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Abstract-we prove in this paper that the class of reversible synchronous Boltzmann machines is 
universal for the representation of arbitrary functions defined on finite sets. This completes a similar 
result from Sussmann in the sequential case. 
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1. INTRODUCTION 

Boltzmann machines are stochastic neural networks which are most of the time dedicated to clas- 
sification tasks. Given an input, they run some specified probabilistic dynamics, which provides 
a random response. One may also say that they associate to each input a probability distribution 
on the output. 

More precisely, the machine is composed of neurons which are divided into three (finite) sets, 
denoted I, H, R. Elements of I are input neurons, elements of R are response neurons, and 
H contains hidden neurons. Let S = I U H U R be the whole set of neurons. For s E S, a 
binary variable z, indicates whether s is active (one also says firing), in which case 2, = 1, or 
still, in which case x, = 0. During the evolution, the state x, varies randomly, depending on 
the activities of the other neurons. The selection of the new state ys is based on a transition 
probability of the kind 

providing the probability that the new value at s is ys given that the former configuration of 
the network is x. To perform classification, all neurons are updated, except the input neurons 
which are clamped to some configuration XI. The joint probability distribution of the remaining 
neurons (in H u R) converges to some equilibrium distribution, which depends on XI. By only 
looking at the response part of the network, we obtain the input-output behaviour. In general, 
a deterministic answer is required, and the network is fitted so that this output distribution is 
very close to a point-mass measure. 

We denote by 01 the set of input configurations, and RR the set of output configurations: 
RI = FI, nR = FR with F = (0, 1). We already have used notation XI for a configuration in RI, 
and we shall denote in a similar way configurations defined on other subsets of 5’; the response 
associated to XI, which is a probability distribution on RR, is denoted by $( . ; x1). It is the 
marginal distribution of a probability 7r( . ; XI) defined on the larger set RH x RR, which is the 
equilibrium distribution of the whole network evolving with clamped input XI. 
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The transition probabilities (p, above) are parameterized by a high-dimensional parameter 8, 
and the aim of learning is to estimate 8 so that the network accomplishes the classification task. 
This task may be represented by a function f which associates to each input the “correct answer” 
in output. We say that a network accomplishes a task f if the response associated to any input xI, 
which is a probability measure, is close to the Dirac measure at f (XI). We write ~8, $0, when it 
is necessary to emphasize the parameterization. 

For the original model of sequential machines [l], only one neuron is updated at each time 
chunk. Synchronous Boltzmann machines (with which we are mainly concerned) update all their 
neurons simultaneously. By choosing a parametric form of the transitions, and specifying a 
dynamic (i.e., synchronous or sequential), one completely specifies a class of neural networks. 

In this paper, we shall define such a system (namely reversible synchronous Boltzmann ma- 
chines) and prove the following property. 

PROPERTY [UNI]. For given I and R, there exists a set H such that, for any function f : iI1 A 
RR, there exists 0 such that, for every XI E RI, &( . ; x1) is close to the Dirac distribution Sf(t,), 
up to a given, but arbitrarily small error. 

Such a result has been proved in [2] in the case of sequential machines. 
Among deterministic networks, it has been shown that perceptrons with one hidden layer 

provide such universal approximators. “Tasks” for these networks are continuous functions from 
Rd to Rk, and typical results state that, given f (let’s say continuous with compact support) and 
a precision order 6, there exists a perceptron with one hidden layer which has an input/output 
behaviour given by f up to an error of E [3,4]. This subject has been widely studied, providing 
extensions assuming only measurability of f [5], or estimating the number of hidden neurons 
needed to approximate a given class of functions f [6]. 

In our situation, we consider discrete tasks: f is a relation between the set of inputs and the 
set of outputs which are finite. If one wishes to consider continuous tasks f, an approximation 
has to be done by a piecewise constant function (this coding is in fact crucial for the efficiency of 
practical applications; see [7] for an example). 

