View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com =

(; f

SOIENCE@DIRECT” MA"[HEMATICAL
ANALYSIS AND

APPLICATIONS

www.elsevier.com/locate/jmaa

J. Math. Anal. Appl. 314 (2006) 689—700

Jordan zero-product preserving additive maps
on operator algebras

L. Zhaot, J. Hou*

Department of Mathematics, Shanxi University, Taiyuan 030000, PR China
Received 30 April 2004
Available online 28 April 2005
Submitted by Z.-J. Ruan

Abstract

Let @ : A — B be an additive surjective map between some operator algebras such that
AB + BA =0 implies®(A)®(B) + ®(B)®(A) = 0. We show that, under some mild conditions,
@ is a Jordan homomorphism multiplied by a central element. Such operator algebras include von
Neumann algebras,*@algebras and standard operator algebras, etc. Particulafy,aihd K are
infinite-dimensional (real or complex) Hilbert spaces ahe- B(H) andB = B(K), then there ex-
ists a nonzero scalarand an invertible linear or conjugate-linear operdior H — K such that
either®(A) = cUAU L forall A € B(H), or ®(A) = cUA*U L for all A € B(H).
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let @ be a map between two rings. We say tlatis zero-product preserving if
@ (A)®(B) = 0 wheneverAB = 0; we say that is Jordan zero-product preserving if
D (T)P(S) + &(S)®(T) = 0 wheneverT S + ST = 0. The study of zero-product pre-
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serving additive or linear maps between operator algebras is a topic which attracts much
attention of many authors, and it turns out, in many cases, a map preserves zero-products if
and only if it is a central element multiple of a ring homomorphism (see, for example, [2,8,
10] and the references therein). We know that many operator spaces bear a Jordan algebra
structure. Itis interesting to ask whether or not we can characterize the Jordan zero-product
preservers.

Let A, B be Jordan rings. Recall that an additive m@p .A — B is said to be a Jor-
dan ring homomorphism 7 (TS + ST) = J(T)J (S) + J(S)J (T) for all elements", S
in A. In case that4d and B are Jordan algebras over a field and the underlying field has
characteristic not 27 is a Jordan ring homomorphism if and onlyJf(72) = 7 (T)? for
all T in the domain. It is trivial to see that a Jordan ring homomorphism multiplied by a
central element does preserves Jordan zero-products. In this paper, we consider the con-
verse problem and characterize additive (or linear) Jordan zero-product preserving maps
between some operator algebras and show that such maps arise in the standard way.

The same question was firstly considered in [8], there the present authors character-
ized the additive surjections which preserves Jordan zero-products in both directions on
B(H), the von Neumann algebra of all bounded linear operators on an infinite dimen-
sional complex Hilbert spacH, and onS(H), the real Jordan algebra of all self-adjoint
operators inB(H), respectively. The results got there are closely related to the square-
zero preservers. Recall thét is said to preserve Jordan zero-products in both directions
if ®(A)®(B)+ @(B)®(A) =0« AB + BA = 0. In this paper, we omit the assump-
tion of “in both directions” and use a different approach to show that, for real or complex
Hilbert spaceH, every Jordan zero-product preserving additive surjectiofB@d) has
either the form® (A) = cUAU 1 for all A € B(H), or the form® (A) = cU A*U 1 for
all A € B(H), wherec is a nonzero scalat/ is a bounded invertible linear or conjugate-
linear operator and* € B(H) is the adjoint ofA. We also prove that the bounded linear
surjections preserving Jordan zero-products between von Neumann algebras, or between
C*-algebras, or between the real subspace of self-adjoint elementsafj€bras, have
the form of 7.7, where 7 is a Jordan homomorphism afidis an invertible central el-
ement. Finally we give a similar characterization of unital additive surjections between
standard operator algebras on (real or complex) Banach spaces which preserve Jordan
zero-products in both directions. It turns out, such additive maps take one of the follow-
ing nice forms: isomorphisms, anti-isomorphisms, conjugate isomorphisms and conjugate
anti-isomorphisms.

