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Effective prediction of pavement performance is essential for transportation agencies to

appropriately strategize maintenance, rehabilitation, and reconstruction of roads. One of

the primary performance indicators is the international roughness index (IRI) which rep-

resents the pavement roughness. Correlating the pavement roughness to other perfor-

mance measures has been under continuous development in the past decade. However,

the drawback of existing correlations is that most of them are not practical yet reliable for

prediction of roughness. In this study a novel approach was developed to predict the IRI,

utilizing two data sets extracted from long term pavement performance (LTPP) database.

The proposed methodology included the application of a hybrid technique which combines

the gene expression programming (GEP) and artificial neural network (ANN). The developed

algorithm showed reasonable performance for prediction of IRI using traffic parameters

and structural properties of pavement. Furthermore, estimation of present IRI from his-

torical data was evaluated through another set of LTPP data. The second prediction model

also depicted a reasonable performance power. Further extension of the proposed models

including different pavement types, traffic and environmental conditions would be desir-

able in future studies.

© 2016 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
assessment. IRI, in particular, is a primary performance

1. Introduction

Performance indicators are widely used to evaluate pavement

condition and serviceability. Most notably, parameters such

as the Present Serviceability Index (PSI), Pavement Condition

Index (PCI), and IRI are commonly used in performance
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measure that is often employed by highway agencies to pre-

dict pavement performance. The present study aims at

employing LTPP data for the development of IRI prediction

modeling through the use of a hybrid GEP-ANN technique.

The IRI is a World Bank sponsored performance indicator

that was developed during the International Road Roughness
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Experiment (IRRE) in 1982. The IRI was conceived to provide a

common global measurement for pavement roughness com-

parison. The IRI of a pavement is defined as the average

rectified slope (accumulated suspension motion to distance

traveled) as derived from amathematical model of a standard

quarter car passing over a measured profile at a speed of

50mph (Ozbay and Laub, 2001). The roughness or smoothness

of the pavement is a comprehensive assessment indicator

that takes into account not only both ride quality and

comfort of the pavement, but also serving as an indicator of

the presence of collective distresses. As the pavement ages,

the roughness or IRI of the pavement increases, representing

deterioration. IRI is a primary mode of assessing pavement

condition, as Wang et al. (2007) stated, and one of the main

functional performance indicators used by the Mechanistic-

Empirical Pavement Design Guide (MEPDG).

The health state of the pavement can be evaluated by

closely observing the type and amount of present distresses,

examining the material properties of the pavement structure,

and estimating the construction quality. Unfortunately, this

particular method of evaluation is neither practical nor cost-

effective for both project and network level analysis of pave-

ments. Therefore, models have been developed to forecast

pavement performance using performancemeasures, such as

IRI. Various methods of IRI prediction modeling have been

practiced in the literature. Given the variable characteristics of

pavement structures and data collection methods, it is un-

derstood that no single model can be successfully applied to

all pavements. The structure of predictionmodel is dependent

on the type and amount of historical performance data

available.

Current MEPDG-IRI prediction models are actually a by-

product of traditional regression statistical analysis (Wang

et al., 2007). It is a function of traffic, material, geometric

and climatic conditions derived from the LTPP database

(Schram and Abdelrahman, 2006). There are some

discussions that IRI prediction modeling through regression

analysis may not be the ideal method, given the complex

relationships between the model variables and actual

pavement performance. Choi et al. (2004) discussed that the

relationships between material, construction variables and

pavement performance measures were too complex and

poorly understood to be explained by traditional statistical

methods.

Apart from traditional regression analysis, other tech-

niques have been employed for pavement performance

modeling. One example is the use of gray theory for IRI pre-

diction. Jiang and Li (2005) employed LTPP datasets to perform

a comparison between gray relational models and the MEPDG

regression models. They found that in different cases, gray

relational models offered better IRI predictions, while

utilizing less distress parameters than the MEPDG

counterpart. The use of artificial neural networks for

modeling infrastructure deterioration is being popular and

various studies have been performed to assess their

effectiveness. A roughness prediction study by Attoh-Okine

(1994) remarked that employing ANN roughness prediction

models were feasible and could be the basis for developing

a generic intelligent pavement deterioration process.

Later, Attoh-Okine et al. (2003) developed a method for
pavement roughness prediction using multivariate adaptive

regression splines (MARS) which allowed finding the

relative significance of pavement condition, traffic and

environmental parameters. Kargah-Ostadi et al. (2010)

developed an ANN-based pattern-recognition model to

predict IRI for flexible pavement rehabilitation sections in a

wet-freeze climate using LTPP database.

