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ABSTRACT

Objective: Discrete event simulation (DES) modeling has several advan-
tages over simpler modeling techniques in health economics, such as
increased flexibility and the ability to model complex systems. Nevertheless,
these benefits may come at the cost of reduced transparency, which may
compromise the model’s face validity and credibility. We aimed to produce
a transparent report on the construction and validation of a DES model
using a recently developed model of ocular hypertension and glaucoma.
Methods: Current evidence of associations between prognostic factors and
disease progression in ocular hypertension and glaucoma was translated
into DES model elements. The model was extended to simulate treatment
decisions and effects. Utility and costs were linked to disease status and
treatment, and clinical and health economic outcomes were defined. The
model was validated at several levels. The soundness of design and the
plausibility of input estimates were evaluated in interdisciplinary meetings
(face validity). Individual patients were traced throughout the simulation

under a multitude of model settings to debug the model, and the model was
run with a variety of extreme scenarios to compare the outcomes with prior
expectations (internal validity). Finally, several intermediate (clinical) out-
comes of the model were compared with those observed in experimental or
observational studies (external validity) and the feasibility of evaluating
hypothetical treatment strategies was tested.
Results: The model performed well in all validity tests. Analyses of hypo-
thetical treatment strategies took about 30 minutes per cohort and lead to
plausible health–economic outcomes.
Conclusion: There is added value of DES models in complex treatment
strategies such as glaucoma. Achieving transparency in model structure
and outcomes may require some effort in reporting and validating the
model, but it is feasible.
Keywords: discrete event simulation, disease-progression model, model-
ing, ocular hypertension, primary open-angle glaucoma, validation.

Introduction

The application of discrete event simulation (DES) modeling
in health economic decision analyses has been growing steadily in
recent years [1]. This may be partly ascribable to the advances in
computing technology, which enables faster Monte Carlo simu-
lations, but undoubtedly also to some of the appealing advan-
tages of DES in terms of flexibility and the ability to model
complex systems [1–4]. Such increased complexity of a model
can enhance the accuracy of the outcomes, but may come at the
cost of a loss in transparency and therewith face validity and
credibility [1,2]. This is a problem since a lack of understanding
of a model and trust in its outcomes may limit the degree to
which information generated by the model is considered by the
target audience. It is therefore important to not only maximize
transparency, but also to convincingly validate a model and its
outcomes [5]. With this article we aim to contribute to the
literature regarding the construction, validation and reporting of
DES models in complex treatment strategies, drawing from our
experience with a recently developed health economic DES
model to simulate disease progression in glaucoma patients.

Glaucoma is an ocular condition involving the slow but
gradual and irreversible loss of retinal nerve fibers, leading to
visual field loss and possibly blindness. The etiology of glaucoma

is unknown, but the most important known risk factor for its
occurrence is an elevated intra-ocular pressure (IOP). As long as
the IOP is elevated without signs of retinal nerve fiber loss, the
condition is termed ocular hypertension (OHT). Nevertheless,
when nerve fiber loss occurs at a level that causes optic nerve
cupping and/or visual field loss, the condition is termed primary
open-angle glaucoma (POAG). The transition from OHT to
POAG is termed “conversion.” If nerve fiber loss continues (pro-
gression), the visual field deteriorates and a patient may progress
to blindness. Treatment of glaucoma is directed at lowering the
IOP to slow down the neurodegenerative process [6,7]. Since
glaucoma is a chronic condition, patients are usually monitored
and treated lifelong from the moment of diagnosis. Treatment
guidelines for glaucoma have been formulated based on evidence
from clinical trials, but several issues in these guidelines remain
unspecified due to a lack of evidence [8,9]. For example, it is
unclear how often patients need to be evaluated for progression,
and how low the target pressure should be to prevent further
progression.

The information necessary to resolve these issues cannot be
generated by clinical trials, because the follow-up period needed
to establish differences in relevant outcomes (i.e., vision impair-
ment or blindness) is long, and by the time the results are avail-
able they may no longer be relevant. Moreover, until the results
of clinical trials are available, treatment decisions still need to be
made today. A large number of trials would be necessary to
investigate all relevant combinations of treatment strategy char-
acteristics (initiation, monitoring frequency, type of intervention,
target pressure, etc.) yielding a massive need for study subjects,
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and for obvious ethical reasons it is not possible to investigate the
effect of withholding treatment. Finally, the study protocols
would be inflexible to future treatment options and insights from
scientific research in the pathogenesis of glaucoma. Therefore,
rather than obtaining new evidence, we have used a modeling
approach to synthesize all currently available evidence regarding
glaucoma disease progression and the effects of treatment. The
resulting health economic disease progression model will be
employed to generate predictions of the (cost) effectiveness of a
wide range of treatment strategies for OHT and POAG patients.
We have used the DES model structure because it was expected to
provide important advantages over other modeling techniques in
the context of glaucoma and our research objectives. In this
article we intend to: 1) justify the choice for a DES model; 2)
describe how disease progression and treatment effects in glau-
coma were translated into the structure of a DES model; and 3)
present the results of the model validation.