2. Thecasesof B(H) and von Neumann algebras

Let B(H) and B(K) be the algebras of all bounded linear operators on the infinite-
dimensional (real or complex) Hilbert spacHsand K, respectively. The following main
result shows that every Jordan zero-product preserving additive surjective map between
B(H) andB(K) is in fact a scalar multiple of an isomorphism, or an anti-isomorphism, or
a conjugate isomorphism, or a conjugate anti-isomorphism.
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Theorem 2.1. Let H and K be(real or compleXinfinite-dimensional Hilbert spaces. Let

@ : B(H) — B(K) be a Jordan zero-product preserving additive surjection. Then there
exists a nonzero scalar and an invertible bounded linear or conjugate-linear operator
U : H — K such that eithe® (A) = cUAU L forall A e B(H) or ®(A) =cUA*U1

for all A € B(H) (in the real casel is linear).

Proof. Let P € B(H) with P2 = P. Since P(I — P) + (I — P)P = 0, we have
®(P)Y®(I — P)+d(I — P)®(P) =0, and consequently,
@ ()P (P) + P (P)D(I) =20 (P)>.
Thus we have
D (P)2d (1) + D (P)D(1)D(P) =20 (P)°3
and
@ ()P (P)° + @ (P)P(1)®(P) =2 (P)S.
These together imply that
& (D (P)° =D (P)°d(I).
Similarly, it follows from
@ (1)°®(P)+ @ (1)D(P)D(I) =20 ()P (P)?
and
D(P)YD ()2 + ()P (P)D(I) = 2@ (P)°d(I)
that
@ (P)D(1)° = D (1)°D(P).

Since every infinite-dimensional Hilbert space has infinite multiplicity, by [5], every
bounded linear operator on an infinite-dimensional Hilbert space is an algebraic sum of
finite many idempotents (a sum of at most five idempotents if the space is complex [14,
Theorem 5]). Hence we haw(A)® (1)2 = & (1)°® (A) holds for everyA € B(H). There-

fore, by the surjectivity ofp,

D(1)° =11

for some scalak.
LetT, S € B(H) with ST = 0. For any idempoteng, it follows from T P(I — P)S +
(I — P)STP =0that® (T P)®((I — P)S)+ ®((I — P)S)®(T P) =0. Thus

DP(TP)PS)+PS)P(TP)=D(TP)DP(PS)+P(PS)P(TP) (2.1)

holds for every idempotert. On the other hand; (I — P)PS+ PST (I — P) = 0 implies
that® (T (I — P))@(PS)+ @ (PS)P(T(I — P)) =0, and hence,

D(TYD(PS)+DP(PSYD(T)=DP(TP)D(PS)+D(PS)DP(TP) (2.2)
for every idempotenP. Combining (2.1) and (2.2), we get
D(TPYDS)+DP(S)P(TP)=D(TYD(PS)+D(PS)D(T)
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for every idempotenP. Hence for everA € B(H),
D(TADPS)+D(SYDP(TA)=DP(T)DP(AS)+ DP(AS)D(T). (2.3)

TakeT = Q andS = I — Q for someQ € B(H) with 9?2 = Q. ThenST = 0 and from
(2.3), one get (QA)P(I — Q) + (I — Q)P (QA) =P (Q)P(A(U — Q) + (AU —
0))®(Q). Thus we see that

QAP +P(HP(QA) —P(Q)P(A) — 2(AP(Q)
=P(QA)P(Q) +P(Q)P(QA) —P(QP(AQ) — P(AQ)P(Q).
On the other hand, takin = I — Q andS = Q, we obtain from (2.3) another equation
PNPAQ)+P(AQ)P(I) — 2(A)P(Q) — P(Q)P(A)
=P(Q)P(AQ)+P(AQ)P(Q) — P(QA)P(Q) — P(Q)P(QA).
Hence
D(QA+AQP()+ P(P(QA+AQ) =2(D(Q)P(A) + D(A)P(Q))
holds for every idempoter®. This further implies that
®(AB+ BA)D (1) + ()P (AB+ BA) =2(P(A)P(B) + ®(B)P(A))  (2.4)

holds for everyB € B(H). Multiplying (2.4) from left and right by® (1) respectively, we
see that

