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Abstract

A matrix is called a lattice matrix if its elements belong to a distributive lattice. For a lattice
matrix A of order n, if there exists an n x n permutation matrix P such that F = PAPT =
(fij) satisfies f;;j £ fj; fori > j, then F'is called a canonical form of A. In this paper, the tran-
sitivity of powers and the transitive closure of a lattice matrix are studied, and the convergence
of powers of transitive lattice matrices is considered. Also, the problem of the canonical form
of a transitive lattice matrix is further discussed.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Transitive lattice matrices are an important type of lattice matrices which repre-
sent transitive L-relations [5] (or transitive V-relations [15]). Since the beginning of
the 1980s, several authors have studied this type of matrices for some special cases
of distributive lattices. In 1982, Kim [13] introduced the concept of transitive binary

” Supported by Foundation to the Educational Committee of Fujian (JB03056), China.
* Tel.: +86 591 83726082.
E-mail address: yjtan@fzu.edu.cn

0024-3795/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2004.11.016


https://core.ac.uk/display/82186001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:yjtan@fzu.edu.cn

170 Y.-J. Tan / Linear Algebra and its Applications 400 (2005) 169—191

Boolean matrices and in 1983, Hashimoto [7] introduced the concept of transitive
fuzzy matrices and considered the convergence of powers of transitive fuzzy matri-
ces. A transitive fuzzy matrix represents a fuzzy transitive relation [3,10,21] and
fuzzy transitive relations play an important role in clustering, information retrieval,
preference, and so on [15,17,18]. In [8], Hashimoto gave the canonical form of a tran-
sitive fuzzy matrix. In [19], Tan considered the convergence of powers of transitive
lattice matrices.

In this paper, we continue to study transitive lattice matrices. In Section 3, we
shall discuss the transitivity of powers and the transitive closure of a lattice matrix. In
Section 4, we shall consider the convergence of powers of transitive lattice matrices.
In Section 5, we shall further discuss the problem of the canonical form of a transitive
lattice matrix.

2. Definitions and preliminary lemmas

Let (P, <) be aposet and a,b € P.If a < b or b < a then a and b are called
comparable. Otherwise, a and b are called incomparable, in notation, a||b. If for any
a,b € P, aand b are comparable, then P is called a chain. An unordered poset is
a poset in which a||b for all @ # b. A chain C in a poset P is a nonempty subset of
P, which, as a subposet, is a chain. An antichain C in a poset P is nonempty subset
which, as a subposet, is unordered. The width of a poset P, denoted by w(P), is
n, where n is a natural number, iff there is an antichain in P of n elements and all
antichains in P have < n elements. A poset (L, <) is called a lattice if for all a, b in
L, the greatest lower bound and the least upper bound of a and b exist. It is clear that
any chain is a lattice, which is called a linear lattice.

Let (L, <) be a lattice. The least upper bound (or join) and the greatest lower
bound (or meet) of a and b in L will be denoted by a Vv b and a A b, respectively. It is
clear that if (L, <) is a linear lattice (especially, the fuzzy algebra [0,1] or the binary
Boolean algebra B| = {0, 1}) then a vV b = max{a, b} and a A b = min{a, b} for all
aand b in L.

Let (L, <, V, A) be alattice and ¢ #+ X C L. X is call a sublattice of L if for any
a,be X,avbanda A b € X.Itisclear thatif {X,| A € I'} is a set of sublattices of
L,thenY = (1), ;- X, is sublattice of L whenever Y # ¢. Let X be a nonempty subset
of L. Define the sublattice generated by X to be the intersection of all sublattices of
L which contain X and denote it by L(X). Let (L, <, V, A) be a lattice. A map
¢ from L to L' is call a homomorphism if ¢(x V y) = ¢(x) V ¢(y) and p(x A y) =
¢ (x) A ¢ (y) forall x, y in L. An injective homomorphism is called a monomorphism
or an embedding of L into L. In this case, we say L may be embedded into L’.

Let (L, <, V, A) be a lattice and a, b € L. The least element x in L satisfying
b Vv x > a is called the relative lower pseudocomplement of b in a, and is denoted by
a — b. If for any pair of elements a, b in L, a — b exists, then L is said to be a dually
Brouwerian lattice.
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Remark 2.1. If L is a linear lattice with least element O and a, b € L, then a —
a ifa>b . P .
b= 0 ifa<b In particular, if L is the fuzzy algebra [0,1] then the operation
coincides with the operation “©” defined in [7]. If L is a Boolean lattice, then
a —b=a A b, where b’ is the complement element of b in L.
In this paper, the lattice (L, <, Vv, A) is always supposed to be a distributive lattice

with the least and greatest elements O and 1, respectively.

w9

The following lemmas will be used in this paper.

Lemma 2.1. The sublattice generated by a finite set of elements of the lattice L is
finite.

Lemma 2.2. Each finite distributive lattice can be embedded into a finite Boolean
lattice.

The proofs of Lemmas 2.1 and 2.2 can be found in [1].

Lemma 2.3 [20, Lemma 2.2]. Let L be a dually Brouwerian lattice. Then for any
a,b,cin L, we have

(Da—-b<a;

Qa<b=a—-b=0;
Bb<c=>a—-b>a—candb—a <c—a;
@Da—-—bArc)y=(@—>b)V(a—c);
S)a—-bve)<(a—>b)A(a—o);

6) (anb)—c<(a—c)n(b—c);

(7N (a@a—=byvb—c)=(@Vvb)—(bAc).