The World Bank has developed a roughness prediction

model through the Highway Development and Management

(HDM) program in which five factors contributed the most:

cracking, rutting, potholes, environmental conditions and

structural deterioration (Odoki and Kerali, 2000).

VonQuintus and Killingsworth (1997) conducted a study on

LTPP data to find relationships between deflection time-

history data and pavement conditions such as IRI. Rada

et al. (2012) contained a comprehensive review of IRI

prediction models while trying to correlate ride quality and

structural adequacy of pavement structures using LTPP

database. Stubstad et al. (2012) developed a stochastic

approach for understanding and assessing deflection data

for network-level pavement management systems (PMS)

including IRI models.

The focus of this study is to couple genetic programming

and artificial neural network for IRI prediction on a dataset

collected from the LTPP database. The first part of this study

includes developing a hybrid approach for prediction of IRI

from pavement structure and traffic parameters. Thereafter,

historical roughness data along with the traffic and structural

conditions are employed to predict the roughness.
2. Methodology and database

The LTPP program was initiated as a part of the Strategic

Highway Research Project (SHRP) in 1987 andwas expanded to

a twenty-year program under the coordination of the Federal

Highway Administration (FHWA). The main objectives of this

program are to improve and develop a designed process for

new and rehabilitated pavements, evaluate existing pave-

ment conditions, develop methodologies for improving

existing design and maintenance processes, and determine

the effect of the construction processes, environmental

criteria, traffic and the materials properties on the structural

performance of flexible and concrete pavements (Elkins et al.,

2003).

The LTPP information management system (IMS) is a

comprehensive pavement management database document-

ing historical performance data for over 2500 in-service and

monitored test sections spanning across North America.

Different types of information are stored within the database

in the form of seven modules: inventory, maintenance,

monitoring, rehabilitation, material testing, traffic, and cli-

matic data. The datasets collected for this studywas extracted

from the LTPP data documented for states of Indiana, Iowa,

Maryland, New Jersey, New York, Tennessee, Arkansas, and

Oklahoma in the United States, New Brunswick and Prince

Edward Island in Canada. From the extracted data, those

sections with asphalt concrete over unbound granular layers

were selected to analyze. Such database was extracted from

the study performed by Ozbay and Laub (2001).

http://dx.doi.org/10.1016/j.jtte.2016.09.007
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Table 1 e Descriptive statistics of first set of LTPP data.

Variable Minimum Maximum Average Median Standard deviation Range

Predictor AGE (1000 d) 0.89 16.50 4.41 3.98 3.05 15.62

ESAL (millions) 0.15 19.50 3.10 0.98 5.21 19.35

SN 3.23 7.22 4.92 4.60 1.17 3.99

Dependent IRI (m/km) 0.71 2.80 1.34 1.27 0.47 2.09
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Various material, structural and traffic parameters,

affecting the deterioration of a pavement structure, can be

assessed through observation of the IRI over time. Material

properties such as asphalt content, gradation type, and

percent fines can affect the progression of IRI. Other factors

that can be related to the deterioration of the road include:

traffic loading in terms of equivalent single axle loads (ESALs),

age, and the structural number (SN) of the pavement. Since all

these parameters affect the deterioration of the pavement, it

would be reasonable to utilize them as input variables for

performance prediction modeling. Even though, Perera et al.

(1998) suggested that the IRI prediction models, which relied

on material properties, would contain many variables, might

be complex and less reliable. It seemed that utilizing

parameters such as ESALs, age, and SN would yield more

practical and dependable results to predict the performance

of pavements in terms of IRI (Ozbay and Laub, 2001; Terzi,

2013).

The reliability of IRI prediction models are dependent of

the material behavior, loading and environmental conditions.

Therefore, it would be reasonable to consider the historical IRI

data along with the structural characteristics to improve the

model efficiency. In this study, two sets of LTPP data were

employed to develop prediction models. The first dataset

consists of the collected IRI data along with the SN, age and

cumulative ESALs. The descriptive statistics of the variables in

the first database are summarized in Table 1.

The second dataset contained initially measured IRI (IRI0),

initial age (AGE0), initial cumulative ESAL (ESAL0), SN, differ-

ence in age (DAGE), and difference in cumulative ESALs

(DESAL). The descriptive statistics of the second dataset are

summarized in Table 2.