@(1)>P(AB + BA) + ®(I)®(AB + BA)P(I)
=20 (1)(P(A)P(B) + P (B)P(A))
and
@ ()P (AB+ BA)®(I) + ®(AB + BA)YP(I)?
=2(®(A)®(B) + D (B)P(A))®(I).
These two equations, together with the fact #&f)? = A1, entail that

D () (P(A)P(B) + P (B)P(A)) = (P(A)P(B) + P (B)P(A))D(I). (2.5)
Let A = B in (2.4) and (2.5); then

@ ()P (A%) + P (A% D (1) =29 (A)>, (2.6)

D (NP (A2 =@ (A2 (). (2.7)

By the surjectivity of®, Eq. (2.7) implies thatd (1) commutes with all idempotent op-
erators and hence there must exist a scalauch that® (1) = wl. While Eq. (2.6) tells
that u #£ 0. Letc = % and ¥ (.) = c®(.), thenv¥ : B(H) — B(K) is an additive sur-
jection preserving Jordan zero-products an@/) = 1. Moreover, for everyA € B(H),
¥ (A%) = ¥ (A)2, which implies that¥ is a Jordan ring homomorphism. SinB¢K) is
prime, one sees that is either a ring homomorphism or a ring anti-homomorphism.
Therefore @ is a scalar multiple of a surjective ring homomorphism or a surjective ring
anti-homomorphism.
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We will show that® is injective. Without loss of generality we assume tkais a
surjective ring homomorphism. We first claim that the null spacebois closed. For
every 0# y € K, define kej(®) = {T € B(H) | #(T)y = 0}, which is obviously a left
ideal of B(H) and kef®) = ﬂyeK kery,(@). If L is a left ideal such that ke(®) is a
proper subset of, then®(L£)y is a nonzero invariant linear manifold &f. It follows
that @ (L)y = K. So, there exist§" € £ such thatd(T)y = y. For anyS € B(H), we
haveS — ST < ker,(®) C L. This implies thatS € £ sinceST e L. Therefore, we have
L = B(H), and consequentlyp,(®) is a maximal left ideal of3(H). It follows that
ker, (@) is closed and hence k@) is closed, as desired. The rest of arguments is similar
to that in [10, Lemma 2]. For the completeness, we give the details here. Note that the
set of ring two-sided ideals coincides with the set of algebraic two-sided ide&IgH.
Thus, if @ is not injective, then the kernel @ is a closed two-sided ideal which contains
the ideal consisting of all compact operators. Suppose the (Hilbert space) dimengion of
is 8y, which is an infinite cardinal number. For each infinite cardinal nurttbent 4, let

Iy = {T € B(H) | dimM < R holds for all closed linear
subspaces/ C rangeT)}.

Then Iy is a closed two-sided ideal & (H) and every closed two-sided ideal Bf H)
arises in this way [3, Section 17]. In particulag,, is the largest one. Therefor@,induces
a ring isomorphism from the quotient alget8éH )/ ker® onto B(K). This implies that
there is an elemem € B(H) such thatA + ker@ is a single element df(H)/ ker® (an
elementT in an algebrad is single if, for anyS, R € A, STR =0 will imply ST =0
or TR = 0). It is a well-known result due to Erdos (see [4] or [6]) that, for*aalgebra
A, there exists a faithful representatiém, H1) of A such that an elemerft € A is a
single element if and only it (T') is of rank one o1, and consequently, difiAT = 1.
Hence(A + ker®)B(H)(A + ker®d) = AB(H)A + ker® is of dimension one modulo
ker®. Let R < Ry be the infinite cardinal number such that #ee Iy. Then the range
of A contains a close subspace of dimenstoBy halving this subspace into two, each of
dimension®, we see thal B(H) A contains two elements linearly independent modilo
a contradiction. Sop is injective.

