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SUMMARY

The epithelial-to-mesenchymal transition (EMT)
converts cells from static epithelial to migratory
mesenchymal states (Hay, 1995). Here, we demon-
strate that EMT in the Drosophila endoderm is
dependent on the GATA-factor Serpent (Srp), and
that Srp acts as a potent trigger for this transition
when activated ectopically. We show that Srp affects
endodermal-EMT through a downregulation of junc-
tional dE-Cadherin (dE-Cad) protein, without a block
in its transcription. Moreover, the relocalization of
dE-Cad is achieved through the direct repression of
crumbs (crb) by Srp. Finally, we show that hGATA-
6, an ortholog of Srp, induces a similar transition in
mammalian cells. Similar to Srp, hGATA-6 acts
through the downregulation of junctional E-Cad,
without blocking its transcription, and induces the
repression of a Crumbs ortholog, crb2. Together,
these results identify a set of GATA factors as a
conserved alternative trigger to repress epithelial
characteristics and confer migratory capabilities on
epithelial cells in development and pathogenesis.

INTRODUCTION

The epithelial-to-mesenchymal transition (EMT) plays crucial

roles during development, and when activated inappropriately

can promote tumor progression and metastasis. This process

converts cells from static epithelial to migratory mesenchymal

states (Hay, 1995; Thiery et al., 2009) and is often carried out

to different extents, as many cells adopt mesenchymal behav-

iors yet retain some epithelial features (Revenu and Gilmour,

2009). One of the best-known examples of an EMT underlies

the formation of the Drosophila mesoderm, which is triggered

by Snail (Sna). Subsequent to its discovery in Drosophila, genes

of the sna family were found to induce EMT during the develop-

ment of many organisms and inappropriately activated in several

forms of cancer. A similar transition occurs during the formation

of the Drosophila endoderm, when epithelial cells convert to
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a migratory mass of mesenchymal cells (Campos-Ortega and

Hartenstein ,1985; Skaer, 1993; Reuter, 1994; Tepass and Har-

tenstein, 1994a), which migrate through the embryo and later

re-epithelialize to give rise to a large portion of the intestinal tract.

However, in contrast to the mesoderm, this transition seems to

occur independently of Sna (Reuter and Leptin, 1994; Tepass

and Hartenstein, 1994a).

Formation of theDrosophila intestinal tract originates from two

groups of cells at each pole of the blastoderm. In particular, cells

from the posterior region give rise to the hindgut, of ectodermal

origin, and the posterior midgut (PMG), of endodermal origin

(Campos-Ortega and Hartenstein, 1985). While derived from a

common primordium, hindgut and PMG cells undergo dramati-

cally different cell behaviors during development. Hindgut cells

remain epithelial and relatively static throughout, whereas PMG

cells temporarily adopt mesenchymal behavior and initiate

migration toward the center of the embryo, where they fuse

with the anterior midgut (AMG) to form a continuous intestinal

tract (Reuter et al., 1993; Campos-Ortega and Hartenstein,

1985; see Movie S1 available online). The decision of whether

to form hindgut or the PMG is regulated by the activity of a single

gene product, the GATA factor Serpent (Srp), which is active

in the cells giving rise to the PMG. In srp mutants a homeotic

transformation has been reported, as an ectopic hindgut forms

at the expense of the PMG (Reuter, 1994).

Here, we investigate the role of Srp during endoderm develop-

ment and show that Srp is both necessary and sufficient to

induce epithelial cells to undergo a transition to a non-apico-

basally polarized, motile state. At the molecular level, this

transition involves the repression of genes encoding the apically

localized proteins Crumbs (Crb), Stardust (Sdt), and Stranded-

at-second (SAS). In contrast, while adherens junction-associ-

ated proteins are delocalized, they are not transcriptionally

repressed. We show that rather than abolishing dE-Cadherin

(dE-Cad) gene transcription, Srp acts at the level of dE-Cad

protein and regulates its membrane localization. Moreover, this

relocalization of dE-Cad requires the direct repression of crumbs

(crb) by Srp. We extend these results by showing that human

GATA4 and GATA6 can also induce an epithelial to nonpolarized

migratory cell transition, and similarly this occurs in an E-Cad-

herin (E-Cad) transcription independent manner. Furthermore,

overexpression of GATA6 induces the transcriptional repression

of a Crumbs ortholog, crb2. These results unveil the role of
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Figure 1. As Endodermal Cells Undergo EMT They Lose Epithelial

Morphology and Apico-Basal Polarity and Downregulate Junctional
dE-Cad

(A–R) Wild-type embryos stained for the cytoskeletal marker F-act (A-C),

the apical proteins SAS (D–F), Crb (G–I), or Baz (J–L), the basolateral marker

Dlg (M–O), or the adherens junction marker dE-Cad (P–R). Before is 3.5–4 hr

after fertilization (stage 9), during is 4.5–5 hr (stage 10), and after is 5.5–7.5 hr

(stage 11 to early stage 12). The PMG is outlined by dotted lines; vertical lines

demark the separation between the hindgut and PMG during stage 9, first

column, and between the Malpighian tubules and PMG during stages 10 and

11, second and third columns. The PMG is always to the right of the vertical

lines. Scale bars, 20 mm.

(S) Schematic showing the position of the PMG (red) with respect to the

hindgut/Malpighian tubule primordium (green) and the rest of the embryo

during stages 9–12.