Methods

Justifying the Chosen Model Structure
One of the first steps in decision analytic modeling is to choose
the most appropriate model structure. The choice for any par-
ticular model type must be based on the decision problem(s), the
theory of the health condition being modeled, and on additional
desired features such as flexibility or user-friendliness [10–12].
Various model types represent various levels of complexity, and
the chosen model structure should only be complex enough to
meet its intended purpose [5]. Modeling glaucoma and its treat-
ment calls for a relatively complex model structure because of
(among others) the following reasons [13]. Glaucoma is a
chronic condition that requires lifetime monitoring and treat-
ment, so a decision analytic model should facilitate a lifetime
horizon of disease progression and treatment. Within this lifetime
a number of treatment options are available, such as watchful
waiting, medication, laser treatment (LT), or surgery, and a con-
current or sequential combination thereof. Even within medicinal
treatment over 56,000 combinations of agents and dosages are
possible [14]. A decision analytic model of glaucoma therefore
needs to compare treatment strategies rather than single treat-
ment options. In addition, a treatment strategy is not only
defined by the way treatments are ordered or combined, but also
by the circumstances that call for a treatment change. After all, in
clinical practice a great number of factors may be considered in
the decision to alter the existing glaucoma treatment, such as age,
disease history, treatment history, current clinical status, the effi-
cacy and tolerability of previous therapies, and the outcomes of
diagnostic tests. Therefore, in order to evaluate different treat-
ment strategies in the glaucoma decision analytic model, the
model must be able to discern all the factors that are deemed
relevant for the treatment strategy. In addition, the model must
take account of all factors that are relevant for the costs and
outcomes. Lastly, glaucoma disease progression is not character-
ized by clearly discernable disease states, but rather represents a
sliding scale of anatomical and functional disease manifestations
[15].

The most common model types used in decision analytic
modeling are (in increasing order of complexity) decision trees,
Markov models and DES models [2–4]. Several authors have
recently reviewed model structures and offered a guide on choos-
ing the most appropriate method [16–19]. Given the require-
ments described in the previous paragraph, we needed an
individual sampling model based on either a Markov or a DES
model structure. The main limitations of Markov models pre-
cluded its applicability in our research. First, in view of the

multifaceted nature of glaucoma treatment and the fact that
Markov health states are mutually exclusive (i.e., a patient can
only be in one health state at the time), the necessary amount of
health states and transition probabilities would be enormous. For
example, simplifying the disease status to four levels (OHT, mild
POAG, severe POAG, and blind) and the number of treatments
to 10 (no treatment, 7 types of (combinations of) medications,
and 2 invasive procedures) would already yield 40 health states
and up to 1600 transition probabilities. Second, the cycle time in
a Markov model is fixed, whereas we wanted to explicitly evalu-
ate the effects of altering the frequency of ophthalmologist
consultations on cost-effectiveness outcomes. Third, a Markov
model has no memory with regard to the treatment history of a
patient, whereas the treatment options of a glaucoma patient
depend on his exposure to and experience with previous treat-
ments. Also the effectiveness of some treatments may vary
depending on past exposure to other treatments. The structure of
a DES model enabled us to overcome these issues, and has the
additional advantage that a “finished” model allows for rela-
tively easy adjustments to future research questions, new treat-
ment options, or new scientific evidence.

Building Blocks of Discrete Event Model
The typical elements of a DES model are: entities, attributes,
events, relationships, and outcomes. In order to simulate glau-
coma and its treatment with a DES model, we have “conceptu-
alized” our knowledge of the underlying pathogenetic and
therapeutic processes in terms of these DES model elements. In
order to facilitate the identification of model elements in the
remainder of this article, we have used the notation described in
Table 1. The entity in the model is a patient (further referred to
in the masculine form). Attributes are characteristics that refer to
the patient or his better eye. Attributes can either be fixed
throughout the simulation (e.g., sex), or change in time (e.g.,
age). Events represent relevant moments in time. At an event the
attributes of the entity are re-evaluated and adjusted. In our
model, time-progression is event-based, which means that the
model “jumps” from one event to the next (please see the Sup-
porting Information Appendix S1 for this article at http://
www.ispor.org/Publications/value/ViHsupplementary/ViH13i4_
vanGestel.asp). The timing of future events may be conditional
upon the new values of the attributes. This issue will be discussed
more elaborately when we explain how the attributes managing
future events (〈time-to-xxx〉A) were calculated in the model. Rela-
tionships are the model elements that link entities, attributes,
events, and outcomes together with mathematical and/or logical
terms. Outcomes are the model element that aggregate informa-
tion needed to draw conclusions from the simulations. An
outcome is expressed by a relationship involving any of the
model elements or a combination of elements. Examples of out-
comes are 1) 〈average IOP〉O, which is an outcome based on an
attribute; 2) 〈occurrence of conversion〉O, which is an outcome

Table 1 Notation of model elements

Specific model elements are referred to with their name in angle brackets
〈 〉.

The subscript indicates the type of model element:
A for an attribute 〈 〉A
E for an event 〈 〉E
O for an outcome 〈 〉O
For example: 〈Age〉A signifies that the referred model element is an attribute
with the name “Age” and 〈Visit〉E signifies that the referred model element
is an event called “Visit.”
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based on an event; 3) 〈age at conversion〉O, which is an outcome
based on both an attribute and an event; and 4) 〈discounted
lifetime costs〉O, which is an outcome based on attributes (e.g.,
〈medication〉A), events (e.g., 〈visit〉E), discount rates, and time.