Hence we have shown théit is a scalar multiple of a ring isomorphism or a ring anti-
isomorphism from5(H) onto B(K). Thus, as a well-known factp has the desired form
stated in the theorem, completing the proof:

When the maps are linear, we have more neat conclusion.

Corollary 2.2. Let H and K be (real or compleX infinite-dimensional Hilbert spaces.
Let® : B(H) — B(K) be a Jordan zero-product preserving linear surjection. Then there
exists a nonzero scalarand an invertible bounded linear operatdtr: H — K such that
either® (A) = cUAU forall A € B(H) or ®(A) =cUA"U L forall A € B(H), where

TY denotes the transpose Bfrelative to an arbitrarily fixed orthonormal basis &f.

Note that every surjective algebraic homomorphism frB#H) onto B(K) is auto-
matically continuous. This fact is used in the proof of [10, Lemma 2] to show that such
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homomorphism is also injective. It is clear from ring theory that the automatical continuity
is not true for ring homomorphisms H is complex and finite-dimensional. In fact, every
ring automorphisng of the complex algebras, (C) of all n x n complex matrices has the
form ¢(T) = AT, A~ VT = (tij) € M, (C), hereA € M, (C) is nonsingulary is a field
automorphism ofC andT; = (z(#;;)). ¢ is continuous if and only it is the identity or the
conjugation. However, Theorem 2.1 implies that every surjective ring homomorphism from
B(H) onto B(K) is automatically continuous if botH andK are infinite-dimensional.

The method used in the proof of Theorem 2.1 is almost valid for general von Neumann
algebra case. But we have to restrict our attention on bounded linear maps.

Theorem 2.3. Let® : M — A be a Jordan zero-product preserving bounded linear surjec-
tion between von Neumann algebr&gsand A . Thend (1) is an invertible central element
and there exist a central idempotefitof A" and a homomorphism®#, : M — EN as well

as an anti-homomorphisg,: M — (I — E)N such that

D(A) = @ (1) (P1(A) + P2(A))
forall A e M.

Proof. Note that the linear span of projections is norm dense in a von Neumann algebra.
Checking the proof of Theorem 2.1, and using the continuit® pbne can get

@ ()P (A®) + P(ADD(I) =20 (A)?
and
(NP (A)? =P (A)2D(I)

for every A €¢ M. Thus®(I) # 0 is in the center of\ since® is surjective and every
element in a von Neumann algebra is a sum of at most four square elements. It follows that
& ()P (A%) = d(A)? for all A € M. Itis also clear that (1) is invertible. Letw (-) =

@ (I)~1@ (). Theny is a Jordan algebraic homomorphism. Since von Neumann algebras
are local matrix rings, by [9, Theorem 7], there exists a central idempétexit\/ such
that E¥ is a homomorphism and — E)¥ is an anti-homomorphism. O

Recall that a von Neumann algebra is called properly infinite if it contains no nonzero
finite central projection. Since every element in a properly infinite von Neumann algebra
is a sum of at most five idempotents [14], a similar argument as that in the proof of Theo-
rem 2.1 yields the following

Theorem 2.4. Let M be a properly infinite von Neumann algebra a¢da Jordan zero-
product preserving additive surjection froM onto a von Neumann algebt&”. Then
@ (1) is an invertible central element and there exist a central idempdieot A" and a
ring homomorphisn®; : M — EN as well as an ring anti-homomorphis@p : M —
(I — E)N such that

®(A) = () (P1(A) + P2(A))
forall A e M.
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3. Thecase of C*-algebras

Now we turn to the C-algebra case. Since the linear sums of projections are dense
in a unital C-algebra of real rank zero [1], a similar argument as that in the proof of
Theorem 2.3 shows that every bounded linear surjection frofr@g@ebra of real rank zero
onto a C-algebra is a Jordan homomorphism multiplied by an invertible central element.
However, to work with general ‘Galgebras requires more efforts.