See also Figure S1 and Movies S1 and S2.
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specific GATA factors as inducers of an EMT that is character-

ized by affecting E-Cad protein localization rather than

transcription.

RESULTS

PMG Cells Undergo an Epithelial Transition
Characterized by a Loss of Apico-Basal Polarity
and Downregulation of Junctional dE-Cad
To better understand the endoderm transition, we analyzed

markers for cell polarity, adhesion, and the cytoskeleton prior

to, and during PMG migration. Analysis of F-actin (F-Act) and

apico-basal markers reveals that in stage 9 embryos, endoderm

cells are fully polarized epithelial cells (Figures 1A, 1D, 1G, 1J,

and 1M). Electron microscopy studies showed that posterior

endoderm cells possess complete zonula adherens during

stages 6–9 (Tepass and Hartenstein, 1994b); accordingly, we

find a tight apical localization of dE-Cad in endoderm cells

throughout these stages (Figure 1P and data not shown). During

stage 10, a loss of epithelial characteristics is first apparent in

cells at the most distal region of the PMG, and later throughout

the PMG. Cells lose their columnar appearance, become more

rounded and irregular in shape (Figures 1B, 1C, 1N, and 1O).

Apical and junctional proteins are gradually lost from the cell

surface, and the overall levels of these proteins dramatically

decrease (Figures 1F, 1I, 1L, and 1R). When PMG cells initiate

migration, apical and subapical proteins Stranded-at-second

(SAS), Crumbs (Crb), and Stardust (Sdt) are no longer detect-

able, while low levels of junctional dE-Cad, Bazooka (Baz), and

atypical protein kinase C (aPKC) remain (Figures 1F, 1I, 1L,

and 1R; Figure S1). Indeed dE-Cad, Baz, and aPKC lose their

tight apical localization and instead colocalize to dynamic

punctate accumulations at the cell membrane (Figure S1; Movie

S2). Electron microscopy studies previously showed that after

adherens junctions fragment in the endoderm, low levels of

spot adhesion junctions are present throughout the PMG

(Tepass and Hartenstein, 1994b). We suggest that dE-Cad/

Baz/aPKC could localize to spot adhesion junctions, which

may act as dynamic adhesions facilitating cohesive migration

of the mesenchymal cell mass.

Srp Activity Is Required for Endodermal-EMT in the PMG
Formation of the PMGdepends on srp (Reuter, 1994) and occurs

independently of sna genes (Reuter and Leptin, 1994; Tepass

and Hartenstein, 1994a) (Figure S2), conversely to AMG forma-

tion that requires both srp and sna (Reuter and Leptin, 1994).

Thus, to analyze the role of Srp in endoderm transition, we

have focused our analysis on the PMG. In srp mutants, endo-

dermal cells retain epithelial shape and polarity (Figures 2A and

2B) and dE-Cad remains tightly localized to the apical domain

(Figure 2B). Thus, the endodermal-EMT depends on Srp activity.

Maintenance of Srp Activity Prevents PMG Cells
from Reforming an Epithelium
Next, we looked to see when Srp protein is expressed in the

PMG, and found that it is first expressed during stage 5 (data

not shown), indicating that there is a time lag of 2 hr before endo-

dermal EMT becomes visible at the morphological level. This

suggests that a certain threshold of Srp may need to be reached
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for it to become active, or that its activity is being repressed by

an unknown mechanism during stages 5–9. At the stage when

we see a downregulation of Crb and Sdt, and delocalization of

junctional proteins, Srp is expressed very strongly in the PMG

(Figure 2C, arrows); however, during stages 11 and 12, there is

a gradual loss of Srp expression in the PMG (Figures 2D and

2E, arrows). As Srp starts to disappear from the cells as they start

migrating, we reasoned that the temporally restricted expression
Elsevier Inc.



Figure 2. Srp Is Required for PMG EMT and Main-

tenance of Srp Expression Prevents PMG Cells

from Redeveloping Epithelial Characteristics

(A and B) Stage 12 srpmutants stained for the basolateral

marker Fascicilin2 (Fas2), and Crb (A) or dE-Cad (B). In srp

mutants, PMG cells remain columnar in shape (B, arrow)

and tightly localize both Crb and dE-Cad to their apical

domains.

(C–E) Srp expression during stages 10 (C), 11 (D), and 12

(E); arrows point to the PMG. Srp expression is lost from

PMG cells during stages 11–12 (D and E).

(F–M) Stage 15 wild-type (F, H, J, and L) and sustained

expression of Srp (G, I, K, and M) in the endoderm using

48Y-Gal4. (F and G) Srp overexpression leads to a dis-

continuous midgut epithelium, containing breaks and cell

multilayering (compare F with G, arrows). Both F-act and

Baz are found delocalized around the cell cortex (I and K,

arrows), and dE-Cad is almost undetectable in the cells

(M, arrow). Black and white fluorescence images were

color-inverted in Photoshop.