Various methods exist to transfer a DES model concept into a
running model, ranging from pure programming languages to
dedicated software packages [20]. We have used Excel spread-
sheets (Microsoft Excel 2000, Microsoft Corporation, Redmond,
WA) to simulate the individual patient, and added Visual Basic
macros (Microsoft Visual Basic 6.0, Microsoft Corporation) to
create a heterogeneous population of simulated patients.

Conceptualizing Glaucoma and Its Treatment
We have conceptualized glaucoma and its treatment from a clini-
cal perspective. This means that we have not necessarily simu-
lated the actual pathogenetic processes themselves, but rather
how they manifest themselves in clinical practice. In the model,
OHT and POAG represent two distinct disease states (please see
the Supporting Information Appendix S1. Conversion is modeled
as an event upon which the disease state changes from OHT to
POAG. Visual field damage is a proxy for glaucoma severity and
is expressed as mean deviation (MD) ranging from 0 (no damage)
to –35 (severe damage) decibel (dB) [21]. Below a certain MD
threshold, patients are considered blind. Progression is modeled
by means of an intrinsic rate at which the visual field decreases
annually. The effect of treatment is that it lowers IOP, which in
turn affects the conversion risk and the progression rate in the
model.

The set of attributes, events, and relationships that simulate
this natural disease progression of an individual patient is dis-
cussed in the next paragraph. Additional model elements were
added to the disease progression model to simulate treatment
decisions and effects. These are discussed in subsequent para-
graphs. An overview of the most important events, attributes,
and relationships in the model is presented in Table 2. Details on
model elements and parameter estimates are provided in the
Supporting Information Appendix S1.

Simulation of Natural Disease Progression
At the start of a simulation (T0) a set of baseline attributes is
determined for the patient and his better eye, including 〈Age〉A,

〈Gender〉A, 〈IOP〉A, and 〈Risk profile〉A. The 〈Risk profile〉A repre-
sents a set of factors (other than age and gender) quantifying the
relative risk of conversion in the patient relative to the average
patient [22]. The baseline 〈disease status〉A is set by the user to
either OHT or POAG. The values of the other baseline attributes
are randomly drawn from distributions. The specifications of
these distributions can be adjusted to generate specific patient
populations, like a high risk OHT population or a young POAG
population. To establish which event occurs next, the model uses
special attributes (time-to-xxx) that set the time interval to each
possible future event. The intervals are compared, and the small-
est value determines which event occurs next and when. The
model then jumps to that event and recalculates all attributes,
including all time-to-xxx attributes.

If the baseline 〈disease state〉A of the simulated patient is OHT,
two events may occur in the future: 〈conversion〉E and 〈death〉E.
Time-to-death is calculated by subtracting the current 〈Age〉A from
〈age at death〉A. The latter is determined at baseline by a random
draw from a distribution of life-expectancies [23]. Time-to-
conversion is based on 〈risk profile〉A, 〈Age〉A, and 〈IOP〉A at the
time of the event. The determination of 〈time-to-conversion〉A

occurs via a new random draw from a distribution at each event
(please see the Supporting Information Appendix S1. The distri-
bution itself is redefined at each event to adjust it to the current
values of 〈Age〉A and 〈IOP〉A. At higher values for age and IOP, the
chance to draw a small value for time-to-conversion is higher, the
chance that this value is the smallest time-to-event value is higher,
and so the likelihood of conversion occurring is higher.

The distribution of time-to-conversion is based on a survival
function (Eq. 1) that is customized to the individual patient at the
specific event. The latter is established by calculating the indi-
vidual’s current hazard (hi) from the average hazard of conver-
sion observed in OHT-populations, hazard ratios for age and
IOP as reported in literature, and the hazard ratio of other risk
factors given by 〈Risk profile〉A (Eq. 2).

P S e h ti= − = − − ⋅1 1 (1)

h HR h e ei i

HR
Age Age

HR IOP IOPAge
A av

IOP A= ⋅ = ⋅
( )⋅ −⎛

⎝⎜
⎞
⎠⎟ ( )⋅ −ln

ln10 aav
iHR hother

( ) ⋅ ⋅
(2)

where P = cumulative probability of conversion.
S = conversion free survival.
hi = current hazard rate of individual i at current event.
t = time.
h = hazard rate in reference OHT population.
HRi = total hazard ratio of individual i at current event.
HRage = hazard ratio of age (per 10 years older).
HRIOP = hazard ratio of IOP (per mmHg higher).
�Age�A = age of individual i at current event.
Ageav = average age of reference OHT population.
�IOP�A = IOP of individual i at current event.
IOPav = average IOP in the reference OHT population

(mmHg).
HRother = hazard ratio of other risk factors.

With the resulting hazard hi, Eq. 1 can be completed to gen-
erate an updated cumulative distribution of time-to-conversion
for individual i. A random draw from the thus created distribu-
tion provides the value for 〈time-to-conversion〉A at the current
event. Incidentally, as the time-to-conversion distribution is only
updated during events, large time intervals between events would
induce flawed risk estimations because the risk from increasing
age between events would not be accounted for. A separate event
(〈update〉E) was introduced in the model to solve this problem.

Table 2 Overview of the most important attributes and relationships in
the model

Attributes Relationships Updated at all events?