If Ais a unital C-algebras, we denote bythe unit of A and.Asathe real linear space
of all self-adjoint elements itd. It is obvious thatds, is a real Jordan algebra. Note that
every surjective Jordan ring homomorphism from a unital ring onto a ring is unital.

The following are main results in this section.

Theorem 3.1. Let.A and B be C*-algebras withA4 unital. Let® : A — B be a surjective
bounded linear map preserving the Jordan zero-products. Thés unital, @ (7) is an
invertible central element df, and there is a bounded surjective Jordan homomorphism
J from A onto B such that

P(A)=D(1)J(A)
forall A € A.
Theorem 3.2. Let A and B be C*-algebras withA unital. Let® : Asq — Bsa be a sur-
jective bounded real linear map preserving the Jordan zero-products. Bhisnunital,

@ (1) is an invertible central element ¢, and there is a bounded surjective unital Jordan
homomorphisny/ from Asz onto Bsa such that

D) =D2()T(S)
forall S e A.

Our proofs of these two theorems based on the following lemma, which models itself
on[2, Lemma 4.4].

Lemma 3.3. Let .4 and B be C*-algebras with.4 unital. Let® : A — B be a bounded
linear map such thato (S)®(T) + &(T)®(S) =0 for S, T € Agg with ST + TS = 0.
Then for anyS € Ass we have

(1) 2(DHP(S)2=d(S)*® (1),
(2) D(NHD(S?) + D(SHP(I) =20(5)2.

Proof. Identify the C'-subalgebra of4 generated by and S with C(A), where A C
[—1ISI, 1S]1] is the spectrum of5, and C(A) is the algebra of all continuous complex
functions defined om. Denote again byp the bidual map ofp from C(A)** into B**.
For each positive integer and each integd, let

Apk = (k/n,(k+1)/n] NA.
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Pick an arbitrary point, ; from each nonemptyt, ;. Setx, ; = co to be the isolated
point at infinity of Ao = A U {oo} if A, x =@. Foranyf e C(A), using the convention
f(c0) =0, we have

f=Jim > 0 la,e
keZ

where 1, , is the characteristic function of the Borel s&f x, and the limit of the finite
sums converges uniformly an. In particular, for every fixed positive integemwe have

1= 14,
keZ

For two disjoint nonempty set&, ; and A, x, we can find two sequencé¢g,,},,» and
{gm}m In C(X) such thatfy1,gm =0form,p=0,1,..., fix > 14, andg, — 14,,
pointwise onA. By the weak* continuity ofp, we see that

D (1, )P (gn) + P(gm)P (L4, )
=p"_)moo(qj(ferp)q)(gm)+q§(gm)q§(fm+p)) =0 (3.1)

forallm=1,2,.... Thus

@ (La, )P (La,,) +P(La, )P (L4, )
(©(La, )P (gm) + P (gm)P(La, ) =0.

lim
m— 00
Consequently, for each positive integeand each integet we have

P(DHP(14, ;) + P14, )P

=Y (@14, )P4, ;) + P4, NP (La,,)) =20 (14, )% (3.2)
keZ

From (3.2), we have (14, )?@(1) = @ (1)@ (14, ), it follows that

n,j

2
O ()20 (D) =nIme(Zf(x,z,k)¢<1A,,,k)> @ (1)

keZ

= lim > f )@ (L4,0°@ (1)
keZ

(1) nILmOOZ f %@ (Lx, )2
keZ

=22
On the other hand, it follows from (3.1) and (3.2) that

20(f)? = lim 2( > f(xn,wcb(lA,,,k)Z)

keZ

= nILmOO 22 f G 0)%® (1An,k)2
keZ
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= Im > fn0?(@ D (Ls,) + (s, )P(D)
keZ

=d(DP(fA) +o(fHP ).
Hence the conclusion holds.0

Proof of Theorem 3.1. ReplacingS by S+ T with S, T € Aszin (1) and (2) of Lemma 3.3,
we have

S (P(SHP(T) +P(T)P(S)) = (PP (T) + S(T)P(8)) (),
DNPST+TS)+D(ST+THPU)=2(D(HP(T) + D(T)P(S)).