Note that the universality property is a theoretical result. It is an almost necessary prerequisite 
for the usefulness of a neural network model. However, one must be aware that some tasks f may 
be so complex that they would require a very large set H, for which practical implementation 
is impossible. Another issue is that the function f is only known through a restricted training 
set of examples, i.e., a set (x!, f (x!)), k = 1,. . . , K which can be considered as a small sample 
of the whole family ($1, f (XI)), XI E C~I. So, even when Boltzmann machines large enough to 
represent f can be run, learning algorithms on the mere basis of the training set will amount to 
solutions which, although performing well for the training set, will be unable to induce the correct 
answer for unlearned XI. This leads to questions which are linked to nonparametric statistics, 
which have been well explored in the case of feed-forward networks (see [S]), but which remain 
open for Boltzmann machines. 

2. SYNCHRONOUS BOLTZMANN MACHINES 

2.1. Model 

The model we describe is the synchronous counterpart of the standard sequential Boltzmann 
machines. More details may be found in [7,9-111. 

Consider a set of interaction weights (wSt, s, t E S), and a set of thresholds (hs,s E H u R), 
with w,t = wts. Let 8 = (w, h) be our parameter, and set 

Pa (&Ys,) = 
exp ys Et+ wtxt + h ( ( >> 
I+ exp Et+ wtxt + ha ( > 



Synchronous Boltzmann Machines 111 

Assume that some input configuration 11 is clamped. At a given time, all neurons in H U R are 
simultaneously updated according to the p,; this leads to define (for x, y E Rs, with XI = ye = 21) 

PkY) = j-J P&,Ys). (1) 
sEHuR 

When it is necessary to strengthen the dependence on ~1, we may write Pzr . Since P(x, y) > 0, 
there exists a unique invariant distribution on ~~HUR, denoted 7r( . ; 21). In fact, it may be checked 
that P is r-reversible; that is 

“(x; ZI)PZ1(X, Y) = r(y; ZI)PZI (Y, X). (2) 

Thanks to this property, it is possible to give a precise description of 7r, in terms of the two-step 
distribution at equilibrium. Consider the Markov chain (Xn) on R with initial distribution 7r, 
and transition P = Pzr , and let p be the joint distribution of (Xn,Xn+‘); /.J, as a distribution 
on fl x R, is given,by ~(x, y; 21) = ~(2; z~)P(x, y). It may be proved that 

cl(x 
> 
y) = exp [Cst W.&8Yt + C, hsxs + Es hsy8]. 

z (3) 

The distribution 7r(. .; ZI) is the marginal of CL. We call 7r a reversible synchronous field. 

3. UNIVERSALITY 

We now show that property [UNI] holds for reversible synchronous Boltzmann machines. As 
in [2], we prove the following fact: if V is a finite set, there exists a finite set H, which does not 
intersect V, such that if v is a positive probability distribution on Rv, there exists a reversible 
synchronous field 7r on fiv”H = 0~ x OH with marginal v on fiv. To obtain [UNI], just set 
V = I U R and u any positive distribution approaching an “ideal” distribution on Rv given by 

V(XI,XR) = vO(XI)b(z,)(XR)r 

where uo is any distribution on 01. 
Our technique is close to Sussmann’s approach [2], and some of the following is inspired from 

his work. We begin with a lemma. 

LEMMA 1. Let p be a real number. Consider a fixed integer N, and binary variables x1, . . . , XN, 

Xi = 0 or 1. One can find real numbers w and h such that: 
0 IfpLO, 

log (1 + exp[w(Xl + * *. + XjV) + h]} = pXl . . . XN + Q(zI, . . . , XN). 
??Ifp<O 

log (1 + exp[w(xl + . . . + XN-_1 - ZN) + h]} = f-‘Xl . . . XN + Q(x1,. . . , XN), 
Q being a polynomial of degree less than N - 1 in x1, . . . , XN. 