Lemma 2.4. Let L be a dually Brouwerian lattice such that for any a, b, c in L,
(@anb)—c=(a—c)A(b—c). Then foranya, b, cin L, we have

(D @—=b)yAnb—a)=0;
2) (@a—b)A(b—c)< (anb)—c.

Proof. (1) Since

0<(a@a—b)yA (b —a)
<(a—(aAnb)) A —(anb)) (byLemma?2.3(3))
=(aAb)—(anb)=0 (byLemma2.3(2)),

we have
(a—b)A b —a)=0.
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This proves (1).
(2) Since
(b—a)yAb—=c))V ({(anb)—rc)

=(b-a)rnb—-c)Va—c)ADb—c)
=b-co)AN((b—a)V(a—o0)
=b-c)A{(aVvb)—(anc)) (byLemma?2.3(7))
=b—c (because (aVb)— (aNnc)>=b—c),

we have

(a=b)ANb—-—c)=@a—=b)AN{((b—a)A(b—c))V ((aAnb)—c))
=(a@a—=D)ANDb—a)AN(b—c)) Vv ((@a—=Db)A((anb)—rc))
=(a —b) A ((a Ab)—c) (because (a —b) A (b —a)=0)

<(aANnb)—c.

This proves (2). O

Now let (L, <, Vv, A) be a distributive lattice and M,, (L) the set of all n x n matri-
ces over L (lattice matrices). For any A in M,,(L), we shall denote by a;; or A;; the
element of L which stands in the (i, j)th entry of A. We denote by E;; the matrix all
of whose entries are zero excepts its (i, j)th entry, which is 1. A matrix P in M, (L)
is called a permutation matrix if exactly one of the elements of its every row and

every column is 1 and the others are 0.
For any A, B, C in M, (L) and a in L, we define:

A\/BZCiffCl'j = a;j Vb,'j fori,jinN:{l,Z,...,n};
ANB =Ciffcij = ajj /\bij fori,jinN;

AT = Ciff¢;j = aj; fori, jin N;

vA=AAAT;

AB = Ciff c;j = \/7_,(aix A byj) fori, j in N;

aA = Ciffcij =a N ajj fori,jinN;

A< Biffa;j < b;jfori, jinNand A > Biff B < A;

1 ifi=j

0 ifi fori, j in N.

I, = (5;j), where §;; = {

The following properties will be used in this paper.

(a) M, (L) is a semigroup with the identity element [, with respect to the multi-

plication;

(b) (M, (L), v, -)isasemiring and for A, B,C, Din M,(L)if A< BandC < D

then AC < BD.
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(c) For any A, B,C in M,(L), A(BAC) < (AB)A (AC) and (BAC)A <
(BA) A (CA).

Properties (a) and (b) can be found in [4]. Since BAC < Band BAC < C
for any B and C in M,(L), by (b), we have that A(BAC) < AB, A(BAC) <
AC,(BANC)A< BAand (BAC)A < CA,andso A(BAC) < (AB) A(AC) and
(BAC)A < (BA) A (CA). Thus property (c) follows.

For any A in M,, (L), the powers of A are defined as follows:

A°=1, A'=A"'A, lez,,
where Z_ denotes the set of all positive integers.

The (i, j)th entry of A is denoted by afj).

If L is a dually Brouwerian lattice and A, B, C € M, (L), then we can define:

A—B=C iffC,'.,' =ajj — b[j fori, j in N,

AA=A— AT

Lemma 2.5 [4, Corollary 1.1]. For any A in M, (L), the sequence
A A% AL (2.1)

is ultimately periodic.

For the sequence (2.1), let k = k(A) and d = d(A) be the least integers k > 0 and
d > 1 such that A = A¥+4 The integers k(A) and d(A) are called the index and
the period of A. Clearly, the sequence (2.1) is of the form

A, A2 AR AR AR )L ARA) AR
(2.2)

It is well known from the theory of semigroups (see e.g. [9]) that the set G(A) =
{AKA) AR+ AR+ (A=) g g cyclic group with respect to the multipli-
cation. The identity element of G(A) is A" for some r with k(A) <r < k(A) +
d(A) — 1. More precisely, let 8 > 1 be the uniquely determined integer such that
k(A) < Bd(A) < k(A) +d(A) — 1. Thenr = Bd(A).

Let A € M,(L). A is called convergent if d(A) = 1 and in this case k(A) is called
the convergent index of A; A is called nilpotent if there exists some integer k > 1 such
that AK = O(the zero matrix). It is clear that if A is nilpotent then A converges to the
zero matrix and in this case k(A) is called the nilpotent index of A.

Lemma 2.6 [4, Corollary 5.2]. Let A € M, (L). Then A is nilpotent iff A" = O, i.e.,
k(A) < n.

Let A € M, (L), A is called transitive if A> < A; A is called idempotent if A% =
A. Denote by r = r(A) the least integer r > 1 such that A” is idempotent and ¢ =
t(A) the least integer ¢t > 1 such that A’ is transitive. Clearly, £ (A) < r(A).
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Let B € M,,(L). The matrix B is called the transitive closure of A if B is transitive
and A < B, and for any transitive matrix C in M, (L) with A < C we have B < C.
The transitive closure of A is denoted by A™.

Lemma 2.7 [2, Lemma 2]. For any A in M,,(L), we always have

\/ A* < \”/ Al
=1

sS>n
Lemma 2.8. For any A in M, (L), we have AT = \/f:lAl.