Scale bars: (A) and (B), 20 mm; (C)–(E), 100 mm; (F) and (G),

50 mm; (H)–(M), 20 mm. See also Figure S2.
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of Srp could be related to the fact that PMG cells only undergo

a transient transition to mesenchymal behavior; once endo-

dermal cells have migrated to their final position, they undergo

a reverse transition, mesenchymal-to-epithelial, forming the

midgut epithelium (Figures 2F, 2H, 2J, and 2L) (Tepass and

Hartenstein, 1994a). To test this, we provided sustained Srp

expression at the time when it would normally be turned off

(see Experimental Procedures). Under these circumstances,

the midgut epithelium does not properly form, and we detect

multicell layered stretches instead of a normal monolayered

epithelial morphology (Figures 2G and 2I). Analysis of several

markers reveals that continued expression of Srp prevents

PMG cells from reestablishing epithelial characteristics (Figures

2H–2M). Notably, under these conditions dE-Cad was almost

undetectable in PMG cells (Figure 2M). Altogether, these results

indicate that srp has to be turned off for endodermal cells to re-

gain epithelial characteristics.

Ectopic Expression of Srp Induces a Similar EMT
in Epithelial Cells
To further explore the ability of Srp to promote such transitions,

srpwas ectopically expressed in stripes of cells in the embryonic

epidermis, which remains epithelial throughout development.

Upon srp overexpression, cells appear disorganized and dis-

persed, with stripes broken and fusing across compartment

boundaries (Figure 3B; Figure S3B). Furthermore, the cells are

no longer present as a monolayer at the cell surface, and instead

form multilayered clusters projecting into the embryo (Figures

3D–3F, arrows). Cells lose their columnar morphology and

become more elongated and irregular in shape (Figures 3D–3F).

Internalized epidermal cells localize F-Act throughout the cell

cortex and do not expressCrb, and dE-Cad becomes relocalized

around thecell (Figures3Eand3F; FiguresS3DandS3E). In some
Developmental Cell 21, 1051–10
internalized cells dE-Cad expression is below

detectable levels (Figure 3E, arrow). While it

could be that dE-Cad is harder to detect in these

cells because of its delocalization, it suggests
that very high levels of srp may induce a downregulation/degra-

dation of dE-Cad protein. Interestingly, the few srp overexpress-

ing cells that remain at the surface of the embryo express high

levels of Crb and dE-Cad at the apical surface, but have under-

gone apical constriction (Figures 3D, 3F, and 3G), a common

feature of developmental EMTs (Shook and Keller, 2003).

Analysis in living embryos shows that srp overexpression

leads to the activation of migratory behavior, with cells extending

many protrusions (Movies S3 and S4) and moving to more

distant sites in the embryo (Figures 3I–3L, arrowheads in Figures

3J and 3L indicate long cords/groups of cells mispositioned in

the embryo; Movies S5 and S6). Notably, while cells appear

more elongated and protrusive, they do not become dispersed

but move collectively through the embryo. Furthermore, srp

overexpression leads to induction of Matrix metalloproteinase

1 (Mmp1) (Figure 3G), which is known to cleave extracellular

matrix components, and thus facilitate invasive migratory cell

behavior (Srivastava et al., 2007). Ectopic Srp also induces

expression of Forkhead (Fkh) (Figure 3H), an ortholog of the

vertebrate FoxA transcription factors. fkh has previously been

reported to act as a survival factor in a number of Drosophila

systems, including the midgut (Tepass et al., 1994; Myat and

Andrew, 2000; Cao et al., 2007), suggesting that similar to verte-

brate sna (Barrallo-Gimeno and Nieto, 2005), srp overexpression

may cause cells to become more resistant to apoptosis and cell

death. Altogether, these results indicate that srp expression in

epithelial cells triggers a loss of epithelial characteristics and

acquisition of mesenchymal features (Figure 3M).

Srp-Induced Epithelial Transitions Do Not Act through
a Repression of dE-Cad Transcription
The transition from epithelial to migratory nonpolarized cell

states involves coordinated changes in numerous cell features
61, December 13, 2011 ª2011 Elsevier Inc. 1053



Figure 3. Ectopic Expression of Srp Induces Loss of Epithelial Traits

and Acquisition of Migratory and Invasive Behavior

(A–H) Stage 16 embryos expressing either GFP alone under control of EngGal4

(A and C) or both Srp and GFP (B and D–H). Epidermal cells normally form a

monolayer at the cell surface (C, E, F, arrowheads). Srp-expressing epidermal

cells are found in multilayered clusters that project into the embryo (D–F,

arrows, compare with wild-type C). In internalized cells, F-act is found all

around the cell cortex (D, arrow), and Crb (D) and dE-Cad (E) are reduced to

low levels, or are undetectable (D–F, arrows). Expression of Mmp1 (G) and of

Fkh (H) is induced in Srp-positive epidermal cells.

(I–L) Stage 16 embryos expressing either GFP alone (I and K) or both Srp and

GFP (J and L) in epithelia in the posterior of the embryo, using Cad-Gal4, which

is expressed in the hindgut and anal pads (I and J), or in the anterior, using

Dll-Gal4 (K and L). Srp overexpressing epithelia are found at more distant sites

in the embryo to in wild-type (compare arrowheads in I and K with J and L).

Individual green cells in (I) and (J) are hemocytes, which have phagocytosed

GFP-positive apoptotic cells. M, Schematic summarizing the effects of Srp

overexpression. EngGal4: Engrailed-Gal4, drives in posterior compartments of

the ectoderm; CadGal4: Caudal-Gal4, drives in the posterior of the embryo;

DllGal4: Distal-less-Gal4, drives in the anterior of the embryo and some

imaginal discs.