PROOF. First assume that p 2 0 and set 

4(x1, ’ *. > XjV) = log (1 + eXp[W(Xl + . . . + XN) + h]} . (4 

Since every function of x1, . . . , xN can be expressed as a polynomial of partial degree one with 
respect to each variable, it suffices to find w and h such that the coefficient of the term of highest 
degree of 4 is equal to p. This term is given by 

g(w, h) = &-I)N-k (3 log (1 + elcwfh) , 
k=O 

Now, fix w > 0 and h such that NW + h > 0 and (N - 1)~ + h < 0. Then the function g(tw,th) 
is 0 for t = 0, and tends to infinity when t tends to infinity, so that every positive p can be 
attained. 

The case of p < 0 can be deduced from the other case with the change of variables yi = xi for 
i = 1.. . N - 1 and YN = 1 - XN. This ends the proof of Lemma 1. 
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LEMMA 2. Let V be a finite set with N elements, and Rv the set of binary configurations with 
indices in V. For any positive probability measure v on flv, there exist a larger set S = V u H 
and a probability measure ?r on OS, described below, such that u is the marginal of rr over V. 

Assume that V is ordered in an arbitrary way. For A c V, denote by s(A) the largest element 
in A. One can choose 

H = {A c V, card(A) > l}, 

+V,UH) = ;exP c 
SEA, s<s(A) 

%+ fA%(A)) +hauA) +zh,r,] , (6) 

where CA E (-1, +l} is fixed. 

PROOF. The proof is an iterative application of Lemma 1. Every positive distribution on flv has 
the form V(X) = exp[E(x)]/Z, and the energy E(z) can be expressed as a polynomial in x8, s E V. 

For every subset A of V with at least 2 elements, let S,‘(xA) be xsEA us, and So = 
Si (2~) - 2x,(A). For E = + or -, define 

as in (4) with some numbers WA, hA. Each of these A is considered as a new neuron with state U,$_ 
Now define the energy 

J%JJ)=C[ WAUA(~>(ZA)) + hAUA] + linear terms, 
A 

and the associated Gibbs field 7r(z, U) = exp(E(x, u))/Z. In the preceding expression of ,??, the E 
in Si depends on A. A little calculation shows that in order to have 

it suffices that 
C 4>(zA) + linear terms = E(s). 

A 

To solve this, first apply Lemma 1 and find numbers WV and hv, to cancel the term of highest 
degree in E (with an adequate choice of E = + or -). Then subtract from E the function Q 
which remains from Lemma 1. The remaining energy only contains terms of degree less than N. 
Lemma 1 can be applied again to find all @A, for A with cardinality equal to N - 1, and the 
procedure can be iterated until only terms of degree one remain. 

THEOREM 1. Every probability distribution on 0~ is the marginal distribution on Rv of a 
reversible synchronous random field over some larger set of sites. An upper bound for the number 
of additional sites is 2N - N - 1. 
PROOF. Take H and 7r as in Lemma 2, and define a distribution p on (0~ x 0~)~ by (for 
z = (zV,uH), f = (YV,?JH) in OV x OH) 

It is easy to convince oneself that p takes the form given in (3), and therefore, that its marginal, 
~0, on Rv x OH is a reversible synchronous field. Moreover, we have 

~/+%','uH) =c c +V,VH)~(YV,WI) 
UH UH 1/V,VH 

= c +V,~H)='$(~V). 
VH 
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REMARKS. 

(1) From the proof of Lemma 1, we see that we can always take hA = -(N_1/2)20A so that the 
number of added parameters in ~(5, U) is also 2 N - N - 1. The total number of parameters 
is then 2N - 1, which is precisely the dimension of the space of all probabilities on 0”. 
Moreover, if we know that the initial random field v is local, i.e., its energy E(z) only 
includes terms of degree less than T < N, then one only needs to add C’,=, (f) parameters. 
In particular, when T = 2 (which corresponds to sequential Boltzmann machines), this 
number is N(N - 1)/2. 

(2) It is clear that while proving Lemma 2, we also proved the universality of sequential 
Boltzmann machines: it suffices to stop while reducing the degree of the energy when only 
quadratic terms remain instead of linear terms. The method used in [2] is quite similar, 
but our proof is shorter thanks to the simplicity of the basic Lemma 1. 
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