Proof. Let B=)\//_;Al. Then A< B and B?>=(\/]_;AD)?=(V]_AD)V
(V2 A% But \/2 A <\, A% < /), Al (by Lemma2.7), we have B <
(ViZ A v (\/]_,AD) = B, i.e., Bis transitive.

Let now C be any transitive matrix in M, (L) with A < C. Then cl<c (by
the transitivity of C) and A/ < C! for any positive integer /, and so B = \/7:1Al <
\/?lel < C. By the definition of the transitive closure, we have B = A™. This
completes the proof. [J

Lemma 2.9. Let L be a dually Brouwerian lattice and A € M, (L). Then
A=AAVVA.

Proof. Let S = AA v yvA. Then forall i, j in N,
sij=(AA);j vV (VA)ij = (aij —aji) V (aij ANaj)
<a;j (because a;j — aj; < a;j and a;j A aj; < a;j).
On the other hand,
sij = (aij —aji) Vv (aij Naj;)
= ((@ij —aji) Vaij) A (aij —aji) Vaji) > ajj.

Therefore s;; = a;; forall i, jin N.i.e., S = A. This completes the proof. [J

3. Transitivity of powers of a lattice matrix

In this section, we shall discuss the transitivity of the powers of a lattice matrix A
in M,,(L).
The following propositions can be found in [19].

Proposition 3.1 [19, Propositions 3.2 and 3.4]. If A%, s > 1, is transitive, then

(1) A" ™ < AS. More generally, A”™ < ASTHD for any integer | > 0;
(2) d(A)ls. In particular, d(A)|t(A).
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Proposition 3.2 [19, Proposition 3.3]. The group G(A) = {AFA AKMD+T
AR+ =1y contains exactly one transitive matrix (namely A”)).

Proposition 3.3. Let A € M, (L). If A® is transitive then

(D) AT AL =A AL
(2) Ifd(A) > 1, then none of the matrices

AS+1 AS+2 AS+d(A)—l

is transitive. In particular, none of the matrices

At(A)+l’At(A)+27”"At(A)+d(A)—l
IS transitive.

Proof. (1) For any integer [ > 0, we have AlS < AS since AS is transitive, and so
ai(fs) < al.(l.s) for all i in N. Since ai(f) < ai(fs), we have al.(f) < al.(f), and so \/;’zlag) <
al.(l.s) for all i in N. i.e., AT A I, < A® A I,. On the other hand, we have A’ A I, <
AT A I, since A* < AT, Therefore AT A I, = AS A I,,. This completes the proof of
(D).

(2) If A5t (1 < A <d(A) — 1) were transitive, then Proposition 3.1(2) could

imply d(A)|s and d(A)|(s + A), which is impossible. This proves (2). O

Proposition 3.4. If I, < A™, then the sequence (2.1) contains a unique transitive
matrix, namely A" A,

Proof. Let A® be transitive (s > 1). By Proposition 3.3(1) and the hypothesis /,, <
A1, we have A* > I,, and so A® = A, < AAS = A%, On the other hand, by
the transitivity of A®, we have A% < AS. Hence A* = A%, and since there is a
unique idempotent in the sequence (2.1), we have A® = A" This completes the
proof. [J

By Proposition 3.1(2), we have that d(A) |t (A) and d(A)|r(A) and by Proposition
3.3(2), we know that all transitive matrices in the sequence (2.1) are contained in
the set {A/(A) ATAFdA) - A7) but, in general, we cannot state that the all
matrices in this set are transitive.

Proposition 3.5. For any A in M, (L), the integer d(A) = |G(A)| is the greatest
common divisor of all integers s > 0 such that A’ is transitive.

Proof. Consider the (formally infinite) sequence

AL ATAHA(A) - Ar(A) g1 +A=DAA)  A1AHAA)
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where r(A) = t(A) + (I — 1)d(A). Since the greatest common divisor (g.c.d) of the
integers 1 (A), 1t (A) + d(A),t(A) + 2d(A), ..., is exactly the number d(A), we have
the proposition. [

In the end of this section, we mention two transitive matrices which are intimately
connected with any matrix A in M, (L).

Proposition 3.6.  Let A e M,(L), o(A)=\/"0""AKOH g 7(A) =
/\fi‘g)_lAk(A)H. Then

(1) o(A) = A" TAT = (A",
(2) 0(A) and t(A) are transitive.

Proof. (1) Since
d(A)

=1

d(A)—1
= \/ AFMH (Note that AKAF(A) — gk(A)y
=0

=0(A),

we have that o(A)Al = o (A) for any integer [ > 1.

Therefore
n
c(AAT =0(A)- (AV A%V ... v A" = \/o(A)A’ =0 (A). (3.1

=1
By Lemma 2.8, we have AAT < (A1)? < A*. This implies
At > AAT > APAT > (3.2)
In the following we will prove that A”~' AT = A’ A* for every integer [ > n — 1.
For any 7, j in N, let T be any term of the (i, j)th entry al.(J'.’) of A™. Then T is of the
forma;j, A ajjiy A+ Aaj,_,j, where 1 <iy,ia,...,i,—1 < n. Since the number of
the indices i, i1, i3, ..., in—1, j isn + 1, there must be two indices i,, and i, such that
iy =i, for some u and v(u < v) (taking ip = i and i,, = j). Therefore

T'=aiiy A aijip N=w - Ndi,_y

zaiil /\.../\aiu—liu /\(aiu /\.”/\aiv—liu)/\aiu /\..'/\ain—l./

iu+l iv+l

=iy A AN iy N @i N A Qi)