Scale bars: (A) and (B), 100 mm; (C–H), 10 mm; (I)–(L), 100 mm.

See also Figure S3 and Movies S3–S6.
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such as polarity, shape, adhesion, and migratory and invasive

capacities, which in turn are affected by transcription factors

such as Sna through the activation and repression ofmany target

genes (reviewed in Barrallo-Gimeno and Nieto, 2005), and this is

likely to also be the case for Srp-induced EMT. However, it is

clear that while EMT involves many changes in cell behavior,

a key step in the initiation of EMT is a functional loss of E-Cad

and thus of cell-cell adhesion (Huber et al., 2005; Peinado

et al., 2007). Hence, we decided to investigate if Srp effects

adhesion through the repression of E-Cad transcription, as has

been found for almost all EMT regulators reported to date (Thiery

et al., 2009).

During endodermal-EMT dE-Cad loses its apical localization

and there is a marked decrease in junctional protein levels

(Figures 1P–1R). However, whole-mount in situ hybridization

shows that dE-Cad RNA remains expressed in the PMG during

endodermal-EMT, and is expressed in migrating PMG cells

(Figures 4A–4C). aPKC, which behaves similarly to dE-Cad

during PMG-EMT and migration, also shows continued RNA

expression (Figures S4A–S4C). Next, we quantified the levels

of dE-Cad RNA in the PMG at time points before and after endo-

dermal-EMT (see Experimental Procedures) and found that there

are no significant variations in dE-Cad levels between these two

stages (Figure 4D). These data suggest that, in contrast to sna,

srp does not act through the repression of dE-Cad transcription,

and this is reinforced by the following three observations. First,

sustained expression of srp in the midgut does not lead to

a loss of dE-Cad RNA, in comparison to sna overexpression,

which causes dE-Cad RNA to be almost completely absent

from midgut cells (Figures 4D–4I). Second, srp overexpression

does not lead to the induction of known repressors of dE-Cad

such as sna and the ZEB related factors zfh1 and zfh2 (Figure S5).

Finally, the overexpression of sna in the ectoderm does not

induce EMT; this is likely due to overexpression of sna repressing

only the zygotic dE-Cad transcription, while the ectoderm is a

tissue where the maternal contribution of RNA is sufficient to

maintain the tissue throughout embryogenesis (Tepass et al.,

1996; Uemura et al., 1996). We conclude that Srp does not

induce endodermal-EMT through the repression of dE-Cad tran-

scription, rather it triggers a downregulation of junctional dE-Cad

protein through the activation/repression of downstream targets.
Elsevier Inc.



Figure 4. crb, sdt and SAS Are Transcriptionally Repressed during PMG-EMT, while dE-Cad and Components of the Par3 Complex Continue

to Be Transcribed

(A–C) In situ hybridization in wild-type embryos for dE-Cad. dE-Cad remains strongly expressed in the PMG throughout stages 11 (A), 12 (B), and 13 (C).

(D) qRT-PCR analysis of dE-Cad, SAS, crb, sdt, baz, aPKC, par-6, sinu,mega, kune, and hntRNA levels in PMGs dissected from 3–3.5 hr (before), 6- to 6.5-hr-old

wild-type embryos (After), or from 6–6.5 hr srpmutant embryos (srpmut). There are no significant changes in the RNA levels of dE-Cad, baz, aPKC, and par-6 in

the PMG between 3 and 6.5 hr of development, or between wild-type and srp mutants. In contrast, SAS, crb, sdt, sinu, mega, and kune become strongly

repressed, and this repression is lost in srpmutants. hnt was used as a control, as it is a known downstream target of Srp, and does not change in expression in

the PMG between 3 and 6 hr of development. Gene expression levels were normalized using the endogenous control Actin5C. Error bars indicate SD.

Forward and reverse primers are provided in Supplemental Experimental Procedures. See also Figures S4 and S5.
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Srp Directly Represses crb Transcription
How does Srp induce a loss of cell polarity and adhesion? To

address this question, we screened components of the different

cell-membrane domains using qPCR to identify genes that were

expressed in the PMG prior to endodermal-EMT, but which

become repressed in the PMG in a Srp-dependent manner

(see Experimental Procedures). We found that genes encoding

the apically localized proteins SAS, Crb and Sdt and the basolat-

erally localized Claudin proteins Sinuous (Sinu), Megatrachea

(Mega), and Kune-kune (Kune) become strongly repressed in

the PMG during endodermal-EMT, and that this repression is

lost in srp mutants (Figure 4D). In contrast, we found that there

are no significant changes in the levels of the apical Par genes

baz and par-6, or of aPKC, during endodermal-EMT, or in srp

mutants (Figure 4D).

We decided to focus further studies on the key cell polarity

regulator Crb, as crb is required for the maintenance of epithelial

cell polarity and stabilization of adherens junctions (Tepass et al.,

1990; Grawe et al., 1996), and in the ectoderm of crb mutants

dE-Cad is lost from the apical domain and cells lose cell-cell

adhesion (Tepass et al., 1990; Grawe et al., 1996), similar to

what happens during PMG-EMT. Whole-mount in situs

confirmed that crb is highly expressed and apically localized in

the hindgut and PMG cells prior to stage 10 (Figure 5A) and

lost from the PMG during endodermal-EMT, so that its expres-

sion is almost undetectable by whole-mount in situ hybridization

in late stage 11 and 13 PMG cells (Figures 5B and 5C). In situ

hybridization studies in srpmutants showed that crb RNA levels

remain high in PMG cells throughout embryogenesis (Figure 5D),

reinforcing the quantitative analysis, and further confirming that

crb expression is directly or indirectly regulated by Srp.
Developmenta
To further examine the relationship between Srp and crb, we

performed a ChIP analysis to determine whether Srp is physi-

cally associated with crb during early stages of development.