For eachA € A, write A =S +iT with S, T € Asa Applying above equations and the
linearity of @, we get

D (P (A2 =D (A () (3.3)
and
D ()P (A®) + P(ADD (1) =20 (A)? (3.4)

hold for all A € A. Since every element in a*@lgebra is an algebraic sum of square
elements ane is surjective, from (3.3), we know thdt(7) is in the center oB. Hence it
follows from (3.4) that® (1) B = B. In particular,® (1) E = @ (I) for someE < B. So,

D (AE = ®(ADD()E = D(ADD (1) = P(A)%, VAc A

ThusBE = B for all B € B. Similarly, EB = B for all B € B. This implies thaf3 is unital
with unit £ and it follows from® (I)B = B that® (1) is invertible.

Let 7(A) = @(1)"1®d(A) for all A € A; then it is easy to verify thay is a surjective
bounded Jordan homomorphism frofnonto 5. O

Proof of Theorem 3.2. Define¥ : A — Bsuchthaw (A) =& (S)+i®(T)forallAe A
with the decompositiod =S +iT, S, T € Asa then¥ is surjective. By Lemma 3.3, itis
easily checked that

Y(HY (A2 = (AW () and ()WY (A%) + W (A2W (1) =2 (A)°.

The rest of the proof is the same as the proof of Theorem 3.1 and we omit it.

4. The case of standard operator algebrason Banach spaces

All cases considered in Sections 2 and 3 are operatsubalgebras or Jorda#
subalgebras on Hilbert spaces. Now let us turn to the case of standard operator algebras
on real or complex Banach spaces.

Let X, Y be infinite dimensional Banach spaces over the real fietat the complex
field C. Denote byB(X) the algebra of all bounded linear operatorsXnRecall that a
standard operator algebra ahis a norm closed subalgebra BfX) which contains the
identity and all finite-rank operators. In this subsection, we describe additive surjections
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between standard operator algebrasfoandY respectively which preserve Jordan zero-
products in both directions. Let’ denote the dual ok and A’ the adjoint ofA for A €
B(X).

Theorem 4.1. Let X, Y be real or complex infinite-dimensional Banach spaces.4 ahd

B be standard operator algebras aoXi and Y, respectively. Assume thét: A — B is

a unital additive surjection. If> preserves Jordan zero-products in both directions, then
either

(1) there exist a bijective bounded linear or conjugate linear operdfarX — Y such
that

P(A)=UAU?

forall Ae A, or
(2) there exist a bijective bounded linear or conjugate linear operdtarX’ — ¥ such
that

DA =UAU?
forall A € A. Inthis caseX andY are reflexive.

Proof. Itis trivial to verify that® is injective. We proceed in steps.

Step 1. @ preserves idempotents and rank-one idempotents in both directions.

If P e Aisanidempotent, the®(I — P) + (I — P)P = 0. This implies® (P)(I —
@(P))+ (I — ®(P))®(P) =0, thatis,®(P) = ®(P)2. Consequentlyp (P) is an idem-
potent. Suppose that is rank-one whilep (P) is not rank-one. Thew (P) can be written
as a sum of an idempotent and a rank-one idempoteit Bince® —! satisfies the same
hypotheses a®, what we have just proved shows that the rank-one idempéteain also
be written as a sum of two nonzero idempotents. This is a contradiction.

Step 2. @ preserves rank-one operators in both directions. In partichlareserves rank-
one nilpotent in both directions.

Let P be an idempotent of rank-one, then for every nonzeedC, we have(AP)(I —
P)+({ — P)(AP) =0, whichimpliesthat@(AP) = ®(AP)D(P)+ P (P)P(AP). Since
@ (P) is a rank-one idempotent, one gets

DPAP)D(P)=DP(P)DPAP)DP(P)=D(P)D(AP).