A@iyiygy ** Qiy_yiy) N Qigiyyy N0 Ny

iv+l
2n

(n+(v—u)) (O]

S <V ay.
I=n+1
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and so al.(;l) < \/lziHlai(jl.) foralli, jin N.ie., A" < A" v ... v A?" Thus

ATAT =AM v AT v v AT AT AT v AT = AT AT
Since A”AT < A" 1A (by (3.2)), we have A”"1AT = A" AT, and so
ATTTAT = Alat (3.3)

for every integer [ > n — 1.
Now

o (A)=AKD .y AKAH(A)-1
— AR Fad(A) \, |, AR Fad(A)+d(A) -1

for any integer o > 0.
Choose « such that = k(A) + ad(A) > n — 1, we then have that

o(A)=0(A)AT (by (3.1)
=(Al v ALy Ly AT =T 4+
=(AlAT) v (AT AT v -y (AT AT g
=(ATAH) v (@TIAT) v v (ATTTAT) (by (B3)
:An71A+'

Since

(ATY'=(AV A%V ...v A IaT
=(An—1 VAT .y An(n—l))A+
— (AT AT v (A"AT) v v (AT D AT
=A""TAT  (by 3.3)),

we have o (A) = (A™)". This proves (1).
(2) Since

(0 (A)? = (A = (ADHH" < (AN =0 (4),
we have that o (A) is transitive.
Since

d(A)—1 d(A)-1

(T(A))2 — T(A) /\ Ak(A)-H < /\ (T(A)Ak(A)+l)
=0 =0



178 Y.-J. Tan / Linear Algebra and its Applications 400 (2005) 169—191

and forany /in {0, 1,...,d(A) — 1}

d(A)—1 d(A)—1
T(A)Ak(A)+l — /\ AS-’rk(A) Ak(A)+l g /\ AS+l+2k(A)
s=0 s=0
d(A)—1
= /\ AT =),
t=0

we have (1 (A))2 < t(A), i.e., T(A) is transitive. This proves (2). [
Corollary 3.1. IfI, < AT, theno(A) = A™.

Proof. Since I, < AT, we have AT < (A1)2, and so AT = (41)2. Therefore
(A" = AT, and so o (A) = (AT)" (by Proposition 3.6(1))= A™. This completes
the proof. [J

4. Convergence of powers of transitive lattice matrices

In this section, we shall discuss the convergence of powers of transitive matrices
in M, (L).

Theorem 4.1. Let A, C € M,(L). If A is transitive and A AN I,, < C < A, then

(1) C converges to CK© with k(C) < n.

(2) If A satisfies \/7_,(aij V aj;) < ajj for somejin N, then C converges to Ccrk©
withk(C) <n — 1.

(3) If C satisfies \/;_,(cij V c;ji) < cjj for some jin N, then C converges to Ccrk©
withk(C) <n — 1.

Proof. First, we have that a;; < ¢;; < a;; foralliin Nsince A A I, < C < A, and
so foralliin N

aij = Cij “.1)

(1) We know that any term 7 of the (i, j)th entry cl.(;.l) of C" is of the form c;;, A
Cijia N+ A Cj,_, j. Since the number of indices i, 71, i2, ..., i,—1, j is n + 1, there
must be two indices i, and i, such that i, = i, for some v and v (1 < v) (taking iy =
iandi, = ]) Then T < Ciyiygg N N Ciy_yiy, and T < Ciiy N\ Cijip N N Cipy_yiy, N
Ciyiyes N7+ AcCi,_yj. Since A is transitive, we have A > A¥ for all k > 1, and so

aij > a}]’.‘) forall i, j in N and all k > 1. Thus
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Tt > = ai, by (4.1))

lulu

>a.(LUl._”) > ci(:l.:”) (because C < A)

2 Ciyigg N N Ciy_giy 2 T

v—u—1 .

Let 77 be any term of c( ) Then T is of the form ¢4y A Crypy AN+ N €ty si,

forsometq, ta, ..., tu—u—z in N, and so that ¢;;; Acijin A+ A Ciy_yiy ANTUA Gy A
- Ac¢j,_,jis aterm of cgr.’_l). Therefore c.(;_l) = Ciiy A Ciyig A ACiy_in NTTA

(v u—1)

Ciyiy1 N+ A€,y j forany term 71 of ¢; , and so

=D . . (v—u—1) . o

Cij Z Ciiy N Cijig N =+ A Ciy iy NG A Ciyigy N NCiyyj 2 T,
Since c(;' > T for every term T of ci(j'.’), we have ci(;’) < l(]” D e, cr<onl,

Certainly C”Jrl < Cn.
On the other hand, since

(n+1) >

Cij Ciiy /N Ciyig N+ A Ciy_yiyg N Cigi N Cigigr N7 N Cigy

=T Nci,i, =T (because T < cj,,),

we have c("H) > f'.l), ie., C"tl > C" Since C"t! < C", we have C" = C"*! and
k(C) < n. This proves (1).

(2) By the proof of (1), we have C” < C"~!. In the following we shall show that
C"~! < C". 1t is clear that any term Tof the (i, j)th entry c U of € is of the
form c;;; A cijiy Ao Aciy,_,j. Letig =1 and i, = j.

(a)Ifi, =i, for some u and v (u < v), then

(v u) . ) )
Ciiy 2 Ciyiyyr N A Ciy_yiy
ZCiig Nt AN Ciyyiyg A Cigigy N7 A Cig_iyg N Ciyiyg N AN Ciyyj
=T,
and so
. (v— u) (v u)
Ciniy = Qiyi, = a; ;. > Cioi (because C < A) > T.