We focused on a region situated within the first intron of crb,

termed the cis-regulatory module (CRM), as this region has

previously been shown to reproduce the endogenous crb

expression pattern in the mesoderm (Sandmann et al., 2007),

and we found that this is also true for the PMG (Figures 5E

and 5F). We identified many putative Srp-binding sites within

the first intron of crb, and tested for Srp binding to these sites

by ChIP-PCR analysis. As a positive control for this experiment

we found that a putative Srp-binding site in the first intron of

hindsight (hnt), a known target of Srp (Yip et al., 1997), is positive

for Srp binding (Figures 5I and 5J). We found that the two sites

located within the crb-CRM, Crb-2, and Crb-3 show a similar

or greater fold change enrichment when compared to hnt and

thus are positive for Srp binding (Figures 5I and 5J), pointing

to a direct interaction between Srp and crb through the crb-

CRM regulatory region. Conversely, other putative Srp-binding

sites outside the CRMwere negative for the same assay (Figures

5I and 5J and data not shown) indicating its specificity. To

further test if Srp acts through the crb-CRM to repress crb

expression, we next examined the behavior of the crb-CRM-

lacZ reporter in srp mutant and srp-overexpressing back-

grounds. We found that when Srp is absent, the reporter

remains highly expressed in the PMG throughout development

(Figure 5G), and conversely, when Srp is overexpressed

throughout the embryo, we see that expression of the reporter

is almost completely lost (Figure 5H). Taken together these

results suggest that Srp directly represses crb through binding

to GATA sites within the crb-CRM region.
l Cell 21, 1051–1061, December 13, 2011 ª2011 Elsevier Inc. 1055



Figure 5. Srp Represses crb Transcription

(A–C) In situ hybridization for crb in wild-type embryos. crb is expressed in the endoderm throughout stage 9 (A) but is not detected in the PMG after it undergoes

EMT (B and C).

(D) crb is strongly expressed in the PMG in stage 13 srp mutants.

(E and F) The crbCRM-lacZ reporter reproduces the endogenous crb expression pattern in the PMG (compare E and F with A and C).

(G) In srp mutants, the crbCRM-lacZ reporter is not repressed in the PMG (compare G with wild-type F).

(H) Overexpression of Srp throughout the embryo, using Nullo-Gal4, causes a general repression of the crbCRM-lacZ reporter (compare H with F).

(I) Schematic diagram indicating the location of putative Srp-binding sites (red lines) with respect to the crb gene (exons in purple, introns in green), and the

location of the crb-CRM (shaded in black).

(J) ChIP assays, performed with Srp antibody; data are expressed as fold change enrichment of Srp binding relative to the negative control, and are normalized

to input. Forward and reverse primers are provided in Supplemental Experimental Procedures. Error bars indicate SD.

(K and L) In crb mutants dE-Cad becomes delocalized in PMG cells during stage 9 (compare L with wild-type K).

(M–O) Stage 12 wild-type (M), srp (N) and srp, crb double mutant embryos (O) stained for dE-Cad, red lines show the hindgut PMG boundary. (N) In srpmutants

PMG cells do not undergo EMT and dE-Cad is apically localized throughout the hindgut (arrowhead) and PMG (arrows). (O) In srp, crb double mutants, dE-Cad

becomes delocalized in PMG cells (arrows in O), similar to in wild-type (arrows in M) and in contrast to in srpmutants (arrows in N), while the apical localization of

dE-Cad in the hindgut is retained (arrowhead in O). Dotted lines outline the PMG, vertical lines show the hindgut PMG boundary; black box shows the area

magnified in (D0).
Scale bars: (A)–(H), 50 mm; (J)–(N), 20 mm.
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Loss of Crb Partially Reverts the dE-Cad Phenotype
in a Srp Mutant
To investigate the functional relevance of repression of crb by

Srp we first examined the behavior of dE-Cad in the PMG of

crb mutants. We found that in crb mutants the PMG undergoes

a premature delocalization of dE-Cad, with dE-Cad becoming

lost from PMG cells as early as stage 9, and a premature alter-

ation of epithelial morphology (Figures 5K and 5L). To provide

a functional validation of crb repression in the Srp-induced

epithelial transition, we generated a double mutant for srp and

crb and found that loss of crb partially reverts the dE-cad pheno-

type and the failure of EMT in the PMG caused by srp mutants

(Figures 5M–5O, arrows). It should be noted that while dE-Cad

becomes delocalized in the PMG of srp; crb double mutants, it

remains tightly localized in the hindgut (Figure 5O, arrowhead).