Age Age = F(Age0, time) Yes
Gender No
IOP IOPu = F(IOP0, surgery, time) Yes

IOPi = F(IOPu, effect (%))
Disease status Only at “conversion”
MD MD = F(MD0, MDR, time) Yes
MDR MDR = F(MDR0, IOP) Yes
Treatment type Only at “visit”
Medication Only at “visit”
E (%) E = F(medication, E0) Yes
SEs SE = F(medication, SE0) Yes
Time-to-next-
event

Time-to-death = F(Age, gender) Yes
Time-to-conversion = F(IOP,Age,
Risk0)

Time-to-visit = F(treatment type,
visit number)

IOPtarget = F(disease status,
progression)

0, baseline; E, effect; F(x), function of x; IOPi, current intraocular pressure; IOPu, IOP without
medication or LT effect; MD, mean deviation; MDR, mean deviation rate; SE, side effect.
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The interval between updates was fixed to ensure a regular
update of the patient attributes, regardless of the frequency of the
other events.

When disease state changes to POAG, two additional
attributes become relevant: MD (〈MD〉A) and MD rate
(〈MDR〉A). MD (dB) represents the disease severity of the POAG
patient, and MDR (dB/year) represents the speed of progression.
As mentioned previously, a higher IOP is a risk factor for pro-
gression, so we needed to define another relationship in the
model to create the link between these two factors. For each
patient a fixed value for 〈MDRref〉A is drawn from a distribution
based on the average MDR in a POAG population [24]. This
attribute represents the MDR if the patient had a risk profile and
IOP similar to the average in the referent POAG population.
During the simulation, the actual value of 〈MDR〉A is calculated
according to Eq. 3, using the fixed 〈MDRref〉A, the current 〈IOP〉A,
and an additional attribute (〈progression risk〉A) that represents
an aggregation of other risk factors for progression.

MDR MDR HR MDR e HR
IOP

ref i ref
HR IOP IOP

other

A

IOP A av= ⋅ = ⋅ ⋅( )⋅ −( )ln ,
≥≥

= <
IOP

MDR IOP IOP
no progression

A no progression0, (3)

where MDR = mean Deviation Rate of individual i at current
event.

MDRref = mean Deviation Rate of individual i if IOP and
HRother were as the average in the reference
POAG population.

HRi = total hazard ratio of individual i at current event.
HRIOP = hazard ratio of IOP (per 1 mmHg higher

than average IOP in the reference POAG
population).

HRother = hazard ratio of other risk factors (〈progression
risk〉A).

�IOP�A = IOP at current event (mmHg).
IOPav = average IOP (mmHg) in the reference POAG

population (15.5 mmHg).
IOPno progression = IOP threshold for disease progression.

Simulation of Treated Disease Progression
The previous paragraphs have described how the natural disease
progression of glaucoma was translated into a DES model struc-
ture. With an additional set of events, attributes, and relation-
ships, this model was extended to simulate the treated course of
disease. Before elaborating on these additional model elements,
we will briefly discuss what typically constitutes “treatment” in
OHT and POAG management. Watchful waiting is the least
intensive form of treatment, and consists of regular consultations
with the ophthalmologist to monitor IOP, optic disc, and visual
field but without active intervention. In terms of active interven-
tions, there are three different methods to reduce IOP: medica-
tion (eye drops), LT, and surgery. The pressure reducing effect of
medication and LT is proportional to the IOP before treatment,
whereas the IOP level after surgery is independent on the presur-
gical IOP. Treatment guidelines advice to start treatment for
OHT and POAG with medication(s) and to proceed to laser
and/or surgery if maximally tolerated medication is not suffi-
ciently effective [8,9]. A scheme of this treatment flow is provided
in the Supporting Information Appendix S1.

The only new event that was added to the model to simulate
treatment was 〈visit〉E. The associated attribute 〈time-to-visit〉A

was defined by means of a look-up table specifying the interval to
the next 〈visit〉E, depending on treatment type and the number of

visits since the last treatment change (please see the Supporting
Information Appendix S1.

Attributes
A considerable amount of attributes was added to the model to
simulate treatment and its effects. Some attributes do not repre-
sent any physical characteristic of the patient but rather aid the
model to keep track of treatment history. Other new attributes
represent the information an ophthalmologist has available to
inform his/her treatment decisions. For example, the model
always uses the real MD value to simulate disease progression
and calculate utilities, but it uses a second MD attribute (repre-
senting the MD as measured) to inform treatment decisions. The
latter can be influenced by settings in the treatment strategy such
as the frequency or the sensitivity of visual field testing (which
enables the evaluation of such aspects of treatment), whereas the
progression of the real MD is not affected by such treatment
settings.

The effect of medication and LT are simulated as a relative
pressure lowering (%) of the IOP. The effect of surgery is simu-
lated by resetting the IOP. Two sets of attributes were therefore
created in the model. The first calculates an IOP (〈IOPu〉A), that
indicates how high the IOP would be in the absence of medica-
tion or LT treatment. If a patient has not undergone surgery, the
IOPu is similar to the baseline IOP with a small annual increase.
When surgery occurs, IOPu is reset. The second set of attributes
calculates the total pressure lowering effect (in %) of all currently
prescribed medications and previously performed LT treatment
that act upon the IOPu. The combination of IOPu and the total
pressure lowering effect yields the actual IOP of the patient
(�IOP�A). Four different types of medication are used: b-blockers,
prostaglandin analogues, carbonic-anhydrase inhibitors, and
a2-adrenergic agonists. There are two types or surgery: trab-
eculectomy and tube implantation. The effect of all types of
medication and LT, and the specific value of the new IOPu after
surgery in the simulated patient are randomly drawn for each
individual patient and are determined at baseline. In addition,
randomly drawn attributes define whether the patient has con-
traindications or will experience side-effects with each type of
medication.