Then

(n) » . o . .
Cij >C”1 A Ciyip ARRRRAN Ciyy iy A Ciyiy A Ciy

lu+] /\ T /\ Ci"_zj

=T A Ciiv = T.

(b) Suppose that i, # i, for all u # v. By the hypothesis, \/;’=1 (aii,, vV ai,1) <
ai, i, for some m. Then, by (4.1), we have c;,;, = ai,i, = T, and so

AN Ncei,_,j = T.

(m) . . o . o
cij 2 Ciiy A Ciyip ARRRRA Cli_tim A Cimim A Clmlm-H
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Therefore, cl.(jr.’) > T for every term T of cg?_

C". Thus C"~! = C",i.e., k(C) < n — 1. This proves (2).
(3) The proof of (3) is similar to that of (2). [

D and so 657_1) < cg.”, ie,Ccrl g

As a special case of Theorem 4.1, we obtain the following corollary.
Corollary 4.1. If A € M,,(L) is transitive, then

(1) A converges to AK™ with k(A) < n;
(2) If A satisfies \/}_,(aij V aji) < ajj for some j in N, then A converges to AKA)
with k(A) <n — 1.

Remark 4.1. Corollary 4.1(1) is Theorem 5.1(1) in [19].

Remark 4.2. If L is the fuzzy algebra [0,1], then Theorem 4.1(2) and (3) become
Theorems 2 and 3 in [7], respectively.

In the following, the lattice L will be supposed to be a dually Brouwerian lattice
and satisfy the following conditions:
Forany a, b, cin L,

a—(bvec)y=(@—b)A(a—c) (CDy)
and
(anb)y—c=(@—c)n(b—rc) (CDy)

Such lattices are abundant: for example, every Boolean lattice, a complete linear
lattice, the direct product of a finite number of complete linear lattices, and especially
the fuzzy algebra [0,1] and [0, 1]" are all such kind of lattices.

Lemma 4.1. If A € M, (L) is transitive, then

(1) AA is transitive and nilpotent;
(2) v A is idempotent.

Proof. Since A is transitive, we have that for any i, j in N. ai(/?) < ajj, ie, Vo
(aik A bij) < a;j, and so

ajk N agj < ajj 4.2)
for all i, j, k in N.
(1) Forany i, j, kin N,
(AA) ik N (AA);

= (ajx — axi) N(agj — aji)
j—aj
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< (ajx — (akj N aj,-)) A (akj — (aji A air)) (by (4.2) and Lemma 2.3(3))
= ((ajk — agj) vV (aix — aji)) A ((akj — aji) vV (akj — aix))

(by Lemma 2.3(4))
= ((@ix — arj) N (axj —aji)) Vv ((aix — akj) A (akj — air))

V((aik — aji) A (agj — aji)) Vv ((arj — aix) A (@i — aji))
< ((aik AN agj) —aji) v ((aik A akg) —aji) vV (@ix A agj) — aji)

(by Lemma 2.4 and (CD,))
< aij —aji = (AA);j.

Therefore, (AA){Y = \/{_ | (AA)ix A (AA)) < (AA)j. ie., (AA)? < AA.
In the following we shall show that A A is nilpotent.

Clearly, any term T of the (i, j)th entry (AA),?;?) of (AA)" is of the form (AA);;, A
(AA)ijin N+ AN(AA);,_ j,where 1 < iy, i2,...,i,—1 < n.Then there must be two
indices i, and i, such that i, =i, for some u and v (1 < v) (taking iop =i and
in = j),and so

T < (AA)iuiu-H AN A (AA)iv—liu
<(AA) < (AA),i, (by the transitivity of AA)
=aiuiu - aiuiu = O

Therefore (AA)};’) =O0foralli, jinN.ie., (AA)" = O. This proves (1).
(2) For any i, j in N,

n n
A =\ (FAix A (TA) = \/ @ik Aaxi A akj A ajy)
k=1 k=1

=\/ (@ix Aaj) A (aje A ar)) < \/ (@ij Aaji) = (VA)i).
k=1 k=1

On the other hand, since
(VA)ij=aij Naj; < aii (by (4.2))
=aj; Naji = (VA)ii,
we have
n
(A =\ (VA% A (VAR > (VA A (VA = (VA
k=1

Therefore (VA);; = (vA)g), ie., VA = (vA)z. This proves (2). U



182 Y.-J. Tan / Linear Algebra and its Applications 400 (2005) 169—191

Remark 4.3. By Lemmas 2.9 and 4.1, we have that if A € M, (L) is triansitive
then A can be expressed as a join of a nilpotent matrix and an idempotent matrix in
M, (L).

Theorem 4.2. If A € M, (L) is transitive, then A converges to AKY) with k(A) <
k(AA).

Proof. By Lemma 2.9, A= AAV yA. Let M = AA and § = A. Since A is
transitive, by Lemma 4.1, we have that M is nilpotent and S is idempotent. Therefore
M! = O and §? = S, where | = k(M) < n. Now we consider the matrix A’ = (M v
S).. Let T be any term of the expansion for (M Vv S)!. Then T is of the form T =
Mo P M SPr for some nonnegative integers oy, ..., o and By, ..., B with
(1 4+-ta)+Br+--+p)=L1f By=---=p-=0, then T =M.
M = M! = 0. 1f there exist some B:(1 <t < r)such that §; > 0, then Shit+l —
SP since §2 = S. In this case, T = M@ P ... M S+ ... per P But M*
SPr. . pe sPHL LM §Pr s also a term of the expansion for (M v S)I ! = At
we have that 7 < A/*! for any term T of the expansion for (M v S)! = A!, and
so Al < A1 On the other hand, we have Alf1 < Al since A is transitive. Thus
Al = A1 This completes the proof. [J.