Together these data indicate that Srp induces a delocalization

of dE-Cad through the direct repression of crb. Thus, the repres-

sion of crb by Srp appears to be a central part of the mechanism

used to induce endodermal-EMT. However, we have found that

ectopic expression of crb does not inhibit PMG morphogenesis

(data not shown). While this could be due to ectopic Crb not
1056 Developmental Cell 21, 1051–1061, December 13, 2011 ª2011
localizing correctly to the apical membrane, it indicates that

crb downregulation is necessary for endodermal-EMT but crb

expression is not sufficient to abrogate it. This is in agreement

with other genes such as std and SAS being repressed by Srp

in the PMG. Furthermore, it is similar to results for Sna-induced

EMT where despite the fact that repression E-Cad is a crucial

step in this process (Cano et al., 2000; Batlle et al., 2000; re-

viewed in (Huber et al., 2005), overexpression of E-Cad alone

is not sufficient to block EMT (Ohkubo and Ozawa, 2004).

Vertebrate GATA6 Induces a Similar EMT in MDCK Cells
Vertebrate orthologs of Srp, GATA 4, 5, and 6 (Gillis et al., 2008)

are similarly expressed and implicated in the differentiation of

various organs of endodermal origin such as intestine, colon,

and liver (Gao et al., 1998; Molkentin, 2000). These genes appear

to have distinct roles in mammalian development and pathogen-

esis. In particular, hGATA6 has recently been reported to be up-

regulated in some human cancers of endoderm origin (Shureiqi

et al., 2007; Fu et al., 2008; Kwei et al., 2008), and an increased

accumulation of hGATA6 has also been found in cells at the

leading front of some endodermal tumors (Haveri et al., 2008).
Elsevier Inc.
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To study the putative role of hGATA6 in EMT, we engineered

MDCK cells to inducibly express hGATA6. This epithelial cell

line has previously been instrumental in discovering the role of

Snail, Slug, and Twist in EMT (Cano et al., 2000; Yang et al.,

2004; Bolós et al., 2003). Expression of hGATA6 in MDCK cells

caused a dramatic conversion toward a spindle mesenchymal-

like phenotype as opposed to the epithelial morphology of non-

induced control cells (Figures 6B and 6E). This morphological

change was concomitant with a loss of membrane-associated

E-Cad, which accumulated in punctae in the cell cytoplasm

(Figures 6C and 6F), but does not change in overall protein levels

(Figure 6I). hGATA6 also induced remodeling of F-Act from the

cell cortex to stress fibers as well as to motile structures similar

to lamellipodia (Figures 6C0 and 6F0). Furthermore, hGATA6-ex-

pressing cells displayed membranous N-Cadherin (N-Cad)

(Figures 6G and 6H), a well-established marker gene of mesen-

chymal cell (Moreno-Bueno et al., 2009). To test for changes in

migratory and invasive capacity in hGATA6 expressing cells,

we performed assays on collagen type IV-coated Transwells.

We found that hGATA6 expression greatly enhances the motility

of MDCK cells, in comparison to noninduced control cells (Fig-

ures 6J–6L). Together these results show that hGATA6 triggers

a loss of epithelial traits, acquisition of fibroblastic morphology

and increases motility and invasive capacity in MDCK cells.

Srp and GATA6-Induced Transitions Share Some
Features
To further explore the similarities between Srp and hGATA6-

induced transitions, we next investigated for changes in the

RNA levels of e-cad upon expression of hGATA6. We found

that similar to Srp, hGATA6 does not repress e-cad transcription,

as there are no significant differences in e-cad RNA levels

between hGATA6-expressing MDCK cells and noninducible

controls (Figure 6M). Thus, both Srp and hGATA6-induced tran-

sitions occur without abolishing e-cad transcription.

We next examined for changes in the RNA levels of members

of the Crumbs complex upon expression of hGATA6. There are

three vertebrate Crumbs genes—crb1, crb2, and crb3—and, of

these, just crb2 and crb3 are expressed in MDCK cells (Roh

and Margolis, 2003). We found that while crb3 RNA expression

levels do not change upon hGATA6 expression, crb2, is strongly

downregulated (Figure 6M). Other members of the Crb complex,

protein associated with Lin-7 (pals1) or Pals1-associated tight

junction protein (PATJ), did not show any changes at the RNA

level (Figure 6M). Next, we made use of a published data set

of hGATA6 binding sites that was generated from an hGATA6

RNA-seq experiment performed on the human intestinal

Caco-2 cell line (Verzi et al., 2010). We searched their processed

data for positive hGATA6 binding peaks in the regulatory regions

of crb2 and crb3 and found that while there are no peaks in crb3,

crb2 has a positive GATA6-binding peak within its first intron

(Verzi et al., 2010). Genomic alignment shows that the hGATA6

binding region is conserved from humans to dogs (data not

shown), further supporting the idea that similar to Srp in flies,

hGATA6 represses crb2 in MDCK cells through direct binding

to a regulatory region within the first intron of crb2.

Finally, we assayed for changes in the expression of Claudin

genes, and found that claudins 1, 7, and 16 are all strongly

repressed by hGATA6 (Figure 6M), while expression of hGATA6
Developmenta
induces an upregulation ofmmp1 (Figure 6M). Thus, the repres-

sion of Claudin genes and activation of mmp1 are also a con-

served feature of Srp and hGATA6-induced transitions.