The simulation of treatment decisions and effects was more
elaborate in the model than described above (please see the
Supporting Information Appendix S1). Briefly, the model allowed
for the combination of medications, LT, and surgery and used
additional sets of effect estimates to calculate the aggregate effect
of the combination therapies. Also, the model accounted for a
gradual loss of effect after LT treatment, and for three different
types of response to surgery: no response, a temporary response,
and a lifelong response.

Relationships
One of the most appealing features of DES modeling is its ability
to mimic complex and individual treatment decisions, and what
is more, to enable adjustments in the complete treatment strategy
from one analysis to the next through minor alterations in the
model. In the glaucoma model, this was achieved by defining a
specific set of relationships that represent the “decision rules.”
The decision rules are logical relationships, and are composed for
the most part of “if–then” statements based on the treatment
flowcharts. An example is presented in Figure 1, which shows
how a series of if–then relationships leads to a new value of
〈treatment〉A. Within the decision rules, the values of patient
attributes are compared with benchmark values such as the
target IOP or the minimal effectiveness required to continue a
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single medication. The benchmark values of a treatment strategy
are specified before a cohort of patients is simulated, and so is
the order of the medication types. Adjustments in a treatment
strategy can be made by simply changing the value of these
benchmarks.

Outcomes
The flexibility of a DES model allows for the collection of basi-
cally all types of outcomes that may be of interest to the targeted
audience. In the glaucoma model for example, the main out-
comes that were collected from the simulation of an individual’s
disease progression were 1) whether conversion occurred; 2)
whether the eye progressed to blindness; 3) the number of life-
years adjusted for the VFQ -25 score (see below); 4) the number
of life-years adjusted for utility; and 5) the total costs associated
with the disease and its treatment. The outcomes had a societal
perspective and took a discounting factor into account [25].
Future effects were discounted with 1.5% per year, and future
costs were discounted with 4% per year according to Dutch
guidelines for pharmacoeconomic research [26]. Blindness was
defined as an MD lower than –25 dB in the simulated eye. The
Visual Functioning Questionnaire (VFQ-25) is a vision specific
health-related quality of life questionnaire [27]. The life-years
adjusted for VFQ-25 score were calculated by multiplying the
length of the time intervals between events with the VFQ-25
score during those time intervals. The VFQ-score was calculated
based on the MD, the presence of side effects, and the presence of
cataract, and was transformed from the original 0–100 scale to a
0–1 scale (Eq. 4) [28]. The quality-adjusted life-years (QALYs)
were calculated in a similar fashion, multiplying the time inter-
vals between events with utility based on the Health Utilities

Index (Eq. 5). The costs associated with treatment and impaired
vision were calculated by linking the occurrence of treatment and
the patient’s MD respectively to resource costs. The derivation of
all utility and cost estimates is described in the Supporting Infor-
mation Appendix S1.

Score MD SE CataractVFQ− = + ⋅ − ⋅ − ⋅25 0 94 0 016 0 1 0 092. . . . (4)

Utility MD SE CataractHUI3 0 88 0 01 0 1 0 059= + ⋅ − ⋅ − ⋅. . . . (5)

where MD = mean deviation.
SE = presence of side-effects, 0 = no, 1 = yes.
Cataract = presence of cataract, 0 = no, 1 = yes.

Validation

The disease progression model for OHT and POAG was devel-
oped with a high level of attention for quality, validity, and
transparency. Guidelines for model development must remain
quite general due to the large variety in models, and there is not
a specific checklist to assess the quality of a DES model
[11,12,29,30]. Nevertheless, we have regarded the good practice
guidelines for decision analytic modeling by Philips et al. as a
minimal set of requirements during the development of the model
[11]. In these guidelines, three dimensions of quality are distin-
guished: structure, data, and consistency. The dimension of struc-
ture refers to the definition of the decision problem, the objective
and scope of the model, justification of the model type, structural
assumptions, and the translation of the disease to the model
structure. These issues are important for “face validity,” which is
discussed in more detail below. The dimension of data refers to
the transparency and justification of all activities involving the

“Is the patient treated?”

If ‹treatment›A = 0, then no
If ‹treatment›A 0, then yes

No “Should the patient be treated?”

If ‹IOP›A IOPtarget, then no
If ‹IOP›A > IOPtarget, then yes

No “No change in treatment”

‹treatment›A is not changed.

“Start treatment”

‹treatment›A changes according to flow charts

YesYes

“Should the treatment be adjusted?”

If ‹side-effects›A = 1, then yes
If ‹treatment effect›A < 20%, then yes
If ‹IOP›A > IOPtarget, then yes
Otherwise, then no

No “No change in treatment”

‹treatment›A is not changed.