To develop a reliable prediction model, various consider-

ations must be taken into account. One is that a significant

amount of IRI, distress, and deflection data in LTPP database

are recorded at different times. The time difference among

collected data may have an impact on the prediction of ulti-

mate pavement deterioration. Another consideration is that

IRI values collected from profilometers and other data
Table 2 e Descriptive statistics of second set of LTPP data.

Variable Minimum Maximum

Predictor IRI0 (m/km) 0.59 2.92

AGE0 (d) 1086 16,503

ESAL0 (millions) 0.19 19.49

SN 2.85 7.22

DAGE (d) 0.27 2.89

DESAL (millions) 0.08 19.23

Dependent IRIp (m/km) 0.59 3.14
acquisition methods can vary along the span of the road

depending on the exact longitudinal direction.

The following section includes the process of model

development using the extracted datasets from LTPP.
3. Development of prediction models and
results

A combination of GEP and ANN methods was employed to

develop the first prediction model. As discussed earlier, the

development of pavement roughness predictionmodel in this

study included two major steps. The first step consisted of

predicting the initial IRI using the LTPP documented age,

structural number and cumulative ESALs. The second model

development process included the implementation of a robust

methodology to collectively predict the present value of

pavement roughness using the historical data such as IRI0,

AGE0, ESAL0 (cumulative), DAGE, and DESAL (D indicates the

difference between measured parameter from time of initial

IRI documentation to the latest).

Soft computing techniques have been employed in several

transportation and pavement related problems during the

past decade. Examples of such applications in solving com-

plex nonlinear problems could be found in Alavi et al. (2011),

Gandomi et al. (2010), Mazari and Niazi (2015), Reddy et al.

(2004), Shahnazari et al. (2012), and Sun et al. (2007). ANN and

fuzzy logic algorithms have been employed to predict the

roughness index as documented in Choi et al. (2004), Terzi

(2013), and Ozbay and Laub (2001). The drawback of such

methods is that the final product is not in the form of

mathematical equations that can be easily implemented.

ANNs consist of mathematical models inspired by simu-

lation of biological nervous systems. Such algorithms could be

implemented in solving complex nonlinear models and

mostly supervised learning problems. One of themost popular

neural networks is the multi-layer perceptron (MLP). MLP in-

cludes an input layer (which consists of independent vari-

ables), a hidden layer (a number of hidden variables also
Average Median Standard deviation Range

1.35 1.28 0.53 2.33

4449 4047 2910 15,417

2.92 1.04 4.89 19.30

4.75 4.57 1.17 4.37

1.19 0.99 0.53 2.62

2.72 1.64 3.52 19.15

1.43 1.35 0.58 2.55
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Fig. 1 e Representation of an expression tree in gene-

expression programming. (Inv represents the inverse

function).
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known as hidden neurons) and an output layer which con-

tains the target values. These variables are interconnected

with several weighted links. The best solution of the network

is found by forward feeding the initial solutions, back-propa-

gating the errors throughout the entire network and adjusting

the connection weights (Hertz et al., 1991).

Adaptive neuro-fuzzy inference system (ANFIS) is a

Sugeno-type fuzzy inference system which also incorporates

the principles of neural networks (Sugeno, 1985). Fuzzy

inference process consists of modeling a set of outputs from

a selected number of inputs utilizing specific membership

functions, logical operations and if-then rules (Zadeh, 1965).

In fuzzy logic, any statement is not completely true or false

and there is always a percentage of truth or falseness. The

drawback of ANFIS models is the complexity associated with

the membership functions and if-then rules which comprise

the final model.

Gene expression programming was introduced as a

method to produce a practical solution for prediction models

(Ferreira, 2001). GEP is a specialized form of genetic

programming (GP) which can be referred to as a type of

genetic algorithms since it is essentially composed of a

population of mathematical solutions that ultimately
Fig. 2 e Comparison of predicted and measured IRI values for tra

training data. (b) Performance of GEP model for validation data.
evolves the selection of the best solution using an

optimization process. In a GP, which was first introduced by

Koza (1990), the individuals in the genetic algorithm are

computer programs. GP evolves these computer programs

through expression trees utilizing a fitness criterion. The

GEP technique starts with selecting a function set (consisting

of mathematical and logical operations) and a terminal set.

It then loads the dataset to the entire model to evaluate the

fitness function and create an initial random population of

chromosomes (i.e. computer programs). For each individual

computer program, expression trees are created in order to

execute the program and evaluate the fitness criteria.

Selected programs are then replaced with the initial

population. This process would be rewinded for a specific

number of generations or until reaching the selection of best

solution (Ferreira, 2001).