Vertebrate hGATA4 Also Induces an EMT in MDCK Cells
As mentioned above, other vertebrate GATA factors such as

GATA4 and 5 are also closely related to Srp. Thus, we performed

with hGATA4 and hGATA5 similar experiments in MDCK cells

as those performed with hGATA6 and found that hGATA4 has

a similar effect to hGATA6 (Figures S6G and S6H). However,

EMT was not induced by hGATA5 (Figures S6E and S6F). This

indicates the specificity of the transformation, which appears

not to be a common feature of all GATA factors, and is in agree-

ment with the observation than the vertebrate GATA4 and 6 are

both more closely related to each other than to the GATA5 gene

(Lowry and Atchley, 2000; Gillis et al., 2008). Furthermore,

GATA4 and 6 have recently been reported to have overlapping

functions in the regulation of proliferation and differentiation of

intestinal cells (Beuling et al., 2011). As a control, we also

induced the expression of a mutated form of hGATA6 (which

contains point mutations in both zinc fingers and thus cannot

bind to DNA) and found that it did not induce an EMT (Figures

6I and 6J). Although it is still not clear which are the mechanisms

involved in hGATA6 induced E-Cad protein relocalization, alto-

gether, these results demonstrate that among some GATA

factors, the ability to induce a distinct EMT without silencing

E-Cad transcription is a conserved feature from flies to humans.

DISCUSSION

In this study, we investigate the role of Srp in theDrosophila endo-

derm, and show that it is required to induce endoderm cells to

switch from an epithelial to nonpolarized motile behavior, and

that it acts as a potent trigger of a similar transition when misex-

pressed spatially or temporally in epithelial cells. Srp promotes

dE-Cad junctional downregulation and while Srp is likely to

impingeona largenumberofgenes,aspecific featureof its activity

is crb transcriptional repression. In addition, we have also shown

that the overexpression of either hGATA6 or 4 in MDCK cells

triggers a distinct EMT, which shows many similarities to the

Srp-induced transition, as changes in cell polarity, adhesion, and

motility occur without any changes in E-Cad at the RNA or protein

levels, while a crb ortholog, crb2 becomes strongly repressed.

Cells traditionally have been classified as epithelial or mesen-

chymal depending upon whether they are polarized or not,

possess junctions or have lost adhesion, and display static or

migratory and invasive behavior. Here, we show that during the

formation of the endoderm, cells lose apico-basal polarity and

become highly motile, a common feature of both developmental

and pathological EMTs. However, a distinct feature of the endo-

dermal transition is that while adherens junctions become

fragmented, dynamic puntae of dE-Cad protein are maintained

at the plasma membrane. Despite their highly mesenchymal

appearance, endoderm cells migrate as a collective mass.

Thus, spots of dE-Cad may be retained at the membrane during

this type of transition to facilitate collective, rather than individual

migration. It should be noted, this is very different to other types

of collective migration, which have described for epithelial cells

in the Drosophila embryo, such as in the trachea, where cells
l Cell 21, 1051–1061, December 13, 2011 ª2011 Elsevier Inc. 1057



Figure 6. hGATA6 Induces EMT in MDCK Cells

(A–H) MDCK-hGATA6-dox cells before (A, B, C, and G) and 6 days after induction of hGATA6 expression (D–F and H). (A and D) Nuclear accumulation of hGata6

protein after addition of doxycycline. (B and E) hGATA6-induced MDCK cells adopt a mesenchymal-like spindle shaped morphology. (C and F) Single confocal

slice of cells stained for F-Act and E-Cad. The normal junctional localization of E-Cad is lost, and instead E-Cad is found in punctate dots in the cell cytoplasm.

F-Act appears reorganized into stress fibers and lamellipodia-like structures (F0, arrows). (G and H) N-Cad is found localized at the cell membrane of

hGATA6-induced cells.

(I) Western blot analysis show that hGATA6 expression does not induce changes in the levels of E-Cad protein.

(J) The migratory and invasion capacity of control and hGATA6-induced MDCK cells was analyzed in transwell assays on matrigel 96 hr after hGata6 induction.

hGATA6-induced cells possessed a 10-fold increase in migration/invasion behavior. Eight randomly selected microscopic fields (203 magnification) were

imaged to calculate the average number of occupied pores per microscopic field. Results represent the mean ± SD of at least two independent experiments

performed in duplicate.

(K and L) Cells migrated through the matrigel to the bottom (K and L, arrows). (M) qPCR analysis shows the relative expression changes, in log10 scale, of the

indicated genes in hGATA6 expressing MDCK cells (green) compared with the noninduced controls (red) 48 hr after doxycycline induction. Gene expression

levels were normalized using the endogenous control GAPDH.

Error bars indicate SD. Scale bars, 10 mm. See also Figure S6.
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migrate, but do not lose apico-basal polarity or disassemble cell

junctions.

EMT in the mesoderm and almost all EMTs studied to date

have been shown to rely on the activity of sna genes (Barrallo-Gi-

meno and Nieto, 2005). The few other cases that do not depend

on sna genes rely on the activation of other e-cad transcriptional

repressors such as E47 (Thiery et al., 2009). In contrast, the tran-

sition reported here occurs independently of Sna and does not

rely on E-Cad transcriptional repression. Thus, the endodermal-

transition is distinct from canonical EMTs not only at themorpho-

logical, but also at the transcriptional level. One way of achieving

different degrees of adhesion between cells subsequent to EMT

could be to drive Sna at different levels; however, this could be

more difficult to achieve andmore prone to errors than activating

an independent mechanism. Thus, rather than activating a single

EMT mechanism at different intensities, Srp appears to be an

alternative trigger for this distinct kind of EMT in which low levels

of dE-Cad are retained at the membrane.