“Adjust treatment”

‹treatment›A changes according to flow charts

Yes

≠
≤

Figure 1 Examples of logical relationships that collectively create a decision regarding the simulated patient’s future treatment.
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identification, analysis, and incorporation of data. Transparency
in this dimension requires more text space than a journal article
can provide, so issues regarding data have been included in the
Supporting Information Appendix S1. Another aspect within the
dimension of data is the assessment of four types of uncertainty
(methodological, parameter, structural, and heterogeneity). The
assessment of all four types of uncertainty is feasible with a DES
model, but uncertainty analyses must be made in the context of
a specific decision analysis and cannot be reported here for the
model as a whole. The dimension of consistency refers to the
internal and external consistency of the model, and is described
in more detail below.

The face validity of a model refers to the soundness of the
design and the plausibility of the input estimates as perceived by
experts in the field. There should be a general feeling that all
relevant events and attributes are considered in the model, and
that the defined relationships are correct. Face validity was
guarded throughout the development process by continuous con-
sultation with glaucoma experts, epidemiologists, and health
technology assessment experts. The development of the model
concept and the establishment of the quantitative parameter
estimates were discussed in frequent multidisciplinary meetings
with the abovementioned experts. During these meetings no
information was provided on the outcomes of the simulations to
prevent bias toward desirable outcomes. The model design was
presented to an independent panel of Dutch glaucoma experts in
November 2007 to seek feedback. An extensive report about the
model design and outcomes was evaluated by independent
reviewers for The Netherlands organization for health research
and development (ZonMW), and has been approved in February
2009.

The internal validity of the model refers to the consistency
between the theoretic model design and the product that is even-
tually used to run the simulations. The internal validity of the
model was evaluated in several ways. The model was pro-
grammed in Microsoft Excel spreadsheets, enabling the program-
mer (A.v.G) to review all attributes during all events in the
complete disease and treatment history of an individual patient.
A visual excerpt of such an overview, showing the most impor-
tant attributes, is presented in Figure 2. A detailed review of
events and attributes was conducted for a large number of
patients with specific characteristics and treatment strategy set-
tings, to check whether the attributes in the model changed
according to expectation and whether the model “made” the
right treatment decisions. Furthermore, the model was run in a
series of simulations with test scenarios in order to check whether
the outcomes of the patient populations were as expected. For
example, a scenario in which none of the treatments have any
effect must give the same health outcomes as a scenario in which
none of the patients is ever treated at all, increasing the efficacy
of treatments should lead to better health outcomes and increas-
ing cost-prices should lead to higher costs.

The external validity of the model refers to the similarities
between outcomes observed in patient populations and the out-
comes of the model in comparable circumstances. The external
validity of the model was evaluated in terms of two clinical
endpoints: conversion to POAG in an OHT population and
progression to blindness in a POAG population.

A cohort of ocular hypertension patients was simulated in the
model in order to compare the incidence of conversion in 5 years
with that observed in a recent systematic review [6]. The baseline
age and IOP of the simulated patients was drawn from distribu-
tions based on the Ocular Hypertension Treatment Study popu-
lation [31]. The treatment strategies specified in the model were
1) no treatment unless conversion is observed; and 2) treatment

with a target pressure at 80% of the initial IOP. The results
produced by the model are presented in Table 3. The incidence of
conversion in the simulated patients was comparable to a
weighted average of what was found in literature, and well
within the range of reported conversion incidences. The relative
risk of treatment found with the model results was 0.56 (0.082/
0.146), which is exactly similar to the outcome of the meta-
analysis of the efficacy of pressure lowering treatment in ocular
hypertension [6]. The results also show that leaving treatment
decisions to the model leads to very plausible IOP values for
treated patients.

Two observational studies reporting the cumulative risk of
blindness in populations with open-angle glaucoma were imi-
tated in order to compare the incidence of blindness after 10 to
15 years. In a retrospective study in 186 patients, Chen et al.
report the incidence of blindness in the better eye of a population
treated for open-angle glaucoma [32]. We mimicked this study by
modeling an untreated POAG population with an average base-
line IOP similar to the average follow-up IOP reported by Chen
et al. The results are presented in Table 4. The incidence of
blindness in the model was lower than that reported. A possible
explanation for the difference is the fact that Chen et al. used a
retrospective design and included patients based on the availabil-
ity of visual field measurements. This may have resulted in some
selection bias toward patients with faster progression. Alterna-
tively, the patient population in the study may have been distrib-
uted toward a higher risk of progression, for example due to the
genetic makeup of the hospital population. Nevertheless, the
difference may also be the result of some of the assumptions
made in the model, particularly with respect to the linearity of
MD loss in time. This issue is addressed in the discussion.

The second study mimicked with the model was described by
Wilson et al. and concerned an untreated population of glau-
coma patients in the west Indies [33]. At baseline, patients were
on average 42 years old, had a baseline Advanced Glaucoma
Intervention Study (AGIS) score of 3.7 (which corresponds to an
MD of approximately -4 dB) [34] and an IOP during follow-up
of approximately 21 mmHg. After 10 years, 45 out of 287 eyes
had progressed to end-stage visual field, which was AGIS score
18. In this case, blindness in the model was defined as an MD
lower than -18 dB. The results of the model simulation are
presented in Table 4. The incidence of blindness found with the
model was comparable to the reported study results.