In [7] Hashimoto obtained the following Theorem.
Theorem 4.3 [7, Theorem 1]. If A is an n X n transitive fuzzy matrix, then
(A=AQ)" =(A-AQ)"!
for any n x n fuzzy matrix Q.

Remark 4.4. Theorem 4.3 means that if A is an n X n transitive fuzzy matrix then
the matrix A — AQ converges to (A — AQ)¥A=40) with k(A — AQ) < n for any
n x n fuzzy matrix Q.

Theorem 4.4. Let L be a complete linear lattice and A € M, (L) be transitive. Then
(A=AQ)" = (A—AQ)"" (4.3)

for any n x n matrix Q over L.

Proof. Similar to that of Theorem 1 in [7]. 0O

In the following we shall prove that the equality (4.3) hold true for n x n transi-
tive matrices over any distributive and dually Brouwerian lattice with the condition
(CDy).

To do this, we need some notations and lemmas.
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Let By be a finite Boolean lattice and o1, 02, ..., o; denote its atoms. It is clear
that | By | = 2k For any a in By, the lth constituent of a, a(), is in By = {0, 1}, such
that aqy = 1if and only if a > o;. Evidently, a = \/5‘:1(01 Aagy).

Itis easy to verify thatfora, bin By and ! € {1,2,...,k}, (a vV b)q) = aqy V by,
(a n b)([) =agp N b(l) and (a — b)([) =daq — b(]).

For any m x n matrix A = (a;;) over By, the Ith constituent of A, A, is an
m X n matrix over By whose (i, j)th entry is a;; (). Evidently

k
A= \/ o1A .
=1

Lemma 4.2 [14, Proposition 2.1]. If A = \/;‘Zlong) and Cy are all (0, 1) matrices,
then Cqy = Aq forall 1 <1 < k.

Lemma 4.3. For all m x n matrices A and B over By, we have

(A vV B)([) = A(]) 4 B(]) and
(A= B)gyy =Aq — Bgy foralll <I<k.

The proof is trivial. [J

Lemma 4.4 [14, Proposition 2.2]. For all m x n matrices A and all n x s matrices
B over By, we have (AB)q) = AqyBq) forall 1 <1 < k.

Lemma 4.5. Let A € M, (By). Then A is transitive if and only if A is transitive
forall1 <1 < k.

The proof is trivial. [J

Theorem 4.5. Let L be a dually Brouwerian lattice with the condition (CD1), and
A € M, (L) be transitive.
Then

(A—AQ)" = (A—AQ)"! (4.4)

for any Q in M, (L).

Proof. Let A = (4;;), O = (d;j) € M, (L) and A be transitive.

Let S(A, Q) = {a;j, d;j, a;j — as, aij —dg, 1 < i, j, s,t,<n}and L(A, Q) de-
note the sublattice of L generated by S(A, Q). By Lemma 2.1, L(A, Q) is a finite
distributive lattice, and so L(A, Q) may be embedded in some finite Boolean lattice
By (by Lemma 2.2). Therefore, A and Q may be regarded as matrices over By.
Furthermore, since
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n
(A= AQ)ij=aij — (AQ)ij = aij — <\/<ais A ds,->)
s=1
n
= /\(aij — (ais A dyj))  (by the condition (CD)))
s=1

=/\((aij —ajs) V (a;j —dyj)) (by Lemma 2.3(4)),

s=1

we have (A — AQ);j € L(A, Q) C By,andso A — AQ € M, (By). Since A is tran-
sitive, A is transitive for all 1 </ < k (by Lemma 4.5). Then

k
(A—AQ)"=>"0/((A—A0)")q)

=1

k
= Z o1(Agy — A Q)" (by Lemmas 4.3 and 4.4)
=1

k
=Y _o1(Ag) — Ay Q)"
=1
(by Theorem 4.4 and the transitivity of A))

=(A-AQ".
This completes the proof. [J
Remark 4.5. The condition (CDy) for the lattice L in Theorem 4.5 is necessary.
Example 4.1. Consider the lattice L = {0, a, b, ¢, 1} whose diagram is as follows:

1

0

It is easy to verify that L is a distributive and dually Brouwerian lattice in which
the condition (CD) is not true.
Let now

c a c c
A:[b c:| and Q=|:C C:|€M2(L).
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which means that A is transitive.
Next, we compute R = A — AQ, we have

seao=(5 -G 9 9-6 o)

(A—AQ)2=<(C) S) and (A—AQ)3=<O 8)

c

It is clear that (A — AQ)? # (A — AQ)>.

5. On canonical form of a transitive matrix

The problem for the canonical form of a lattice matrix was first appeared in the
work [11]. Let A be an n x n lattice matrix. If there exists an n x n permutation
matrix P such that F = PAPT = (fij) satisfies fi;« fij for i > j then F is called
a canonical form of A. In [11], Kim and Roush posed the canonical problem for an
idempotent fuzzy matrix.

Problem A. For an idempotent fuzzy matrix E does there exists a permutation
matrix P such that F = PE PT satisfies f;; > fji fori > j?

Problem A was solved by Kim and Roush in the work [12]. Furthermore, Ha-
shimoto [8] presented the canonical form of a transitive fuzzy matrix and obtained
the following result.