It follows that @ (AP) = & (P)® (A P)®(P), which implies that® (A P) is of rank-one.
Especially, there existgp (1) € C such thatb (AP) = fp(L)D(P).

If A=x® f is a nilpotent of rank-one, then there exjte X’ such thatf(x) = 1.
Let fo= f1 — f. Obviously P, = x ® f; (i =1,2) are rank-one idempotents awd=
P1—Po=xQ® f1—x® fo. Suppose tha® (P;) = y; ® gi, by Step 1g;(y;) = 1. Notice
that P = %(Pl + Pp) is a rank-one idempotent. Sb(P) = %(yl ®g1)+02®g)isa
rank-one idempotent. It is clear that eithat y, are linear dependent @t, g» are linear
dependent. Without loss of generality, assume- y, = y; then®(A) = y® g1 — y ® g2,
which is a nilpotent of rank-one.
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Step 3. Either

(a) there exists a bijective bounded linear or conjugate-linear opevatdf — Y such
that

(A =UAU?

for every finite rank operatot € 5(X), or
(b) there exists a bijective bounded linear or conjugate-linear operatot’ — Y such
that

P(A)=UAU?

for every finite rank operatot € B(X). In this caseX andY are reflexive.

Since® is additive and preserves rank-one operators, rank-one idempotent and rank-
one nilpotent in both directions, the assertion follows easily from [11,13] (also see [7]).

Step 4. For every operatorA € A and rank-one idempotem® € B(X), ®(RAR) =
D (R)P(A)P(R).
By Step 3, for every finite rank operatdgp € 5(X), we have

@ (RAQR) = ®(R)P(Ag)®(R).

We have to prove that above equation holds for every.A.

LetR=z®handP € B(X) with P =x ® f a rank-one idempotent, whexgz € X
andf, h € X’. By [12, Lemma 3.5], there exist nilpoterfis= x ® g andT = y® f of rank-
one withy € X, g € X’ such thatP = ST. FurthermoreQ =TS = y ® g is a idempotent
of rank-one disjoint withP, andR is a linear combination oP, Q, S andT. For every
AeA/letB=U—-P - Q)A(I — P — Q);thenwe havePB=Q0B=SB=TB=0
andBP = BQ = BS = BT =0. Consequentlyk B = BR = 0. By the property ofb, one
gets®(R)P(B) + @(B)®(R) = 0. Since®(R) is an idempotent, a simple computation
shows thatb (R)® (B)® (R) = 0. Use the fact thatt — B is of finite rank, we get

®(RAR)=®(R(A— B)R) =P (R)®(A — B)P(R) = ®(R)P(A)P(R).
Step 5. Either®(A) = UAU ~ for everyA € Aor & (A) = UA'U~ for every A e A.
Suppose that for the operators of finite rank the case (a) of Step 3 hold$.d &t For

anyz € X andh € X’ with 2(z) =1, R =z ® h € B(X) is an idempotent of rank-one, and
by Step 4, we have

t(h(A))URU =1 (h(U®(A)UZ))URU T,
wherert is the identity or the conjugation @. This yields
h(Az) = (U@ (A)U?Z). (4.1)

Fix z for a moment. Then (4.1) holds for evekye X’ with 4(z) = 1 and so, for every
h € X’ by linearity. Thus,Az = U~1®(A)Uz is valid for everyz € X and the case (1) of
the theorem is proved.



700 L. Zhao, J. Hou / J. Math. Anal. Appl. 314 (2006) 689—700

Now, assume that the case (b) of Step 3 holds true for every operators of finite rank.
Then for every; € X andh € X’ with h(z) = 1, by Step 4, we get

t(h(A2))Ux @ W)Ut = (h((Ur@(A)U)2))
and therefore
h(Az) =h((U @ (A)U)'2).

Using similar arguments as above, we obtaie= (U ~1®(A)U)’. Consequently, the case
(2) of the theorem holds true.o
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