Finally, in order to test the feasibility of the model, we have
applied it to an average POAG population and compared the
outcomes of three different treatment strategies to a reference
scenario in which patients are never seen nor treated by the
ophthalmologist. The three treatment strategies differed in terms
of the target pressure and the frequency of visual field tests. A
summary of results is presented in Table 5. All three treatment
strategies lead to better outcomes and lower costs than the ref-
erent strategy. A higher frequency of visual field measurements
and a lower target pressure resulted in lower average IOP, higher
incidence of surgery, better outcomes, and lower total costs.
Indeed, the costs associated with treatment were higher (from
€1118 without treatment to €7938 in strategy C), but the costs
associated with low-vision were much lower (from €40,500
without treatment to €15,255 in strategy C), resulting in overall
cost-savings.

Discussion

We have been able to build a model that simulates the disease
progression of ocular hypertension and glaucoma patients and
that mimics the treatment choices that are made in clinical prac-
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tice. The DES model structure has enabled us to discern relevant
characteristics of individual patients and of treatment strategies,
which would have been impossible (or at the least impractical)
within a decision tree or Markov structure. Still, a model remains

a simplified version of reality and also in this model several
relevant assumptions were made. First, we have simulated the
disease progression in the better eye of the patient, assuming that
the other eye is only slightly worse. In fact this comes down to

a

b

Figure 2 Examples of two simulated OHT patients. The patient in the top graph (a) does not develop POAG and receives one medication lifelong.The patient
in the bottom graph (b) develops POAG at age 64.5, receives multiple medications and surgery, and progresses to an MD of -14 dB. MD, mean deviation (dB);
POAG,primary open-angle glaucoma; IOP, intraocular pressure (mmHg); TE, trabeculectomy;ReTE, second trabeculectomy; VFQ-25,Visual Functioning Questionnaire
score. In the graphs the topmost lines indicate the number of medications and presence of POAG,and the diamonds indicate the occurrence of an intervention. These
series are not linked to either of the y-axes. IOP and MD are quantified on the left y-axis,VFQ-25 on the right y-axis.

Table 3 Comparison of outcomes of the model simulating an ocular hypertension patient population and outcomes of a review of clinical studies

Model Review studies [15]

Control Treatment Control Treatment

Age 55.2� 9.8
Baseline IOP (mmHg) 25.9� 2.4
IOP during follow-up (mmHg) 25.7� 2.8 18.6� 2.3 23–26 19–22
Conversion in 5 years (95% CI) 14.6% (13.3%; 15.9%) 8.2% (7.2%; 9.2%) 13.0%* 7.0%*

9%–37%† 4%–25%†

*Incidence calculated as the total number of converting patients relative to the total number of included patients summed over all studies included in the meta-analysis.
†Lowest and highest incidences reported in the studies included in the meta-analysis.
CI, confidence interval; IOP, intraocular pressure.

364 van Gestel et al.



modeling both eyes and assuming that they progress equally. In
reality glaucoma may progress asymmetrically. For example,
Heeg et al. found that half of their cohort of glaucoma patients
had unilateral glaucoma [35]. The disease severity in the better
eye has the highest impact on quality-of-life, but the disease
progression in the worse eye may have the highest impact on
treatment decisions, also those concerning the better eye [28,36].
It is possible to model both eyes separately in the DES structure,
but we have chosen not to. It would have added considerably to
the complexity of the model (e.g., in terms attributes and rela-
tionships), whereas it was unclear whether it would improve the
suitability of the model outcomes to inform guideline decision-
making. The impact of the assumption that both eyes are sym-
metrically affected needs to be tested with univariate sensitivity
analyses in presentations of the model results. The results of the
current model in terms of the incremental cost-effectiveness of a
certain treatment strategy can be regarded as valid for an OHT
or POAG population with a symmetrically developing disease.
Second, we have assumed that the natural progression of glau-
coma can be described with a linear function of MD in time. An
evaluation of the validity of this assumption is hampered by the
fact that there are no records of long-term MD progression in
untreated POAG patients, but the assumption is not contradicted
by current evidence. The explicitness of the DES model structure
allows for a univariate (structural) sensitivity analysis of this
assumption, and the impact of a different disease progression
pattern on the model outcomes can be evaluated quite readily.
We have not included sensitivity analyses in this article because
the conclusions from such analyses are only valid for the particu-
lar population and strategies that were analyzed, and no general
conclusions regarding the model itself can be drawn from them.
We have performed cost-effectiveness analyses of three treatment
strategies with the model as a way of demonstrating how changes
in the treatment strategy setting affect the model outcomes. A full

cost-effectiveness analysis to inform guideline decisions, includ-
ing full sensitivity and probabilistic analyses, is outside the scope
of this article and is the subject of future research. Nevertheless,
our preliminary results in Table 5 show that treatment of POAG
is expected to lead to a gain of 1.2 QALYs with a cost-reduction
of €25,000 per patient compared to withholding treatment.
Recently, Rein et al. have reported an incremental cost-
effectiveness ratio of $20,000/QALY for POAG treatment com-
pared to no treatment [37]. The fact that incremental costs rather
than cost-savings were found in this study is most likely due to
the fact that almost no low-vision associated costs (i.e., home
care, aids and services) were included in the calculations.