We and others have reported many cases where E-Cad is

downregulated at the protein level during development (i.e.,

Shaye et al., 2008). This also occurs during EMT in gastrulating

mouse embryos, where p38 downregulates E-Cad at the protein

level by a mechanism independent of transcriptional repression

by Sna (Zohn et al., 2006). However, what is different about the

Srp-induced epithelial transition reported here, is that while it is

also not linked to dE-cad gene repression, it is both necessary

and sufficient to induce a transition to nonpolarized, motile cell

behavior. This contrasts with other reported cases, such as in

the Drosophila trachea, where dE-Cad is downregulated, but

this is not sufficient to induce a loss of cell polarity. In the case

of mouse gastrulation, sna mutant cells fail to undergo EMT

(Carver et al., 2001; Barrallo-Gimeno and Nieto, 2005), indicating

that the p38-dependent E-Cad delocalization is not sufficient

to drive EMT and in p38 mutants there is still some EMT (Zohn

et al., 2006), indicating that the p38 pathway is not absolutely

required for EMT. This strongly contrasts with the Srp pathway,

which is absolutely required and sufficient to drive a transition

to nonpolarized migratory cell behavior.

The specific features of the Srp-induced EMT are likely to facil-

itate cohesive cell migration, and it seems easier to revert to

epithelial again, a case often found both in development and

tumor progression. Indeed, the collective invasion of cells that

display combination of epithelial and mesenchymal features

rather thana full conversion toamesenchymal phenotype isprev-

alent inmany cancer types (Friedl andGilmour, 2009). The finding

that GATA factors play a conserved role in inducing a similar

epithelial transition in mammalian cells and that high levels of

expression of hGATA6 are found in a number of endodermal

tumors highlight the relevance of our results for development

and cancer research. Further studies will be required to assess

whether hGATA6 expression in such tumors induce similar

changes in cell behavior to those seen in flies and MDCK cells.
EXPERIMENTAL PROCEDURES

Immunohistochemistry, In Situ Hybridization, Image Acquisition,

and Analysis

Embryos were fixed, mounted, and staged using standard techniques.

Embryos were stages according to the staging scheme in (Hartenstein,
Developmenta
1993). To determine exactly when EMT takes place in the PMG, embryos

were collected over 30 min time periods, and then analyzed for markers for

EMT. Antibodies and probes used are detailed in the Supplemental Experi-

mental Procedures. Confocal images were acquired with a Leica SP5. Images

were post-processed with Adobe Photoshop and ImageJ.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) experiments were carried out as

described previously (Sandmann et al., 2006). In each ChIP assay 4 indepen-

dent chromatin samples were prepared from 0–6 hr wild-type embryo collec-

tions, two samples were incubated with anti-Srp sera and two sampleswithout

antibody, as a negative control. Each assay was preformed three times, and

only regions that showed a strong enrichment in all three assays were consid-

ered to be positive for Srp binding. Primers used to assay for regions contain-

ing putative Srp-binding sites are listed in the Supplemental Experimental

Procedures.

Quantification of RNA Levels in the PMG

The PMG was dissected from wild-type embryos at 3–3.5 hr (before), 6–6.5 hr

(after), or from srp mutant embryos at 6–6.5 hr, according to the method

described in (Skaer, 1989). Three PMGs were dissected per condition, RNA

was isolated from the cells and amplified by Pico Profiling (Gonzalez-Roca

et al., 2010). Four separate sample sets were isolated, and the RNA amounts

quantified by quantitative real-time PCR. Primers used are detailed in the

Supplemental Experimental Procedures. Gene expression levels were normal-

ized using the endogenous control Actin5C for each sample, and differences in

target gene expression were determined using the StepOne 2.2 software.

Immunofluorescence of MDCK Cells

MDCK cells were plated at a high confluence (150 000 cells/ml) and grown for

48 hr on sterile transparent 0.4 mm pore polyester membrane inserts (Corning

3470) coated with 2.5 mg/cm2 laminin (Sigma, L2020). For full details of fixing

and staining procedures, and antibodies used see Supplemental Experimental

Procedures.

Invasion Assay

To obtain polarized monolayers for immunofluorescence, MDCK cells were

seeded on transparent track-etched PET chambers, coated with matrigel.

hGATA6 and control cells were seeded at a density of 5000 cells/well in

DMEM medium supplemented with 0.5% BSA. Lower chambers were filled

with 10% FBS to act as a chemoattractant. After 48 hr of incubation, the cells

on the lower membrane surface were fixed and stained.

Quantitative Real-Time PCR on MDCK Cells

Total RNA samples were extracted using Trizol, DNAase treated, further puri-

fied using RNeasy columns (Qiagen), and reversed transcribed using the High

Capacity cDNA Archive Kit (Applied Biosystems). RNA amounts were quanti-

fied by quantitative real-time PCR. Primers used are detailed in the Supple-

mental Experimental Procedures. Gene expression levels were normalized

using the endogenous control GAPDH for each sample, and differences in

target gene expression were determined using the StepOne 2.2 software.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, Supplemental Experimental

Procedures, and six movies and can be found with this article online at

doi:10.1016/j.devcel.2011.10.005.
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