Theorem 5.1 [8, Theorem 2]. For a transitive fuzzy matrix A there exists a permuta-
tion matrix P such that T = (t;;) = PAPT satisfies t;j > tj; fori > j.

In 1986, Peng [16] introduced the concept of transitive matrices over a lattice and
posed the following problem.

Problem B. For a transitive matrix A over a lattice does there exists a permutation
matrix P such that F = PAPT satisfies fij £ fji fori > j?

Problem B was solved by Hao in the work [6] by giving an example in the nega-
tive.
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In this section, we will give further discussion for Problem B in the case of dis-
tributive lattices.

Theorem 5.2. Let L be a distributive lattice and n be an integer with n > 4. Then
for any n x n transitive matrix A over L there exists an n X n permutation matrix P
such that F = PAPT satisfies fij £ fji fori > jifand only if L is a linear lattice.

Proof. Necessity: Suppose that L is not a linear lattice. Then w (L) > 2, and so that
there must be two elements @ and b in L such that a||b. Thereforea Ab <a <a Vv b
anda Ab <b <aVvb. Now let

A=aEpVbE)VaE3yNVbEy NV (aANb)J, € M,(L).

Then A? = (a A b)J, < A. This means that A is transitive. Let P be any n x n per-

mutation matrix. Then there exists a unique permutation o of the set {1, 2, ..., n}
such that P = \/"_ | E5(yi» and so PT = \/""_, E; ;). Therefore

F= (fij)nxn = PAPT
=aEs;(1)o2) VPE;2)03) V aEs(3)04) V PEg@)o(1) V (@ A D) Jy.

It is clear that

Joho@ = fo@o@w =a,  [fo@o®) = fowon) =D

and

Jo@)oe() = fowo3) = foB)o@) = fo(o@) =a Ab.

Since o is a permutation, we have o (i) # o (j)(i # j). If there exists some n X n
permutation matrix P such that F = PAPT satisfies f; ;% fji for i > j. Then the
corresponding permutation o satisfies the conditions o (1) > 0(2), 0(2) > o (3),
0(3) > o0(4) and 0(4) > o(1). This implies o (1) > o (1), which leads to a con-
tradiction. This proves the necessity.

Sufficiency: If L is a linear lattice. Then by using the proof of Theorem 2 in [8],
we have that for any n x n transitive matrix A over L there exists a permutation P
such that F = PAPT satisfies fij = fjifori > j. Thatis, f;; £ fj; fori > j. This
proves the sufficiency. [

Theorem 5.3. Let L be a distributive lattice with w(L) = 2. Then for any 3 x 3
transitive matrix A over L there exists a 3 x 3 permutation matrix P such that F =
PAPT satisfies fij & fji fori > j.

In order to give the proof of Theorem 5.3, we need a lemma.

Lemma 5.1. Let L be a distributive lattice with w(L) =2 and A = (a;;) € M3(L)
be transitive. If ay1 £a12, azpy£ax3 and az| < a3, then ajy<£az or apz£as;.
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Proof. Since A is transitive, we have that for any i, j € {1,2,3}, a;; > ai(/z) =

v,z:l(aik A agj), and so a;; > ajx A aij foralli, j, kin {1, 2, 3}.

Assume that the statement ajp£as; or a3 £as; is false. Then, we have that ajp <
a»r; and a3 < as;.

Since w(L) = 2, there are four cases to consider for the elements a;;, az» and
ars.

Case I: The elements a3, azp and a3 are in the same chain. In this case, we have:

(DIfax <azp < ajzoraz < az < az,thenax) < az A asp < app. This con-
tradicts the assume a2 < as;.

(2) If azz < az1 < ayz or az < a3 < az, then az < axy A ayz < azz, which
contradicts the assume a»3 < az».

(3)Ifa;z < az1 < azporapz < azp < axy,thenaz < asp Aazr < asg. This con-
tradicts the condition a3; < a;3.

Case II: ay ||aszz. In this case, we have that a3 and ap| are comparable or a13 and
azp are comparable.

(1) If a;3 > any, then ax; = ax; A a3 < a3 < azp, which contradicts the condi-
tion a1 ||lasz;.

(2) If a1z < a1, then azy > a13 > az1 2> azn Aax 2 a3 Aax 2 (a1 Aaiz) A
ap| = ai3, and so aj3 > a3, which is impossible.

(3) If a13 > asp, then azp = a3 A asp < ajp < ap;. This contradicts the condi-
tion ay ||as;.

4) If a13 < az, then azp > a3 > az1 = axp Aazr = an Aap 2 axn A @i A
asy) = a3, and so aj3 > a3, which is impossible.

Case III: aj|la;3. In this case, we have that azp and ap; are comparable or as;
and a3 are comparable.

() If azp > any, then ax; = azp A ap; < asp < ai3, which contradicts the condi-
tion asq ||lai3.

(2) If az> < azy, then axy 2 az > axz 2 asy Aaiz 2 ax ANazr = ax A (az A
a»ry) = azp, and so a3y > aszp, which leads to a contradiction.

(3) If azp > a3, then a13 = a3 A asy < ajp < apy. This contradicts the condi-
tion arq ||lai3.

4 If azp < aiz, thenayz > az > a3 > ax Aaz = aip Aaz = (a3 A az) A
a3 = azp, and so azy > azy, which is impossible.

Case IV: aj3|laz;. In this case, we have that ay; and a3 are comparable or ay;
and a3, are comparable.