Despite the apparent advantages DES has within modeling
complex treatment strategies, several disadvantages of the tech-
nique have previously been described [4]. These pertain mainly to
the added simulation time, building time, data collection, and the
degree of experience needed by the modeler. The increased simu-
lation time is the result of the need to simulate individual patients
rather than cohorts, and is inherent to microsimulation. This can
become particularly problematic in probabilistic analyses, and
even more so in expected value of perfect parameter information
analyses, which require the execution of large numbers of first-
order simulations. Our model needed approximately 30 minutes
to run a first order analysis of 3000 patients. Nevertheless, more
efficient programming with, e.g., specialized software or pure
programming language can sometimes reduce computation times
dramatically. Building the model and collecting data to inform the
model may seem more strenuous than with simpler model struc-
tures, but it can be argued that the combination of building the
model and collecting the data require equal efforts in Markov and
DES models. Markov models often require (behind the scene) data
processing to adjust the literature data to the specific health states,
transition probabilities, and cycle length of the model; whereas in
DES models the literature data can often be inserted in the model

Table 4 Outcomes reported by Chen [32] and Wilson et al. [33] and outcomes of the model simulating similar primary open-angle glaucoma
populations

Chen 2003 [32] Model

Age 61� 13 61� 13
IOP during follow-up 17� 3 17� 3
MD at baseline in better eye -3.4 dB -3.4 dB
Bilateral blindness after 15 years 6.4% (95% CI: 2.9%; 9.9%) 2.2% (95% CI: 1.3%; 3.1%)

Wilson et al. 2002 [33] Model

Age 42 42
IOP during follow-up 21� 4.3 21� 4.3
MD at baseline in better eye -4 dB -4 dB
Blindness after 10 years 15.7% (95% CI: 10.0%; 21.4%) 16.5% (95% CI: 14.2%; 18.8%)

CI, confidence interval; dB, decibel; IOP, intraocular pressure; MD, mean deviation.

Table 5 Model results (mean� SD) comparing three treatment strategies to “no treatment” in an average primary open-angle glaucoma population

No treatment
A.Target 24, 21, 18 mmHg.

VF every 5 years
B.Target 24, 21, 18 mmHg.

VF every year
C.Target 21, 18, 15 mmHg.

VF every year

Life-years in the model 15.2� 8.0
IOP during follow-up (mmHg) 29.3� 3.0 19.1� 2.1 18.5� 2.0 17.2� 2.1
Incidence of LT/TE/reTE/Implant (%) 0/0/0/0 20/11/1/1 25/17/3/2 45/33/7/4
Lowest MD (dB) -24.5� 10.3 -14.1� 7.0 -13.4� 6.6 -12.0� 5.6
Incidence of blindness (%) 52.2 8.9 5.3 1.1
VFQ adjusted life-years (discounted) 8.5� 4.0 10.1� 4.8 10.2� 4.8 10.4� 4.9
QALY’s (discounted) 9.1� 4.2 10.1� 4.8 10.2� 4.9 10.3� 4.9
Total costs (discounted) € 41,618� € 31,007 € 25,648� € 24,366 € 25,465� € 24,097 € 23,466� € 22,742

IOP, intraocular pressure; LT, laser trabeculoplasty; MD, mean deviation; QALY, quality-adjusted life-year; reTE, second trabeculectomy; TE, trabeculectomy; VF, visual field measurement;
VFQ, visual functioning questionnaire.
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directly. Any extrapolation of the data occurs explicitly in the
defined relationships that are part of the model. Therefore, DES
models generally take more time to build but hardly any time to
adjust. Even structural alterations can be made in an instant.
Finally, the lack of experience with DES among health economists
is only a disadvantage if it would prevent the application of the
method where it would be appropriate. The transparent dissemi-
nation of discrete event models in the scientific literature could
positively contribute to the experience with this methodology.
Achieving insight in the model’s structure and trust in its outcomes
may require some extra effort due to the high level of flexibility,
and therefore, variability in DES model structures. Decision trees
and Markov models can be visualized with schematic drawings
that are similar across all applications, i.e., the branching tree
structures and the bubble diagrams, respectively, but such a
standard format to communicate model structure is not (yet)
available for DES models. This article aimed to transparently
report on the construction and validation of a DES model for the
complex strategies involved in glaucoma treatment. In order to do
so, we have justified the choice for a DES model structure,
explained how current knowledge regarding disease progression
in glaucoma was synthesized within the structure of a DES model,
and presented the results of the model validation. The resulting
model was flexible and had good face validity. Also the internal
and external consistencies were satisfying. We hope to have
demonstrated the added value of DES in modeling complex
treatment strategies, and to have made a contribution to the
discussion on how to transparently report about model structure,
assumptions, parameter estimates, and validation steps.

Source of financial support: ZonMW, The Netherlands organization for
health research and development. Health Care Efficiency Research
Program: sub-program Effects & Costs. Grant number 945-04-451. The
funding organization had no role in the design or conduct of this research.
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Additional Supporting Information may be found in the online version of
this article:

Appendix S1. This appendix contains graphical presentations of several
aspects of the model design, and presents the sources and methods of the
derivations of the most important structural relationships, and the sources,
best estimates and distributions of the main parameter estimates in the
base-case model.

Please note: Wiley-Blackwell are not responsible for the content or func-
tionality of any supporting materials supplied by the authors. Any queries
(other than missing material) should be directed to the corresponding
author for the article.
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