An example of defining an algebraic equation with an

expression tree is demonstrated in Fig. 1. In this figure, the

head and intermediate nodes represent mathematical

functions. The tail nodes symbolize independent variables

or constant values. Such nodes are interconnected with the

links to build an algebraic expression. The mathematical

form of expression tree in Fig. 1 is as follows

1
x1 þ c1 � x2c2

(1)

where x1 and x2 are the independent variables, c1 and c2 are the

constants.

The transition between the expression trees and algebraic

equations is performed in the form of symbolic regression to

fit a nonlinear function to a set of data. The evolution of the

programs toward the best solution is controlled by a fitness

function. An appropriate fitness function is the root mean

squared error (RMSE), which is defined in the form of Eq. (2).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

�
xi � yi

�2
n

vuut (2)

where xi is the measured value, yi is the predicted value, and n

is the number of observations.

If the desired fitness criterion is not met, the reproduction

and modification process will be initialized. This process in-

cludes: replication, mutation (change of functions and vari-

ables in head and tail nodes), transposition and insertion, and
ining and validation data. (a) Performance of GEP model for

http://dx.doi.org/10.1016/j.jtte.2016.09.007
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Fig. 3 e Performance of ANN predicted errors from GEP model. (a) Performance of ANN model for training data. (b)

Performance of ANN model for validation data.
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recombination (Ferreira, 2001). The best GEP solution is

eventually validated through the use of an independent set

of data which was not introduced during training phase. The

following sections contain the process of developing IRI

prediction models based on extracted LTPP data in this study.

The general form of the mathematical model proposed for

the first set of LTPP data is as following

IRI ¼ fðSN; AGE; ESALÞ (3)

where IRI is the estimated international roughness index (m/

km), SN is the structural number, AGE is the time for con-

struction of the pavement (1000 d), ESAL is the cumulative

equivalent single axle loads (millions).

Both Ozbay and Laub (2001) and Terzi (2013) indicated that

using the SN, age, and ESALs of the respective case studies for

developing the IRI prediction model would yield a better

correlation between predicted and measured roughness

indices. As a result, three independent variables (SN, AGE

and ESAL) were employed to develop the GEP model in this

study.

To build the GEP structure and find the best prediction

model, the GeneXproTools® software package was utilized in

this study. The first database consisted of ninety-five records,

from which, eighty records were selected to train the GEP

model. Fifteen independent data records were then used to

validate the developed model. The GEP algorithm consisted of
Fig. 4 e Performance of hybrid GEP-ANN model for IRI

prediction.
thirty chromosomes, with a head size and gene number of

eight and three, respectively. It should be mentioned, that the

selection of these parameters would impact the generaliza-

tion of the proposed model. An iterative process selects the

optimized parameters that would be employed in the GEP

model. The RMSE parameter was selected as the fitness

function. To further evaluate the performance of the devel-

oped model, the correlation coefficient (R) was calculated for

both training and validation data sets. The result of the best

GEP solution is in the form of Eq. (4).

IRI ¼ 0:974þ 2:497ESALþ 0:0768ESAL$SN2 þ 0:009AGE2$ESAL

� 0:889ESAL$SN� 0:0025AGE$ESAL2

(4)

Fig. 2 illustrates the GEP-predicted roughness values

compared to the measured IRIs from the LTPP database.

Even though the training dataset shows a reliable correlation

coefficient, the validation data exhibits relatively less

correlation between the predicted and measured IRIs. To

further improve the results of the GEP model, a hybrid

approach was employed. A dataset of error values (defined

as the difference between predicted IRI from the developed

GEP model and measured IRI) was created. This dataset was

selected as the target values for an ANN model. Similar to

the GEP process, the input parameters for the ANN model

were SN, AGE, and cumulative ESALs. The ANN model was

comprised of an input layer including the predictor

variables, a hidden layer with twenty hidden neurons and

an output layer containing error values as the targets. The

multilayer feed-forward neural network model with back-

propagation of errors was employed in this phase of study.

LevenbergeMarquardt algorithm was selected to train the

ANN model. Two types of transfer functions were utilized

for preparation of the data: log-sigmoid function for pre-
Table 3e Comparison of various predictionmodels for IRI
from LTPP data.