(1) If ar; > ay3, then a3 = ax; A a13 < a3 < azp, which contradicts the condi-
tion aj3||asz;.
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(2) If az1 < a3, then a3 > a1 > a1z = a13 Aasy > ajz Aagz > aiz A (a1 A
ai3) = ary, and so a1 > apy. This is a contradiction.

(3) If ar; > a3, then azp = asz» A ap; < az; < apz. This contradicts the condi-
tion aj3||as;.

D) If axy < az, thenaz > ax1 > ap 2> a3 Aaszy 2 az1 Aaxn 2 (a A ax) A
a3y = a1, and so ap| > a»;. This is a contradiction.

Therefore, we have that ajp<£a»; or ax3£as;. This proves the lemma. [

aip  arx a3
The proof of Theorem 5.3. Let A = |ay; ax ax3 | € M3(L) be transitive.
azl  azy  asz

(1) If ar1<£ayn, az;1£aiz and azp£ays, then, setting P = I3, we have F =
PAPT = A.Ttis clear that fo1% f12, f31% f13 and f3 4 fo3.

) Ifax; < aya, az1 £ai3 and azy Lars, then, putting P = , we have

—
S O~
—_ o O

ay axy an

F=PAPY = |an an ap|.sothat fo1 = apntax = fiz, f31 = andas =
ayp a3 as;

fizand f3 = az1Laiz = fr.

(3) If axy £ay2, az; £ayz and a3y < ass, then, taking P =

(=R
—_ o O

0
1|, we have
0

ajy  apz  ap
F=PAPT = |a31 a3 axn |.Hence fo1 = azi£aiz = fia, f31 = anifan =
ay a3 ax
fizand f3 = axzfaz = fa3.
“4) Ifazljfalz,ay < a3z and a327£a23,then, by Lemma 5.1, we have that ajp Lan;

0 1 0
or apzZaz. If ajp£asy, then, taking P =0 O 1|, we have F = PAPT =
1 0 O

apn axy  as
azxp az a3 |,and so fo1 = ankazz = f12, f31 = apnfax = fi3 and f3; =
ap ap3  an

0 0 1
aiztaz) = fr3;ifars£azy, then,setting P = |1 0 0|, wehave F = PAPT =
0O 1 0

a3 a3 ax
ai3 ajy ap |,and so fo1 = aizfaz = fi2, f31 = axzfaz = fiz and f3 =
a3 ay axn

a1 £ay = fa3.
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— o O

0 1
5) If a1 £ayn, a1 < a3 and azy < a3, then, taking P = | 1 0 |, we have
0 0
as; a3 ax
F=PAP" = a3 an ap|.andso fo1 = aiztasi = fi2, f31 = azdazn =
a3 ax ap
fizand f3 = ax1Lay = fr3.

(6) If ap; < ayn, az;£a3 and azy < azs, then, putting Q = , We

S = O
S O =
=)

an azl ans

have that B = QAQT = |a12 a1 a13| and B is transitive. Also, by =
as asi ass

apfaz) = b1o, b3y = az1£ay3 = byz and b3 = a3y < az3 = by3. By Lemma 5.1,

we have that bjp£by or bys£b3,. That is, ar; £ajz or ajz£az;. But ax; < ajn, we

0 0 1 azy  ax  as
have ajz3£az;. Nowput P = |0 1 Of,then F = PAPY = |ays am an |,
1 0 0 aiz app  an

and so fo1 = axn€azx = fi2, f31 = a13€as1 = fi13 and f3p = appfas = fo3.

0 1 0
(N Ifax; < ayz, a3 < a3 and azpy<Lans, thentaking P = |0 0 1|, we have
1 0 O

axp a3 as
F=PAPY = |ayn ax a3 |,andso fo1 = azpsass = fia, f31 = annsdax =
aipp aiz  dpl

fi3 and f3 = ai3€as = f3.

, We

(= ]
(=R

0
(8) If ax1 < a2, az; < a1z and azy < ass, then putting P = | 0
1

as azx  asl

have F =PAPT = |an axn an|, and so fo =antan = fi2, f31 =
a3 ap ap

apzfaz = fiz and fa = aipgax = f23.

This completes the proof. [

Remark 5.1. If the distributive lattice L satisfies w (L) > 3, then the result in The-
orem 5.3 is not true.

Example 5.1. Consider the lattice L = {0, a, b, ¢, d, e, f, 1} whose diagram is as
follows:
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It is easy to verify that L is a distributive lattice with w (L) = 3.

0 0 a
LetA=|b

0 0
Then A2 = O
Put now
1 0 0]
Pr=]10 1 0
10 0 1]
[0 0 1]
Pr=10 1 0
|1 0 0]

)

)

0 0] e M3(L).

P

Ps =

— oo O o

c
< A, which means that A is transitive.

., P3

S O =

and Pg=

0 O

0 1],

1 0

0 1 0
0 0 1
1 0 O

It is clear that the matrices Pj, P>, P3, P4, Ps and Pg are the only permutation
matrices in M3(L). By a short computation, we have

Fi = PAP] = A,

F3 = P3AP]

Fs = PsAPJ

0 b 0
F,=PAPf=|0 0 al,

c 0 0]
a O] [0 ¢ 0
0 c|, Fa=PAPf=|0 0 5|,
0 0] a 0 0
0 ¢ 0 0 b
0 0| and Fe=PsAPJ =|c 0 0
b 0] 0 a 0

It is easy to see that none of the matrices Fi, F», F3, Fa, F5 and Fg satisfies the
condition f;; £ fj; foralli > j.
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