $i > k > j$ such that $\sigma (k) \neq k$. We are going to prove that $l_{ij} = 0$.

Using the hypothesis of the theorem, then $j < u$ and $i > u + s - 2$. Let t, f two integers, $t, f \in \{u, \ldots, u + s - 2\}$ such that $t < f$ and $\sigma (t) = f$. We are seeing that $l_{u + s - 1 \ u - 1} = 0$.

Let Z be the matrix those rth column is the $(u - 1)$th column of I_n, the fth column of Z is the rth column of I_n and the $(u + s - 1)$th column of Z is the fth column of I_n, the remaining columns of Z are the columns of I_n. Then

\[d^n_s (P(\sigma)LZ) = \chi (\sigma^{-1}(t, \ f, \ u + s - 1)) \]
\[+ \chi (\sigma^{-1}(u - 1, \ t, \ f, \ u + s - 1)))l_{u + s - 1 \ u - 1}. \]

Since $\sigma (t) = f$ and $\sigma^{-1}(t, \ f, \ u + s - 1)$ is a cycle with length $s - 1$, using the Murnaghan–Nakayama rule,

\[\chi (\sigma^{-1}(t, \ f, \ u + s - 1)) = 1. \]

But $\chi (\sigma^{-1}(u - 1, \ t, \ f, \ u + s - 1))$ is a cycle with length s and $n - s \geq 1$, then $\chi (\sigma^{-1}(u - 1, \ t, \ f, \ u + s - 1)) = 0$. Since $L \in V_\sigma(S_n, \chi)$,

\[-l_{u + s - 1 \ u - 1} = d^n_s (P(\sigma)LZ) = d^n_s (P(\sigma)Z) = 0. \]

Consequently, $l_{u + s - 1 \ u - 1} = 0$.

Now, let Z be the matrix those rth column is the $(u - 2)$th column of I_n, the fth column of Z is the rth column of I_n and the $(u + s - 1)$th column of Z is the fth column of I_n, the remaining columns of Z are the columns of I_n. Then we can conclude that $l_{u + s - 1 \ u - 2} = 0$. In this way we can show that $l_{u + s - 1 \ u} = \cdots = l_{u + s - 1 \ u - 1} = 0$.

Next, in the same way we prove that $l_{u + s - 1 \ u + 1} = \cdots = l_{u + s - 1 \ u + s - 1} = 0$.

Therefore we can conclude that $l_{ij} = 0$.

Sufficiency. Let L be a matrix satisfying the condition of the Theorem. Then
\[
L = \begin{bmatrix}
L_1 & 0 & 0 \\
0 & L_2 & 0 \\
0 & 0 & L_3
\end{bmatrix},
\]
where $L_1 \in T^L_{u-1}(F)$ with diagonal elements equal to 1, $L_2 = I_{n-2}$ and $L_3 \in T^L_{n-u-s+3}(F)$ with diagonal elements equal to 1. Let $Z \in T^U_u(F)$,
\[
Z = \begin{bmatrix}
Z_1 & 0 & 0 \\
0 & Z_2 & 0 \\
0 & 0 & Z_3
\end{bmatrix},
\]
where $Z_1 \in T^U_{u-1}(F)$, $Z_2 \in T^U_{n-2}(F)$ and $Z_3 \in T^U_{n-u-s+3}(F)$. Since $\chi(\sigma^{-1}) = 1$ and $\chi(\sigma^{-1} \rho) = \epsilon(\rho)$ if $\rho \in (S_n)_T$, then
\[
d^S_{\chi}(P(\sigma)LZ) = \chi(\sigma^{-1}) (\det(L_1 Z_1) \det(Z_2) \det(L_3 Z_3)) = \chi(\sigma^{-1}) \det(Z).
\]
Then $L \in V_\sigma(S_n, \chi)$. □

Remark. With the same arguments we have used before, we can also prove the lower triangular matrices version of this paper.

References