IRI model Correlation coefficient (R)

ANN (Ozbay and Laub, 2001) 0.9251

ANFIS (Terzi, 2013) 0.9862

GEP (current study) 0.9053

GEP-ANN (current study) 0.9941

http://dx.doi.org/10.1016/j.jtte.2016.09.007
http://dx.doi.org/10.1016/j.jtte.2016.09.007


Fig. 5 e Comparison of predicted and measured IRIp for training and validation data for the second LTPP data set. (a)

Performance of prediction model for training data. (b) Performance of prediction model for validation data.
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processing and linear function for post-processing. Fig. 3

shows the prediction power of ANN model. The error values

predicted from ANN model were then introduced to the GEP

model. The performance of the final hybrid prediction model

is shown in Fig. 4. The hybrid GEP-ANN approach seemed to

be effective as an IRI prediction model when compared to

the initial GEP model. This is further supported by

comparison of RMSEs for both approaches (GEP-ANN:

0.0491 m/km, GEP model: 0.2046 m/km).

A comparison between the developed hybrid GEP-ANN

model with other IRI prediction models, in the literature, is

included in Table 3. It should be reminded that for comparison

purposes, all predictionmodels utilized the same variables for

roughness prediction. The robustness of the developed hybrid

model, compared to the ANN model and ANFIS is satisfactory

owing to the fact that the developedmodels are in the form of

algebraic equations (Ozbay and Laub, 2001; Terzi, 2013).
Fig. 6 e Residual plots and ratio of predicted tomeasured IRIp. (a)

plot of validation data for second model. (c) Predicted to measu
It is noteworthy that the generalization of the hybridmodel

depends on the range of the input variables used for themodel

development process. The LTPP data in this study were

limited to specific pavement structures and traffic conditions.

Including a wider range of input parameters will enhance the

generalization of the IRI prediction model in the future

studies.

For the second part of this study, a total of ninety-eight

records were extracted from LTPP data. The present rough-

ness (IRIp) was the dependent variable while the IRI0, AGE0,

ESAL0, SN, DAGE, and DESAL were the predictors.

The proposed model is in the form of Eq. (5).

IRIp ¼ fðIRI0; AGE0; ESAL0; SN; DAGE; DESALÞ (5)

Eighty records from this dataset were randomly selected

to train the GEP algorithm and the remaining data were used
Residual plot of training data for secondmodel. (b) Residual

red ratios for the second prediction model.

http://dx.doi.org/10.1016/j.jtte.2016.09.007
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to validate the model. The GEP model was developed using a

set of forty chromosomes, with head size of ten and con-

taining four genes. The RMSE indicator was selected as the

fitness function to evaluate the performance of the evolved

solutions.

Since the contribution of SN parameter in prediction of IRIp
was not significant, it was excluded from the final model. The

final GEP solution is found to be in the form of Eq. (6).

IRIp ¼ �
AGE0 þ DESALþ ESAL2

0

� IRI0
64:4þ AGE0

þ
�
4:09� 2DAGE� 5:53

IRI0

��1

þ
�
expðDAGEÞ � ESAL0 � 1

IRI0
� 13:85

��1

(6)

A comparison of the GEP-predicted roughness values and

actual IRI values (from the second data set) is illustrated in

Fig. 5. The proposed GEP model shows a reliable prediction

power (R ¼ 0.9912 for validation data). The RMSE of the

training and validation datasets are 0.1120 and 0.0784 m/km,

respectively. Again, the generalization of the developed

model is limited to the range of input data used in this study

and could be further expanded to a wider range of

roughness data in future studies.

Fig. 6 illustrates the residual plots of the predicted IRI

values as well as the ratio of predicted/measured roughness

values. Residuals of IRI prediction model are between �0.4

and 0.2 m/km for the training data used in this study. Such

values for the validation dataset are less than ±0.2 m/km.

Furthermore, the ratio of predicted to measured roughness

values are less than 15 percent as illustrated in Fig. 6(c).
4. Conclusions

In this study, two sets of pavement roughness data, extracted

from the LTPP database, were utilized. The first set of datawas

used to develop a roughness prediction model using a gene-

expression programming technique. The proposedmodel was

then further improved by utilization of a hybrid GEP-ANN

approach. The hybrid method was found to effectively predict

the IRI. The performance of the proposed process deemed

satisfactory compared to the similar prediction models found

in the literature.

In the second part of this study, a GEP approach was

employed to formulize the prediction of present IRI using an

independent set of historical LTPP roughness data. The

developed model was found to be a reasonable approach to

predict roughness. Generalization of the proposed models in

this study would be further improved using wider range of

traffic data, pavement structural properties and roughness

indices in future studies.
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